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01_IN. Introductory part
1.1. Introduction

Studying the subject of mechanics of deformable bodies (also called mechanics of
materials or strength of material) we will rely on knowledge obtained during the
freshman courses of engineering, namely mathematics (vector, matrix and tensor
analyses, and differential and integral calculus), mechanics of rigid bodies (statics,
kinematics, dynamics) and the basic principles of mechanical engineering.

1.1.1. A few words about modeling

Since time immemorial people are trying to find out, analyze, explain and predict the
phenomena occurring in Nature. At first sight, these phenomena are not evident, they are
complicated — it is difficult to understand and analyze them. The motivation for this
activity is to understand and thus to gain the ability to predict.

He who knows and can predict is then able to make correct decisions. Throughout ages,
such a person is always highly respected in society. Recall tribe shamans, Egyptians
priests, managers and last but not least engineers. They know how to treat local maladies
and ailments, they know how the rise of the brightest star in the Northern hemisphere —
Sirius — is related to the flood of the Nile river and to the consequent harvest, how to send
a man to the Moon and back, and how to design an bridge being able to withstand the
predictable load.

To find out at least the partial explanations solutions of phenomena Nature, we try to
simplify them, neglect seemingly marginal facts, with a pious hope that the neglected
parts do not substantially influence the properties of the studied subject. This way, we get
a simplified solution, which does not fully describe the original phenomenon. Such a
process is called modeling and the result of such a mental process is called the model. So,
each model inherently contains certain assumptions and simplifications and its validity is
thus limited. A model can be expected to be reliable if it is used within the scope of its
accepted assumptions. And of course, the model reliability has to be thoroughly tested.

In this text, we will limit interests to the solid continuum mechanics and to its subset, i.e.
to the engineering strength of material, also called the mechanics of materials.

1.1.2. Continuum mechanics

Continuum mechanics is a model dealing with the response of solid or fluid media to
external influences.

Continuum mechanics analyses the response of solid and fluid media to external effects.

By the term response, we understand the spatial and temporal distributions of
displacements, velocities, accelerations, forces, stresses, and strains, etc., associated with
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individual particles of the medium. The external effects could represent the force
loadings, the thermal loadings, the prescribed deformations, etc.

The continuum is considered one of the possible macroscopic models of the matter. The
continuity itself is a property closely dependent on the magnification scale being used for
the observation of analyzed specimens. We have to realize that the matter in Nature is
actually corpuscular and thus not continuous.

Accepting the continuum model, we intentionally neglect the corpuscular nature of
matter; we assume that the matter is continuously distributed within the body. We claim
that all the material properties of an infinitesimal element are identical with those of a
specimen of the finite size. The quantities describing the response of the body are
assumed to be continuous functions of space and time.

In fluids, the molecules are allowed to move relatively freely, being constrained by weak
intermolecular forces, while in gases the intermolecular forces are still weaker and the
particle motions are rather unlimited.

So, the solid continuum mechanics — which is the subject treated in this text — is a model
of Nature being characterized by the fact that within the examined solid bodies the
relative motions of material particles are limited by strong inter-atomic forces.

The equations describing the behaviour of the solid continuum model are based on
kinematics and on the basic physical laws related to the conservation of energy,
momentum, and energy.

Due to the accepted assumptions mentioned above, the continuum model has a limited
scope of validity. What are those limits cannot be mathematically derived and expressed
— it is always the properly conceived experiment which certifies the theory.

Within the scope of solid continuum mechanics, we will deal with deformable solids for
which there are strong inter-atomic forces allowing solid particles limited displacements
only. The solid continuum model is considered reliable if the size of the critical analyzed
element of the matter is at least 10* times greater then the inter-atomic distance of the
material the body is made of. This empirical wisdom comes from . For metals the
inter-atomic distance is about 107"’ m, so the critical element size should not be less than

that of 10 m.

This critical size also limits the maximum frequency that can be safely transferred by the
solid continuum model. Imagine a harmonic wave whose wavelength A =10"°m is equal
to the critical element size mentioned above. It is known that a stress wave in steel
materials propagates with the velocity of about ¢ =5000 m/s. From it follows that the
maximum frequency that could be reliably modeled by continuum is
Soax =€/ A ~5GHz.
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This value is sufficiently high above the frequencies currently occurring in mechanical
engineering practice and justifies the safe usage of the continuum model even for stress
wave propagation phenomena.

See
1.1.3. Strength of material

The subject of the strength of material, as it is taught in engineering curricula, is a subset
of solid continuum mechanics. It deals with ascertaining deformation, strains, and
stresses in deformable bodies (design elements of machines, structures) due to external
loadings. Also, a prediction — related to the ability to withstand the prescribed loading —
is studied. The subject of the strength of material is also related to dynamical problems
allowing to analyze the impact problems with stress propagation phenomena. Then, the
loadings and consequent deformations, strains and stresses are not only functions of
space but also functions of time.

See
1.1.4. Linear vs. non-linear
The linear solid continuum mechanics is based on the following assumptions.

Infinitesimal strains

For linear cases, it is characteristic that the strain is expressed as the first derivative of
displacements with respect to un-deformed coordinates of the examined body.
Derivatives of the higher order are neglected.

Small displacements

It is assumed that maximum displacements of the deformed body are small with respect
to the overall dimensions of the considered body. It is tacitly assumed that under the term
of small displacements we understand both displacements and rotations.

Equilibrium equations are written with respect to the initial, un-deformed configuration.
It means that deformations and strains due to the prescribed loadings are properly
evaluated, but resulting forces and stresses are computed from the geometry of the initial,
un-deformed configuration of the body. It comes from the previously stated assumptions
of the small overall deformations.

Linear constitutive relation

The validity of Hooke’s law, supposing that there is a linear relation between stress and
strain quantities, is assumed. Theoretically, there is no limit of this linear behaviour, thus
the processes of plasticity, hysteresis, and permanent material damage are not considered.

Boundary conditions do not change due to the loading. It is assumed that the boundary
conditions do not change during the loading process.
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1.1.5. Sources of non-linearity

Generally, the world is non-linear. To simplify the modeling process, it is worthwhile to
classify the individual sources of non-linearity and to use only those that are pertinent to
the particular engineering case being analyzed.

Material non-linearity only
Non-linear material models, as plasticity, viscoelasticity, creep, etc., are usually
combined with assumptions of small strains and small displacements.

Large displacements, small strains

This type of material non-linearity is relatively common in engineering practice. As an
example, the behaviour of flexible truss and shell structures can be mentioned. In this
case, the large displacements of structures are combined with the local linear behaviour
of the material. So, the Hooke’s law is locally valid. What happens to a material element
during its deformation is depicted in Fig. IN 1.

X5 A

dX2 —/

dx‘| %

Fig. IN 1 ... Large disp small strains

Large displacements, large strains, non-linear material behaviour

This is the generic case, which is most difficult to solve. Often, the boundary conditions
might be changed during the loading process. Examples: contact problems, post-buckling
behaviour of structures, technological processes with material forming, etc. See Fig.
IN 2.

Fig. IN 2 ... Large disp large strains

See
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Differences between rigid and deformable mechanics

Fig. IN 3 ... Rigid body Fig. IN 4 ...Deformable body

In rigid body mechanics, see Fig. IN 3, the state of equilibrium of applied loads with
reactions forces can be analytically found only for the statically determinate cases. The
applied force is freely movable along its line of action having thus no effects on
reactions.

In mechanics of deformable bodies, see Fig. IN 4, the cases with statically indetermined
conditions could be solved as well, but the equilibrium conditions have to be
accompanied by a suitable number of deformable conditions. Furthermore, the acting
force cannot be freely moved along its line of action and thus the force B, in Fig. IN 4,

causes a different stress and strain distributions in the loaded body than the force P, .

1.1.6. System of units
In this text, we will systematically use quantities expressed in units defined in The
International System of Units, universally abbreviated SI (from the French Le Systéme

International d’Unite’s). See [37].

Seven base SI quantities and their units are

Base quantity name symbol
length meter m
mass kilogram kg
time second S
electric current amper A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous intensity candela cd
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Some of SI derived units used in mechanics

Derived quantity special name special symbol in base units
area square meter m’

volume cubic meter m’

speed, velocity meter per second m/s
acceleration meter per second squared m/s’

wave number reciprocal meter m”'

density kilogram per cubic meter kg/m’
frequency hertz Hz s

force newton N kgms™
pressure, stress pascal Pa Nm™ =kgm's™
energy, work joule J Nm = kgm’s™
power watt W Js™ =kgm’s™

A note to weight and mass

In science and technology, the weight of a body is defined as the force that gives the body
the acceleration equal to the local gravitational acceleration, while the mass is a measure
of matter determining the aversion of a body to move with acceleration. Thus, the SI unit
of the quantity called weight, defined in this way, is newton [N]. However, in everyday
use, and among the laic community, the term weight is frequently but wrongly, used as a
synonym for mass. So, highly questionable are the common vocabulary entries claiming
that the mass of a body is determined by weighing. This is not true — one kilogram of
gold is heavier on the Pole than on the Equator of the Earth. Nevertheless, the above
heretic statements would never be used in this text.

Old fashioned and ‘unacceptable’ units
Technical system of units

There are many units that are outside the SI system that are not formally accepted but are
still often used. The so-called technical system of units takes as the base quantities the
length, the force and the time — they are measured in meters [m], kiloponds, denoted [kp]
or [kg*], and seconds [s], respectively. One kilopond [kp] is defined as the weight of a

body having the mass of one kilogram [kg]. The mass unit in this system is [1 kps®/m].

Since the weight G of a body, having the mass m, is the force induced by the local
gravitational acceleration g, then using Newton’s law we get the relation between weight

and mass in the form G =mg. For the standard gravitational acceleration, we get
1kp=9.8061N.
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In certain respects, this system of units is more ‘human-oriented’ than the SI system. For
example, a body having the mass of 1 kg weighs just 1 kp, the pressure in the depth of 10

meters of water is 1 atmosphere or 1 kp/m?®, etc. From the point of view of the plain

common sense, this approach was very convenient and was easily grasped, but the fact
that the weight depends on the local value of gravitational acceleration made this system
physically unacceptable.

Imperial system of units

In the United States, they are still using a version of the technical system of units,
expressed, however, in imperial units, i.e. pound force, foot, second. The term
pound force, [Ib force], is used as a unit of weight, while for the mass they have

pound mass denoted [Ib_mass] or [poundal] or slug. Its unit is [11b_force s*/ft].

1.2. History of mechanics of rigid and deformable bodies

History of mechanics of rigid and deformable bodies goes back
to Galileo (1564 — 1642) who analyzed the deformations and
mechanical failures of rods, beams and hollow cylinders due to
external loadings. See Fig. IN 5 and

Fig. IN 5 ...Galileo beam

{From the Disewrsi, Leiden 1638)

Robert Hook (1635 — 1702) is the founder of the modern concept of the theory of
elasticity. In his contribution De potenzia restitutiva, published in 1678, he claims that he
invented the theory of springs. The term spring in his interpretation is to be understood
not only as the spiral or leaf spring but also as the ‘springing body’. His famous
statement, which in Latin is Ut tensio sic vis, is translated into English as The power of
any spring is in the same proportion with the tension thereof. This might be reformulated
as the elongation of the spring is proportional to the force. Today’s formulation of
Hooke’s law is — the stress o is proportional to the strain ¢ .

Thomas Young (1773 — 1829) was the person with a wide range of interests covering
medicine, languages, and mechanics. The coefficient of proportionality £, appearing in
Hook’s law, i.e. o = E¢ , is named after him.

Claude-Louis Navier (1785 — 1836) was a French engineer and physicist who also
specialized in mechanics. For the first time, he formulated equations of motion for a
generic particle of a loaded body.

Augustin-Louis Cauchy (1789 — 1857) made substantial contributions to the analysis of
solid continuum mechanics. He accepted the stress definition established by Saint-
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Venant' (1797 — 1886), defined the stress ellipsoid, the principal stress, derived the
equations describing the equilibrium of forces acting on an infinitesimal element and
published, what we might today call, the generalized Hooke’s law — expressing thus the
linear relations between stress and strain components of a loaded body in 3D space. He is
responsible for the fact that the stress tensor is considered symmetric.

An excellent source of information concerning the history of elasticity, the history of the
strength of material is provided in . See also

It reveals, that the analysis of the response of deformable bodies to external loadings
evolved historically by two independent ways — an engineering and mathematical.

The engineering approach was based on consequent and rather independent analyses of
bodies of specific forms as rods, strings, beams, shells, vessels, etc. being subjected to
different types of external loads as the force, moment, pressure, etc.

The mathematical attitude started by a generic formulation of equilibrium conditions, or
equations of motion, for an infinitesimal element of a particular body with the intention
to determine the distribution of displacements, velocities, accelerations, strains, stresses
in space and time. This process leads to partial differential equations, which are to be
solved for the prescribed boundary and initial conditions — not an easy task.

So, side by side there are two approaches leading to two different educational styles that
are supported by historical evolution. Namely, the subject of the engineering strength of
material, and the mathematically oriented theory of elasticity — more generally the
continuum mechanics theory.

The former, represents the bottom-to-top approach, starting with the analyses of simple
cases of geometry for different kinds of loadings and gradually proceeding to the
complicated ones. It represents the substance of engineering approach to the problem
solving — always trying to find out a simplified, but within accepted assumptions ‘correct’
solutions, minimizing the required effort to do so, and using for this purpose the available
computational tools. Our forefathers did not have computers at their disposals.

The latter, top-to-bottom approach went the opposite way. Until recently, the
mathematical theory of elasticity was considered to be a purely academic matter, since
the resulting partial differential equations, describing the time and space distributions of
kinematical and stress quantities of loaded bodies, applied to generic initial and boundary
conditions, did not as a rule have close analytical solutions. Thus, the direct application
of the mathematical theory of elasticity to engineering problems was initially almost
negligible. However, the rise of computers in the middle of the last century, accompanied
by efficient implementations of numerical methods, led to the renaissance of the

' His full name is Adhémar Jean Claude Barré de Saint-Venant.

2 Cosserat brothers (Francois and Eugéne), in Théorie des corps déformables (Theory of deformable
bodies) (1909), established an alternative theory of elasticity in which the stress tensor is not symmetric.
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mathematical theory of elasticity and allowed the sudden rise of effective tools as the
finite element method, the boundary element method, etc.

Both approaches will be presented in this text — the comprehension of the mathematical
theory of elasticity allows better understanding of the theoretical backgrounds of modern
computational tools while the knowledge of principles of the engineering strength of
material permits to solve simple cases off-hand, to have a proper feelings for the ability
of basic design parts to withstand the applied loading, and last but not least to have a
computing etalons and benchmarks for checking the first approximations of solutions of
complicated cases in engineering practice.

There are two relatively distinct mathematical tools that are suited to the above-
mentioned approaches. The mathematically oriented continuum mechanics theory is
efficiently described and analyzed by tensors, while for the engineering approach and for
the consequent programming efforts it is the matrix description which is preferable. We
will show that after all both the tools are closely related and interwoven. Both approaches
are useful for the proper understanding of modern engineering tools, as the finite element
method, boundary element method, etc., that are primarily used for analyzing the state of
stress in machine parts and the ability of those parts to withstand the applied loading.

1.3. Mathematical and computational tools — background
1.3.1. Scalars, vectors, tensors and matrices

The quantities we are dealing with in the continuum mechanics (as displacements, forces,
stresses, etc.) are as rule independent of the coordinate system in which they are
expressed. The quantities of that type are suitably represented by vectors and tensors, for
their elegance, shorthand brevity and contextual richness.

What is the meaning of the independence of vector and tensor quantities with respect to a
particular coordinate system?

Take for example the vector, which in
mechanics  could  represent  the
displacement, velocity, acceleration,
force, etc. We are frequently visualizing
it as an arrow, being defined by its
orientation and length. Often, we are
working with its components that are
actually the projections of that vector
into three mutually perpendicular axes —
the Cartesian coordinate axes.

Fig. IN_6 ... Vector cartesian
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Thus, a vector in 3D space has generally three independent projections — components.
See Fig. IN 6.

We could, however, define infinitely many independent coordinate systems. While the
considered vector is still the same, its components — the vector components — are
different, depending on that former choice. We say that the vector is invariant with
respect to a particular choice of the coordinate system. We will show that there is a
unique procedure, allowing expressing the vector components of the same vector from
one coordinate system to another.

1.3.2. Tensors

Similarly, in continuum mechanics, an entity called fensor could suitably represent the
state of stress in a particular particle of a body. The state of stress is a quantity of tensor
nature — in 3D space, it has 9 components and in 2D space, there are four components. As
before, while the stress tensor is independent of the choice of the coordinate system, its
components — the stress components — differ, depending on the choice of the particular
coordinate system. The different stress components (simply called stresses) of the same
tensor could be easily expressed in different coordinate systems but the stress tensor,
signifying the state of stress, is still the same. Similarly, for the strain quantities.

Here, we briefly explain the working tools and operators suitable allowing an efficient
treatment of quantities appearing in continuum mechanics.

The tensor is a mathematical entity uniquely defined by the relations prescribing
transformation of its components from one coordinate system to another. In continuum
mechanics, the tensors will be mainly used for the representation of stress and strain
quantities. In this paragraph, we will concentrate on their mathematical properties.

References to textbooks related to tensor and matrix analyses are numerous. See for
example

1.3.3. Transformation of tensors

Generally, the tensors are quantities uniquely defined by the prescription of their
transformation properties.

In this text we will limit our attention to tensors living in Cartesian coordinate systems® —
we call them the Cartesian tensors. Tensors are classified by their order, sometimes
called rank. The number of their components depends on their ‘spatiality’. For example,
in a 3D space, i.e. for n =3, the tensor of the N —thorder has n" components. In this
text, the quantity », denoting the ‘spatiality’ will be examined for values 1, 2 or 3, while
the quantity N , determining the order of tensor, will reach values from 0 to 4 only.

3 The Cartesian coordinate system is represented by mutually perpendicular axes. Any 3D vector can be
expressed as a linear combination of three non-coplanar vectors — called the base vectors.
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1.3.3.1. Tensors of the zeroth order — scalars, N =0

The scalars are quantities uniquely determined by their magnitudes. They will be denoted
by Latin or Greek letters and printed in italics. Examples are the temperature, say 7', the
mechanical work W, the density p, etc. Scalars do not change their values when

expressed in different coordinate systems.
1.3.3.2. Tensors of the first order — vectors, N =1

The vectors, in this context, are subsets of tensors — the tensors of the first order. They are
characterized by a single free index and uniquely determined by their orientation and
magnitude. Examples are displacement, velocity, acceleration, force, etc. They will be
denoted either by the bold straight fonts or by the italics font accompanied by an
overhead arrow. As an example, take the velocity vector, which might be denoted as vor
Vorv,.

The vector components are usually collected in braces —{ } For example, for a radius
xl

vector of a particle with coordinates x, x, x, we might write X =x=<x, ;. In this case,
X3

the column vector was used, sometimes we work with row vectors, as {xl X, X, } In tensor

analysis, it is convenient to name the components as x,,x,,x, instead of x,y,z, since it

allows an efficient dealing with quantities appearing in formulas.

For example, the length of the radius vector x, i.e. the scalar quantity », could be
expressed by means of the Pythagoras theorem as

3
r= |)?| =X +X +x] = \/xlxl +x,X, + X,x; . Then, square of that length is ° = le.xl. .
i=1

This expression could be even more simplified, by using the so-called Einstein
summation convention, by writing 7’ =x.x,. The rule states that in case of repeated

indices the summation sign might be omitted.

Primarily, the vector in this text is formally considered as the column quantity®. To save
the printing space, we might express the column vector as a row one, using the transpose
operator known from the matrix analysis. For example, the velocity vector might be

v
1
. T . . o
expressed as V=v=1<v, » = {v1 v, v3} . Again, instead of v _,v ,v_, it is preferable to
V3

write v, v,,Vv;.

* In Matlab, by default, the vector quantities are considered as row arrays.
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Transformation of a tensor of the first order —i.e. the vector

To simplify the explanation, let’s start
with a 2D space example where there are
two Cartesian coordinate systems,
having the same origin but a different
angular orientation — the primed and
unprimed coordinate systems. In that
Cartesian space lives a vector a. See
Fig. IN 7 where its projections into axes
of both coordinate systems are depicted.
The relation (also called the
transformation) between components of 9
the same vector in two different x
coordinate systems, is obtained by mere a a,sing
inspection a, cosp

a, cosp /V ,

a,sing

Fig. IN 7 ... Vector components in two coordinate systems

a,=a,cosp—a,sing,
(IN_1)
a,=a,sing+a,cosp.

This relation, written in the matrix form, gives

a, cosp —sing ||a, ,
=| . ; a=Ra’. (IN_2)
a, sing cos¢ ||a,

In this case, the transformation matrix R represents the rotation process and is said to be
orthogonal. Such a transformation conserves the lengths of vectors; geometrically it
represents the rotation or the mirroring. For an orthogonal matrix, its determinant
detR ==%1. The inverse of such a matrix is obtained by a mere transposition, i.e.

R =R". So, in this case, the inverse transformation is defined by

a. cos sin a
{}:[ 59 (/’H } a—R'a. (IN_3)
a, —sing cosg||a,

Denoting the indices by integers 1,2 instead of letters x,y allows using a simple and
elegant notation in the form

a=R.a,. (IN_4)

JEJ
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Notice, that the index j, appearing twice on the right-hand side, is thus the summation

index. The index i , called the free index, is understood to take all the possible values
from 1 to n, which in this 2D example is 2. The summation index is called the dummy
index, since the letter j could be replaced by any imaginable letter (sayk,/, m, etc.), not

being in ‘conflict of interests’ with the free index — that is i in this case. So, the previous
formula actually represents two equations, both containing the summation. They have the
form

2
al=) R.a, for i=12. (IN_S)

j=1
This relation, however, represents the algorithm for obtaining the result of the matrix by

column vector multiplication known from the matrix algebra. Explicitly, written in full,
we have two equations

a, cosp sing |{q a,cos@ + a,sing a =a,cos@ +a,sing
= = or .
a, —sing cos¢ ||a, —a,sinp+a,cos@ a, =—a,sing+a, cosQ
... IN_6)
In this case, the inverse transformation is defined simply by

' cos@  sin
{a} } - [ >0 ﬂ{a‘ }; a=R'a or a=Ra,. (IN_7)
a, —sing cos¢ ||a, T

This way, we have shown the convenience of representing the component counters by
numbers instead of letters and also the close connection of tensor and matrix
representations.
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Vector transformation in 3D

]
X, A X2 Xee— x

Fig. IN 8 ... 3D coor transf

!

In Fig. IN 8 there is a generic vector x. Let the axes Ox,,x,,x,and O'x| x; x; represent

two right-handed Cartesian coordinate systems with a common origin at an arbitrary
point O =0’ . For simplicity, a 2D sketch is plotted only.

If a symbol R; represents the cosine of an angle between i-th primed and j-th unprimed
coordinate axes ie. R;= cos(angle betweenxl.'xj): cos(é x)x j), then all the nine
components can be arranged into a 3x3 matrix R=[R,], that is called the rotation

matrix or the transformation matrix, or the matrix of direction cosines. Then, the
transformation of components of a generic vector x from the non-primed to the primed
coordinate system is provided by the formally same formula as before, i.e. by x = Rx'or

x; = R;x;. In 3D, this formula is understood as

3
X, =Y Rx, for i=123. (IN_8)
j=1

The formula represents three equations — in each of them, there is a triple summation. Try
to write the above formula in full.
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Similarly, for the inverse transformation

x'=R"x or X =Rx,. (IN_9)

Jr
In n-dimensional space, the tensors of the first order (i.e. the vectors) have n components.
True vectors versus one-dimensional arrays having m components

It should be emphasized that we have to distinguish the true vectors’, being defined as
oriented arrows with prescribed magnitudes that are living in 1D, 2D or 3D spaces, for
which the above-mentioned transformation property holds, and one-dimensional arrays,
defined in programming languages, that could generally contain m components where
m could be any (finite and positive) integer. In texts dedicated to programming, these
arrays are often called vectors as well. This might cause a sort of confusion because both
mentioned ‘vectors’ have to be treated differently when being transferred from one
coordinate system to another.

1.3.3.3. Tensors of the second order, N =2

The tensor of the second order, characterized by two free indices, is defined as a dyadic
a b,

product of two column vectors, say, a=<a,, b=1:b,; and can be formally written,

a, b,
denoted and expressed by different ways as
a, ab, ab, ab, I, T, T
T=a®b,7,=ab,T=ab" =1a, b, b, bj=|ab ab, ab,|=|T, T,, Ty
a, a;b,  ab, asb; L, T,, T,
.. (IN_10)

In this text, these tensors are denoted by bold straight capital letters as T, while their
components by italics accompanied by two lower right indices, as 7. The notation 7

might be understood by two distinct but complementary meanings. Either as the tensor
component for particular values of i and j, or as the ‘whole’ tensor defined for all the

range of applicable indices.
The detailed derivation of these relations is in
Orthogonal transformation of the second order tensor between two Cartesian coordinate

systems having the same origin but a mutually different angular orientation can be
expressed by

> Generally, the attribute ‘true’ is not accentuated.
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T)=R,T,R, or T'=RTR", (IN_LT)

)

where R, = cos(angle between xlij). The matrix R is often called the matrix of direction

cosines.

The inverse transformation is

T,=R.JT/R, or T=R'T'R. (IN_12)

y
1.3.3.4. Tensors of the fourth order, N =4

The forward and inverse transformation laws for tensors of the fourth order can be
expressed as

Ciy=4,4,4,4,C

s rstn

and  Cyy =A4,4,4,4,C!

rit s C Ttk rstn * (IN_13)

We have stated that the tensor expressions are compact tools allowing effective
description of quantities characterizing the response of solid bodies to external loadings.
These simply appearing expressions actually require a lot of work to do if there is a
necessity to dirty our hands with its evaluation.

In 3D space this kind of tensor has n" =3* =81 elements and in continuum mechanics is
suitable for expressing the components of coefficients of Young modulus appearing in
the generalized Hooke’s law which has the form

2, =CuE, . (IN_14)

ij
In matrix algebra, there is no direct equivalent for tensor quantities of the fourth order.

Evaluation of the first formula shown above requires implementing four cycles to address
the indices i, j,k,/ and an additional four cycles for quadruple summation indicated by

indices r,s,t,n . We could simply proceed as shown in Matlab program 3.
% Matlab program 3

% Fourth_order_tensor_transformation for n = 3
for 1 = 1:n

x
-
o/
I
o

g

=

%)

I )

CH RS -

XlikS
SrS
n =

C_prime(i,j,
end
end
end
end
end

C_prime(i,j.k,) + A(i,r)*AQ,s)*A, D)*A(1,u)*C(r,s,t,u);
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end
end
end

Instead of C’' we write C_prime in the program.
1.3.4. Stress tensor

The stress tensor, say X, is a symmetric tensor of the second order. In 3D space it has 9

components —say X,,i=1t03, j=1to3 — they can be assembled into a 3x3 matrix® as

follows
211 Z12 213

X=%, %2, Z,]|. (IN_16)
Z31 232 233

The physical meanings of the stress tensor components (sometimes simply called
stresses) are presented in the paragraph devoted to stress, i.e. 03 _ST. Stress.

This is the way, how the stress components are expressed in the mathematical theory of
elasticity. The symmetry of the stress tensor means that X, =%,,,%,, =2,,,2,; =Z,,, SO

there are actually only six independent stress components out of nine.
1.3.5. Voigt’s representation of stress

This fact historically led to the engineering notation of stress that works only with six
independent components — they are usually assembled into a column array as follows

0, 2 O
o, 2, o,

L LY (IN_17)
Oy 2, Ty B
O 2y Ty
O 25 T

This way of assembling the stress components, efficiently employing the tensor
symmetry, typical for the engineering concept of the strength of material, is known as the
Voigt’s’ notation.

% In 2D space, the corresponding matrix is 2 2 . In 1D space, there is one stress component only, so the

corresponding 1x 1 matrix degenerates into a scalar quantity.
7 Woldemar Voigt (1850 — 1919), a German physicist. He dealt with crystal physics, thermodynamics,
electro optics, mechanics, etc. He was the first who used the term tensor in its today’s meaning.
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The notation shown in the first column is suitable for programming purposes — it is just a
one-dimensional array containing six naturally counted terms, the second column
contains unrepeated components of the stress tensor, and the third column contains the
same quantities but uses the notation currently used in engineering. Notice, that the first
three positions belong to so-called normal stress components, the remaining positions
serve for the allocation of shear stress components. Their order is prescribed by the
cyclic combination of indices.

It should be emphasized again that we are dealing with the same physical phenomenon,
i.e. the same stress of state, which is, however, expressed by differently assembled and
denoted stress components.

The Voigt’s stress array (sometimes incorrectly called the stress vector) is not a vector in
the proper tensor sense of the word. The transformation, shown above for tensors, in the
form

X =R,Z,R, or L'=RIR", (IN_18)

)

does not apply to the transformation of the Voigt’s stress array o . Instead, we have to use
a different formula, namely

o,=B,0, or ¢ =Bo (IN_19)
where

R121 R122 R123 2R11R12 2R12R13 2R13R11

R221 R222 R223 2 RZ 1 R22 2 RZZ R23 2 R23 RZ 1
B — R321 R322 R323 2R31R32 2R32R33 2R33R31

RIIRZI R12R22 R13R23 RllRZZ + R21R12 R12R23 + R22R13 R13R21 + R23Rll
R21R3l R22R32 R23R33 R21R32 + R31R22 R22R33 + R32R23 R23R3l + R33R21
_R31Rll R32R12 R33R13 R31Rl2 + R11R32 R32R13 + R12R33 R33Rll + R13R31 a

... (IN_20)

The elements of the B matrix, composed of functions of elements of the matrix of
direction cosines, i.e. R, were obtained by evaluating individual components 2, of the

tensor formula Eq. (IN_18) . Then, they are assigned to the Voight’s stresses o,
appearing in Eq. (IN_19).

It is a lengthy and rather tiresome procedure, but the Matlab symbolic toolbox program
can help and to explains how it might be done.

% derive_B_matrix
syms A1l Al12 A13 A21 A22 A23 A31 A32 A33 ...
S11 S12 S13 S21 S22 S23 S31 S32 S33 sl s2 s3 s4 s5 s6 B
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A = [All Al2 A13; A21 A22 A23; A31 A32 A33]; % transformation matrix

AT = [A11 A21 A31; Al2 A22 A32; Al3 A23 A33]; % its transpose

SS = [S11 S12 S13; S21 S22 S23; S31 S32 S33]; % stress tensor in initial config.
SSP = A*SS*AT; % stress tensor in primed config.
SSP = expand(SSP);

% use the Voigt’s notation and
% substitute sl to s6 in tensor notation

SSP1 = subs(SSP,S11,s1); SSP1 = subs(SSP1,S22,s2); SSP1 = subs(SSP1,S33,s3);
SSP1 = subs(SSP1,S12,s4); SSP1 = subs(SSP1,S23,s5); SSP1 = subs(SSP1,S31,s6);
SSP1 = subs(SSP1,S21,s4); SSP1 = subs(SSP1,S32,s5); SSP1 = subs(SSP1,S13,s6);

% extract Voigt’s

terms from the

tensor formulation

sspl = SSP1(1,1); ssp2 = SSP1(2,2); % the first and second terms
ssp3 = SSP1(3,3); ssp4 = SSP1(1,2); % the third and fourth terms
ssp5 = SSP1(2,3); ssp6 = SSP1(3,1); % the fifth and sixth terms
% collect terms by sl to s6

B11 = subs(sspl,{sl,s2,s3,s4,s5,s6},{1,0,0,0,0,0});

B12 = subs(sspl,{sl,s2,s3,s4,s5,s6},{0,1,0,0,0,0});

B13 = subs(sspl,{sl,s2,s3,s4,s5,s6},{0,0,1,0,0,0});

B14 = subs(sspl,{sl,s2,s3,s4,s5,s6},{0,0,0,1,0,0});

B15 = subs(sspl,{sl,s2,s3,s4,s5,s6},{0,0,0,0,1,0});

B16 = subs(sspl,{sl,s2,s3,s4,s5,s6},{0,0,0,0,0,1});

% oo an obvious part of the program is omitted here

B61 = subs(ssp6,{sl,s2,s3,s4,s5,s6},{1,0,0,0,0,0});

B62 = subs(ssp6,{sl,s2,s3,s4,s5,s6},{0,1,0,0,0,0});

B63 = subs(ssp6,{sl,s2,s3,s4,s5,s6},{0,0,1,0,0,0});

B64 = subs(ssp6,{sl,s2,s3,s4,s5,s6},{0,0,0,1,0,0});

B65 = subs(ssp6,{sl,s2,s3,s4,s5,s6},{0,0,0,0,1,0});

B66 = subs(ssp6,{sl,s2,s3,s4,s5,s6},{0,0,0,0,0,1});

% print the result

B = [B11 B12 B13 B14 B15 B16;
B21 B22 B23 B24 B25 B26;

B31 B32 B33 B34 B35 B36;

B41 B42 B43 B44 B45 B46;

B51 B52 B53 B54 B55 B56;

B61 B62 B63 B64 B65 B66 ]

% end of derive_B_matrix

1.3.6. Strain tensor

In 3D space, the strain quantity might be represented by the symmetric tensor E of the
second order with nine components, £,,7=13, j=13, that might be collected into a

3 x 3 matrix as follows

E, E, E;
E=E, E, Ej (IN_21)
Ly Ey By

Due to the tensor symmetry, ie. E, =E,,E, =E;,E,; =E,,, the Voigt’s notation is

often used. The geometrical and physical meanings of the strain tensor components
(sometimes simply called strains) are derived, explained and presented in the Paragraph
03 _ST. Stress.
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XX

Eyy

&
£ = - —J17= (IN_22)
&, 2E,, Vi

&s 2E,, Ve

S 2E; Vox

Notice that in the case of strains, there is no one-to-one correspondence between
mathematical and engineering components, as it was shown before for the stress
components. The ‘strange’ appearance of factor 2 is due energy considerations and will
be explained later.

1.3.7. Principal axes and invariants of the second order tensor

The components 7} of the second order tensor T in the coordinate system X = x;, x,, X,

(%)

(IN_23)

-

Il
SIS
o s’ﬂ 2~
S35

could be expressed in another, say primed,
coordinate system X =x,x,,x; whose position

with respect to the original one is given by the
rotation around the common origin as depicted in
Fig. IN 9.

Fig. IN 9 ... Rotated axes

Such a rotation is described by the rotation matrix, say A, of direction cosines
a; = cos(£x;x;) . The argument £x/x; represents the angle between the x; —th axis of the

rotated (i.e. primed) system with respect to x; — ¢ axis of the original system.

Obviously, the components of the tensor in the rotated system

LT, T
T'=\L, T, T; (IN_24)
L T, T
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are obtained by the transformation relation in the form
T =ATA". (IN_25)

Now, we are looking for such a rotation — that as the result of the transformation Eq.
(IN_25) — produces the diagonal form of the tensor. Meaning, that the all of the out-of
diagonal components vanish. And, the orientation of a new coordinate system — in which
the original tensor becomes diagonal — is determined by angles Zxx, i=1:3,j=1:3.

Mathematically, this task leads to a so-called standard eigenvalue problem which is
defined by

(T-ADa=0. (IN_26)

The scalar 4 contains the eigenvalues, while the vector a contains the eigenvectors. The
eigenvalues of the tensor are also called the principal values. The eigenvector contains
the corresponding direction cosines of the angles Zxjx, i=1:3,j=1:3. It appears that

the solution is not unique — there are as many eigenvalues as is the rank of the tensor, also
there are as many eigenvectors. In this case, for the tensors of the second order, we have
three eigenvalues and three eigenvectors. If the tensor is symmetric®, all the eigenvalues
are real and all the eigenvectors are orthogonal.

The Eq. (IN_26) represents the system of homogeneous equations, which has a unique
solution only if the determinant of the system matrix is equal to zero, i.e.

det(T—-AI)=0. (IN_27)
Evaluating the determinant we get a cubic equation

AL +0LA-1,=0, (IN_28)

whose roots A, i =1:3. For symmetric tensors, we are mainly dealing with, the roots are

always real. Historically, the Cardan’s formula was used for the solution of cubic
equations. In Matlab, the built-in function root might be used for this task. To find the
eigenvalues and eigenvectors of the matrix representing the tensor, the built-in function
eig is used.

The coefficients appearing by the individual powers of A are called the tensor invariants

I =T, +T, + T, (IN_29)

¥ And the stress and strain tensors have this property.

IN 21



=3
~

L, Ty
L, T

T.
L2
T,

23

Nl
!
™~

33

—_
S8}

o~

I
SN
o3 B’ﬂ 3
| B’ﬂ -~

LSS}

Do you remember how a determinant is evaluated by hand?

a b
=ad —cb,
c d

b ¢

a
d e fl=a(ei—hf)+b(fg—di)+c(dh—eg).
g i

(IN_30)

(IN_31)

(IN_32)

(IN_33)

To summarize. In continuum mechanics, we deal with the second order strain and stress

tensors.
Ell El2
e The eigenvalues of the strain tensor E=| E,, E,,
E31 E32

principal strains and might be denoted E,E,,E; .

e The strain invariants are
o I[,=E,+E,+E,,

o) 12 — Ell E12 Ell E13 E22 E23 ,
E21 E22 E31 E33 E32 E33
Ell E12 E13
0 [Li=|E, E, Ej
E31 E32 E33
le Z:12
e The eigenvalues of the stress tensor X=X, X,
231 232

principal stresses and might be denoted 2,2,,2..

e The stress invariants are
o J,=2,,+2,+2;,

IN

are called the

(IN_34)

(IN_35)

(IN_36)

213

223
Z33

are called the

(IN_37)
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o) J2 — Z‘11 Z‘12 + le Z‘13 + Z‘22 223 , (IN_38)
221 Z‘22 Z‘31 Z‘33 Z‘32 Z‘33
le 212 Z‘13

0 J,=|%, Z, 2. (IN_39)
231 232 Z‘33

Remark: Sometimes it is convenient to decompose the stress tensor into the volumetric
and deviatoric parts as follows

211 212 213 Zm 211 Zm 212 213
2, 2y 223 = 2, + 2y 2y—-2, 223 , (IN_40)
231 232 233 Em 231 232 233 _Zm
volumetric deviatoric
. 1
where the mean stress is 2| = 3(211 + 2, +2,). (IN_41)

The volumetric part of stress is responsible for changes of volume only. The deviatoric
part of stress causes the change of shape only.

Example — principal stresses and strains

Given: The Young modulus and Poisson ratio are £ =2.1x10" Pa, 1= 0.3. The stress

2, 2, 25 40 20 -10
componentsare X =2, 2, 2,|=|20 -35 -15]. (IN_42)
2, 2, 2 -10 -15 60

Determine: Principal stresses and strains in Matlab.

The stress matrix is

sig = [40 20 -10;
20 -35 -15;
-10 -15 60];

The eigenvalues Lambda and the eigenvectors V are obtained by the statement
[V,Lambda] = eig(sig);

The eigenvalues obtained by the Matlab procedure are sorted by magnitude. To sort them
in descending order, to get the principal stresses 2|,2,,2,, we might write

Lsort = sort(Lambda, "descend”); % sort in descending order
SIG = Lsort"; % principal stresses 2,2,
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The principal strains could be obtained as follows

E, 1 I —p —ufl2
E=1FE, ZE -u 1 —ulk2, ;- (IN_43)
£y By A N I O

Define D matrix in Matlab

Dmatrix = [1 -mi -mi;
-mi 1 -mi;
-mi -mi 11/E;

Evaluating the product EPS = Dmatrix*S1G you will get the principal strains

EPS =
1.0e-009 *

0.3332 0.1403 -0.3496
In the mathematical theory of elasticity, the strain energy is defined as the double dot
: . 1 . .
product of the stress and strain tensors, i.e. s =—2X_ E. . Of course, the physical quantity,
2 gy

i.e. the strain energy, should not depend on the notation being used. So, to get the same
result and to take into account that in engineering style the symmetric components of
strain are only taken once, we have to express it as a dot product of arrays in the form

s=LqT.
2
1.3.8. Examples

Example — Kronecker delta, a unit matrix

The orthogonality of the matrix of direction cosines can be expressed by means of so-
called the Kronecker delta, alternatively by means of the unit matrix’ as follows

R.R, = Sjk or R'R=1I, (IN_44)

i ik

where

and |

1 for j=k
x= (IN_45)

0 for j#k

Il
S O =
S = O
- O O

? Also called the identity matrix.
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The Kronecker delta is often used as the substitution operator allowing to express
o,x,=x, or Ix=x, (IN_46)
since it has the effect of renaming indices.

Example — tensor of the third order — Levi-Civita permutation operator, N =3

It is convenient to introduce the Levi-Civita tensor which is defined by

1 for even permutation of indices: 1,2,3 2,3,1 3,1,2
€, =17 0 forrepeatedindicesas: 1,1,2 etc . (IN_47)
—1 for odd permutation of indices: 3,2,1 2,1,3 1,3,2

This tensor serves mainly for expressing the cross product operation (that actually does
not belong to the menagerie of the tensor calculus, but is frequently used in mechanics) as
follows

G a,b, —a;b, 0 —-a a, ||}
c=+q¢,r=axb=<ab —ab;, ;=\ a, 0 —aqa |1b, or ¢, =€, ab,.
¢ a,b, —a,b, -a, a 0 ||b

... (IN_48)
1.3.9. Implementations of basic matrix and tensor operations
Tensor addition and subtraction

This operation is defined for tensors of the same order only. It is provided element by
element as

Tensor contraction

is a process in which two initially differently named dummy indices, say i,;, are
replaced by one of the previously used letters — say i or j. By the contraction operation,
the order of the tensor order is decreased by two.
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Example — tensor contractions

I, > T, —>s,

R

ijk

UW —->U

ijl

>R, >V,

-8,

The programming equivalent of the second presented item is shown in Matlab program 4.

% Matlab program 4
% tensor contraction for n = 3

for i = 1:n

v(i) = 0;
for j = 1:n
v(i) = v(i) + R(,5,.1); % compare with index notation, i.e. Rijk _)Rijj —>V;
end
end

Three cases of multiplication of tensors of the first order — vectors

1. Dot product of vectors — sometimes called the scalar product

e Index notation s=ab,.
e Symbolic notation s=a-b.
bl
e Matrix notation (for column vectors) s=a'b= {al a, a3} b,
b,
e Matlab command s = dot(a,b).

In Matlab, we could proceed as shown in Matlab program 5.
% Matlab program 5

% vector dot product for n = 3

sum = 0;
for i = 1:n

sum = sum + a(i) * b(i); % % compare with index notation, i.e. § ::aJ5

end;
S = sum;

2. Dyadic product of vectors

e Index notation Cy =ab e

e Symbolic notation C=i®b=a®b.
e Matrix notation (for column vectors'’)

' In this, and in the following examples, it is assumed that the vectors are of column nature.

IN
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a ab, ab, apb,
C=ab' ={a, b b, b,}=|ab ab, ab,
a, ab,  ab, asb,

e Matlab command (for column vectors) C = a*b”.

In Matlab, we could proceed as follows

% Matlab program 6
% vector dyadic product for n = 3

for 1 = 1:n
for j = 1:n
C(i,J) = a(i) * b(J); % compare with index notation, i.e. (jU ==6hb/
end
end

3. Cross product, sometimes called the vector product, valid for n =3 only

e Index notation ¢, =€, ab,
e Symbolic notation c=dxb=axb
e Matrix notation (Sarus rule evaluation)
G &6 & ¢ a,b; — asb,

c=<c,r=|a, a, ay|=1ab —ab,
ol |b b, b a,b, —a,b,

e Matlab command c = cross(a,b)
Three cases of multiplication of tensors of the second order

1. Tensor double dot product

e Index notation s =A4;B,

e Symbolic notation s=A:B

e Matrix notation s =tr(A"B)

e Matlab command s = trace(A’*B)

The matrix operator tr signifies the trace of a matrix. The algorithm is in the Matlab

program 7.
% Matlab program 7
% double dot product of the second-order tensors for n = 3

s = 0;
for 1 = 1:n
for j = 1:n
s =s + A(i,J)*B(i,]); % .. compare with index notation, i.e. S:=44U£%
end
end
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2. Tensor and matrix multiplication

e Index notation CU. = Al.kBkj
e Symbolic notation C=A-B
e Matrix notation C=AB

e Matlab command C = A*B

For tensors of the second order and for 3 x 3 matrices we could express this operation as
indicated in Matlab program 8.

% Matlab program 8
% matrix multiplication for n = 3

for i = 1:n
for j = 1:n
C(i,j) = 0;
for k = 1:n
C(i,j) = C(i.j) + A@i.k)*B(K,j); % .. compare with index notation, i.e. ij :AikBkj
end
end
end

3. Dyadic product of second-order tensors

e Index notation Cy = 4,8y

e Symbolic notation C=A®B
e Matrix notation -
e Matlab command -

The algorithm is in the Matlab program 9.

% Matlab program 9
% dyadic products of second-order tensors for n = 3

for i = 1:
for j =
for k

for

c(i,
end
end

end
end

n
1:n

Sk, 1) = AL, J)*B(k,1); % .. compare with index notation, i.e. C%H :<Ay£%1

= || B 35
=3

i

Notice, that index notation represents a direct hint for the evaluation of above formulas,
while the symbolic and matrix representations are really symbolic — we have to
remember and understand the assumed meanings of operations, operators and
accompanying symbols.

For more details see
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02_KI. Kinematics
2.1. Deformation and strain

Kinematics studies the motion of bodies without being interested in the causes inducing that
motion. We will limit our attention to the analysis of individual material points (particles) of
solid bodies that are being deformed. The bodies thus change their positions in space, their
volumes and, consequently, individual material particles change their positions. This process
is called deformation. The motion of an individual particle is quantified by two distinct ways.
First, by measuring the change of the position of each material particle with respect to a fixed
coordinate system — this quantity is called displacement and is measured in [m]. Second, by
that displacement normalized with respect to a suitably chosen reference distance. This
quantity is called strain and is dimensionless.

The analysis of the particle motion requires distinguishing two types of coordinates. Namely,
the material coordinates labeling the material particle, and the spatial coordinates indicating
the current position of that particle.

2.2. Material and spatial coordinates — configuration

Consider a solid body occupying at
a given time a finite spatial region. 1 e
Assume that the region is
completely filled up by a
continuously distributed matter.
See Fig. KI 1.

The position of each
infinitesimally ~ small ~ material
particle, say P, is uniquely
determined by the instantaneous
spatial coordinates of that particle.

Fig. KI 1 ... Kinematics configuration

The initial configuration of the body at the time t =0 is denoted °C and is called the initial
or reference configuration.

Later, at a generic time t, the body is moved and deformed at the same time. After the
deformation process, the body occupies a new configuration, say 'C . The coordinates of the
considered particle P in the configuration °C are "X and might be denoted by an identifier

°P . The position of the same particle, i.e. P, in the deformed or current configuration ‘'C , i.e.
at the time t, is defined by coordinates 'x, and might be denoted by an identifier 'P.

Often, the term material point is used as the synonym for the material particle.
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Notation and terminology used in Fig. KI 1 is as follows

OX; material or Lagrangian coordinate, position of material particle at time t =0,
'X; spatial or Eulerian coordinate, position of material particle at time t,
t
u, =

'x. — °x; displacement of material particle at time t.

The vector ' = 'X — °X — or written alternatively as ‘U, = X, — X or ‘u='x— °x — is the

measure of the difference of positions of the material particle P before and after the
deformation process. This vector is called the displacement.

There is an alternative notation used in literature:

', X, as components of °x, X  or X, X for Lagrangian coordinates,
X, X as components of 'x,x  or 'X, X for Eulerian coordinates.
See

2.3. Lagrangian and Eulerian formulations of deformation

The function prescribing the motion of a material particle between the reference (initial),
i.e.’C, and the current, i.e. 'C , configurations can be expressed by a function

X = fi(oxj,t): txi(oxj,t). (KI_1)
For brevity, instead of a generic functional operator f , we are using the variable name'.

This relation, called the Lagrangian formulation of deformation or the Lagrangian
transformation, prescribes the positions of a particular material particle, as a function of its
initial position and time. Generally, this function is different for each material particle. This
relation prescribes the history of individual material particles in time and space.

The inverse function to that prescribed by Eq. (KI 1) is

% = %, (txj,t) (KI 2)

and is called the Eulerian formulation of deformation or the Eulerian transformation. It
prescribes the sequence of displacements of different material points (particles) as they pass

through the particular point in space.

While the Lagrangian formulation is currently used in solid mechanics, the Eulerian
formulation, prescribed by Eq. (KI 2), is preferred in fluid mechanics.

! Recall that we often write Y = Y(X) instead of Y = f (X).
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Both formulations, being applied to the same physical phenomenon, should give identical
results. This condition is satisfied if and only if the functions Eq. (KI 1) and Eq. (KI 2) are
mutually invertible.

Mathematically, this condition requires that the Jacobian of the transformation, given by Eq.
(KI_1), is non-zero, thus

J= det(OtFij) #0, (KI_3)
where

0 'x.
'F. = L, KI 4
0" ij 6°Xj ( _ )

The quantity O‘Fij is called the deformation gradient, sometimes material deformation

gradient. In 3D it is composed of nine elements. Generally, it is unsymmetrical. The upper
left and the lower left indices indicate that the deformation gradient is defined in the current
configuration 'C and is related to the reference configuration °C . Later, we will prove that
the Jacobian for a physically attainable deformation is not only non-zero but is furthermore
positive and finite, i.e. 0 <J <oo. This condition physically, or rather geometrically, means
that the volume of the body being deformed will not become zero or infinite, that there are no
gaps within the considered volume. Furthermore, this condition guarantees that two initially
distinct material particles will not end up in a single spatial point — this way it is secured that
no material penetration can occur.

2.4. Deformation and strain

The term deformation semantically means the change of shape. In engineering, the
deformation of a solid body is analyzed by measuring the displacements of material particles.
This measure, considered in meters, says nothing about the magnitude of displacements —
weather they are infinitesimal, small, or finite. Defining small displacements is crucial since
the linear theory of elasticity is based on it. That’s why there are defined additional measures
of deformation. They are called strains and are obtained by normalizing the analyzed
displacements with respect to suitable distances, somehow related to the size of the body.
Thus, the strain is a dimensionless quantity that is independent of the size of the examined
body.

The proper definition of strain quantities requires that they are independent of the orientation
of the coordinate system and independent of the rigid body motions. We will show that not all
the strain measures used in engineering are endowed by this quality.

There are infinitely many ways how to define a ‘good’ strain measure that satisfies the
condition of its independence on the coordinate system and at the same its invariance to the
rigid body motion. One of them, being invented by our forefathers, is based on the fact that it
is the length of a line segment which is independent of the choice of the coordinate system.

To derive a suitable strain measure, observe positions of two material line segments depicted
in Fig. KI 2. For simplicity, the situation is depicted in 2D space, but the corresponding
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geometrical and mathematical reasoning is considered in 3D. The elementary line segment
connects two material particles, say PandQ. In the reference configuration °C they are
located at spatial points denoted by °P and °Q . This material line segment is represented by

the vector d’x whose length is ‘dox‘ =d’. Due to the deformation, this material line segment

is elongated and moved into a new position, which is denoted as the configuration 'C . The
material particles PandQ are now located at spatial points ‘Pand ‘Q and the vector

representing the material line segment is d'x and its length is ‘dtx‘ =d's.

Da>
=
N\
i
oW
b
v
Q

v

X, dx,

Fig. KI 2 ... Material line segments

The displacement of the material point P is

Differentiating the previous relation with respect to the material coordinate we get the relation
suitable for the future reasoning, i.e.

t t
joii - (‘110;“ —8,  or (Zy=F -3, or  Z=1F-1, (K1 5)
j j

t

where the term % , denoted as ;Z; or Z, is called the material displacement gradient. The
X

]

t
deformation gradient was already defined as OtFij = :110)(‘ .
X.
J
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To summarize. The coordinates of material particles P and Q in the configuration °C are

0p. O
P: X,

’Q: % +d’.
The coordinates of the same material particles P and Q in the configuration 'C are
t

d'x;
‘Q: X +dx =%+ U +—-d"x; = "x + 'y + (R dx;.
d’x;

We have used the fact that the deformed line segment can be expressed as the first order
: . d'x; d'x; : :
differential d'x; =—--d"x; and that |F, =do—'. This way we came to an important
j i

conclusion, namely that knowing the transformation °x = X (txj,t) and being able to

evaluate the deformation gradient |F; , that satisfies the condition det ;F; # 0, we have at our

disposal the formula determining the deformed segment line, i.e. d'x = ;F; doxj. In other

words: the deformation gradient is an operator that being applied to the material segment line
in the reference configuration "C gives its description in the current configuration ‘C .

Thus, the formula describing the deformation of the elementary material line segment from
the configuration "C to 'C is

d'x; = oF; d’x, or d'x = Fd’x. (KI_6)

0" ij

Similarly, using the material displacement gradient, we define the material displacement
increment. It is depicted in Fig. KI 2.

du, = ——-d’x; = yZ;d%; or du=,Zdx. (KIL_7)

The lengths of the considered material line segments before and after the deformation are
expressed by means of the Pythagorean Theorem.

"C: d%s =(d'%d% ),
‘C: d's=(d%dx ).

The length of a segment line is invariant with respect to a choice of the coordinate system; the
same applies to squares of lengths and to their differences as well. So, the difference of
squares of lengths of the same material line segment, before and after the deformation is

(d'sf —(d°s] =dx d'x, — d% d =d'x"d'x —d°x" d’x . (KL 8)
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Working with squares is advantageous since it relieves us of dealing with square roots.
2.5. Green-Lagrange strain tensor

Eq. (KI 1) represents a strain measure that is invariant with respect to the choice of the
coordinate system. This could be further elaborated. Expressing that difference means of the
reference coordinates we get

(@'sf —(a’s)f =d°x™ (F" IF d'x— d'x" T d'x=2d'x" L ({FT IR 1) d'x. (KI_9)

We have obtained the difference of squares of lengths of the material line segment as a scalar

quantity having the form of the quadratic form of variables. The trick with %and 2 factors

will be explained later. The middle part of this difference, i.e. JE°", is a quantity called the

Green-Lagrange strain tensor?. It is obvious that the difference of lengths could only be zero
(if the rigid body motion) or positive. The tensor for which the quadratic form of variables —
for any nonzero vectors — is positive is said to be positive definite.

The Green-Lagrange strain tensor is related to configuration ‘C and expressed by coordinates
of the configuration "C . It can be presented in various forms.

RO = %(gz VAR A}

1 1
:)EijGL =5(Otzij + ()tzji+0tzki otzkj):E[

t 8tU- t t
oy J+a“k5“k]. ... (KI_10)

+
%; 0% 0’ 0%,
One could notice that the Green-Lagrange strain tensor is composed of two parts. The former

contains the derivatives of the first order, while in the latter there are derivatives of the second
order and the products of derivatives of the first order.

If the higher order terms could be neglected then the Green-Lagrange strain tensor becomes
the infinitesimal Cauchy strain tensor. More about it later.

2 It was derived in 1841 by George Green and independently by Saint Venant in 1844. Sometimes, it is called
simply the Green strain tensor.
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The Green-Lagrange strain tensor is symmetric and has nine components in 3D space.

Expressing them in full we get

o'u o'u o'u o',
tEGL _ Ly L 1 2 3 ’
T A% 2 (axJ [ j (a(’xl]
teg. Ou, 1 atu2 6tu3 ’
En="0*+= 0 )
oX, 2 x2 0'X,
t = GL atu3 1 8tu2 6‘u3 ?
oEs= o To 0 >
0% 2| X3 0% (KL 11)
o e 1[d'u  d'u, o', o'y, d'u, d'u, 0d'u, d'u,
oEn=oEn =gt Oy + Oy A% 0 0 0y, A0
210%, 0% 28x182 00X 00X, 0OX 0X,
o wa 1[0y, duy] 1]éu éu, é'u, d'u, o', du,
En=En=7% 0w | 5] 70 0 0 0 0 0, |
200% 00X, | 2]0X 0% 0X 0X 0X 0X
o wa 1[0u, du | 16y v, o'u, 8y, ', o',
oEsi= B =S 2ot [To] & 0 0 0 0 o, |
2100% 00X | 2|0% 0% 0X 00X 0X 0X
The Green-Lagrange strain components in the Voigt’s notation are
&y £y Ey
G GL GL
L _ )& €a Ess
€ = G = GL = 2EGL . (KI_IZ)
‘94 yxy 12
&y Vo 2ES"
s ) (2B

2.6. Almansi strain tensor

The Green-Lagrange strain tensor was derived by excluding the 'x; coordinate from the

expression given by Eq. (KI_8) describing the difference of squares of lengths of a material
line segment. A different strain measure, called the Almansi strain tensor, can be obtained by

excluding the coordinate °x; from Eq. (KI_8) instead.

Using the inverse relation to that expressed by Eq. (KI 6) that describes the
transformation'C — °C , namely

d’x=F'd'x (KI 13)

The quantity ;F~' represents the inverse of the material deformation gradient. Formally we

write



_ 0°x;
(t)F 1_ ?F: T (KI 14)

]

The inverse of the material deformation gradient ;F~'is denoted {F and called the spatial

deformation gradient. Of course, the condition for its existence is the non-zero value of the
Jacobian of the transformation, i.e.

J=det [F=0. (KI_15)

As before, we differentiate the relation for displacements ‘u, = ‘X, —’x;, this time with respect
to spatial coordinates

t 0.
U505 o Ze1- (KI_16)
0'X; 0X;

We have defined a new variable, i.e.

AT
Ly = 7% (KI_17)

and call it the spatial displacement gradient. Using the same sequence of steps as before,
when deriving the Green-Lagrange strain tensor, we rearrange the relation describing the
difference of squares of lengths. Without dwelling on details we get

(d'sf —(d’) =d'x"Td'x—d'x" 'FTIF d'x= 2dth%(I— PR )d'x.

{EAL
The notation ;F~' means the inverse of the transpose operation, i.e. (SF - )T. If there were no

round-off errors then this operation would be equal to (SFT ) -

The Almansi strain tensor can be expressed in different forms as well

B (1 R)= (241274 127Z)

tE AL _
tEij =

... (KI_18)

1( o'y, 0'u; é'u, d'u,
— + - :
200'%; 0% 0% 0%,

The Green-Lagrange and Almansi strain tensors describe the same geometrical phenomenon.

The former is expressed in coordinates of the reference configuration, i.e. OXi , the latter uses

t

the coordinates of the current configuration, i.e. 'X;. Both tensors are independent of the

choice of the coordinate system and are invariant with respect to rigid body motions. Their
application in solid continuum mechanics is crucial for cases with rigid body displacements
and rotations accompanied by finite (not infinitesimal) deformations.
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2.7. Cauchy strain tensor — infinitesimal displacements and strains

If the assumptions of small displacements (and rotations), as well as infinitesimal strains, can
safely be accepted then the second order terms appearing in Green-Lagrange and Almansi
strain tensors expressions can be neglected then both the strain tensors are simplified, are
numerically indistinguishable and become to what we call the Cauchy strain tensor. Its

component contains the derivatives of the first order only, thus the strain is a linear function
of displacement increment. On those assumptions, the linear theory of elasticity is based.

To show it, let’s differentiate the relation for displacement, i.e. ‘U, = 'x — °x., twice. With

respect to the Eulerian (spatial) and then with respect to the Lagrangian (material)
coordinates. As before, we get

Z=1-F' and Z=F-I. (KI_19)
The spatial displacement gradient can be rearranged as follows

Z:I—F”:I—{I+(F—I)} =1-[1+Z]". (KI_20)

z

Applying the Taylor series expansion for the right-hand side we get
Z-1-[1-2+2°-7°+.. |

and can thus state that both displacement gradients are approximately equal if we can neglect
the higher order terms. Thus,

Z

1

Z or b 1 (KI_21)

Neglecting the higher order increments (derivatives) in Egs. (KI_10) and (KI 18), we can
write

1{ou, du; | 1(ou ou,
Bt = Bt ;—[ Ly '];—[ L—L | (KI_22)
0—i t—i 0 0 -

! ' 210 X; 0%, 2 atxj O'x.

So, within the realms of the linear theory of elasticity, based on assumptions of infinitesimal
displacements and strains, the derivatives of displacements with respect to the reference or to
the current coordinates are practically indistinguishable. Then, the Cauchy (infinitesimal)
strain tensor is written

ty. o'u,
EijCauChy :l ﬂ_i_ J . (KI_23)
2{ ox;  ox

In the linear theory of elasticity, there is no need to distinguish the reference and current
coordinates. It practically means that the displacements of a new configuration are calculated,
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but since they are small, all the consequent analysis is carried out using the initial or reference
coordinates, so in the linear theory of elasticity and in the engineering strength of material we

as a rule take X, = 'x; = °.. Also, the upper left index appearing by the displacement quantity

is not usually emphasized. Writing the Cauchy infinitesimal strain tensor in full we get

Cauchy — %
11 aXl s
EZCzauchy — %,
2
u
E3C3auchy — %’
3
I . (K124
oay _ pen _ 1[0 20y (K 24)
? T olex, x|
i -
L3 2
L 1 3

The Cauchy strain tensor components in the Voigt’s notation are

Cauchy Cauchy

€ Exx
Cauchy Cauchy

& 5 & Wy
Cauchy Cauchy

8Cauchy _ 83 _ gzz
- Cauchy [ Cauchy

84 v Xy
Cauchy Cauchy

85 7/ yz
Cauchy Cauchy

€6 V2

2.8. Comparison of strain tensors

Example — compare Green-
Lagrange, Almansi and Cauchy
strain  tensors for  the
longitudinal deformation of a
thin rod.

Fig. KI 3 ... Strain rod elongation

KI

o
X,
ou,
ECauchy —
11 aX
ECauchy 2
2 ou,
Cauch T~
BT o (K1 25)
2EGVM || QU O, | -
2E ZCgauchy 6X2 axl
2E ;auchy %_,_%
OX;  OX,
au; |, ouy
oX,  OX,
— AL, °C e ke
I — s : r
|I|| 0 A //_’_/,-' / .
Yo s 3
Y @ R |
45 J® o4 o
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A thin prismatic rod of a circular cross-sectional area is clamped at its left end as depicted in
Fig. KI 3. In the beginning, in the reference configuration °C , the length of the rod is °I and
its cross section is "A. Due to the deformation, the rod is elongated and narrowed. After the
deformation, that is in the current configuration 'C, the corresponding quantities are ‘| and
‘A, respectively. The overall increase of the rod’s length is Al = 'I - °I . Similarly, the change

of the radius is Ar = 'r— ’r. The material particle P, initially positioned at the spatial

point’P, moves to a new position indicated by 'P . We assume that the axial displacements
of the rod particles are null at the clamping area, and are linearly increasing alongside its
length.

[3 2
ax

current axial coordinate can be expressed as a function of the reference coordinate by

Denoting temporally the axial axis of the rod by the lower right index * the corresponding

t 0
tX = —I OX = ﬂ OXaX - (1 " %_Ilj OXax = (1 + 8ax) Oxax . (KI—26)

ax OI ax OI

The displacements of all material particles in the axial direction are linearly increasing

0

uax = tXax - Xax - ()_I ax gax Xax > (KI_27)
where we have defined

Al
fu =0y (K1 28)

This quantity is called the linear axial strain. In the linear theory of elasticity, the adjective
linear is not emphasized. For the radial dimension — assuming that it follows the same pattern
as the axial one, and using the lower right index “  ~ — we can write

T

: : . Ar
‘r=""r+Ar and define the linear radial strain as ¢, = -

r
Similarly, for radial coordinates
t
'y = 0—: = (1 n ?—:j % =(1+¢)%. (KL 29)

Due to the circular cross section of the rod, the ratio of current and reference cross sections is

tA-(;_r] (1+90) ~say. (KI_30)

O\

For this case of deformation, the generic the transformation relation, i.e.txi = tXi (OX j,t), has

the form
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X X
%, =(1+¢&,)%,, ... (KI_31)
X

We have assigned the index 1 to the axial direction and indices 2 and 3 to any of radial
directions. The material deformation gradient and the Jacobian of the transformation are

l+¢, O 0

JF=—"t= 0 l+g 0 |, (KI 32)
0 X,
J 0 0 l+g,
ty t
J =det ;F =0—||$. (KI _33)

Then, the Green-Lagrange strain tensor is

| e, +es ]2 0 0
(;EGLZE(;FT(;F_I): 0 e +el/2 0 . (KL 34)
0 0 e +ell2

The strain component | E", corresponding to the axial deformation, could be expressed as

Al T(AIY = 1(u=a9) 1
JESL:0_|+§(°_IJ R 25(772_1)’ (KI_35)

where we have introduced a new dimensionless variable, namely 7 = 1/°l, which is called the
stretch. Notice, that for the state of no deformation, the stretch is equal to 1.

Similar reasoning, applied to the Almansi strain tensor, allows expressing the axial
component in terms of the stretch as follows

ALCT(ALY =9 1fi=a) 1, 1
:EII?L:T—FE(?j — m _5( T j:a 1—?. (KI_36)

The axial component of the Cauchy strain is obtained by neglecting the second order term in
the Green-Lagrange expression, thus

t 0
ECmehy = Al - -1 =(n-1). (KI_37)

The often used logarithmic strain component could also be considered

t

El" = lno—lI =In7g. (KI 38)
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Note: Generally, the logarithmic strain (also called natural, true or Hencky) is defined as

EN = %ln((‘)FTgF). (KI_39)
See

The axial components with Different strain measures

indices “,,” for all the e
. . 6 . - 1
considered strain tensors, as sat
functions of the stretch | et
variable, are plotted in Fig. 2| Pt -
KI_4 5 amnliimisls e =
;-___-‘._- T
-2!’.
-
-6}
|
[reer + Cauchy
-10 = = = Green-Lagrange| |
Almansi
v =i Log
12 : — L
05 1 1.8 2 25 3 35 4
Stretch

Fig. KI 4 ... Strain components

The limiting values for compressing the rod to the zero length, for 7 =0, or extending it to
the infinite length, for 77 =00, are

Type of strain for n=0 1 =00
Green-Lagrange -1/2 0
Almansi -0 1/2
Cauchy -1 00
Logarithmic —® 0

Observing Fig. KI 4, and the data in the above table, one might be wondering why such a
unique geometrical phenomenon, i.e. the rod elongation, is described by so significantly
different values of axial strain components.

The different distributions of strain measures should not frighten us. This is the consequence
of rather ad hoc definitions of strain measures. Generally, there are infinitely many ways how
the strain measures could be defined. Later, we will show that the problem is made unique by
a suitable coupling the strain measures with stress measures in such a way that their tensor
double dot product gives the mechanical work or energy.

In the vicinity of 7 =1, indicating small or infinitesimal strains, all the considered strain

measures are indistinguishable, showing thus that the second order strain measures, as Green-
Lagrange and Almansi, need not be worked with. Their applications are, however, imminent
for cases with finite deformations and/or for cases with rigid body motions. So, for small
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displacements and strains (linear theory of elasticity) it is the Cauchy strain tensor that is
primarily employed. So,

t E AL o tE GL o tE Cauchy

(KI 40)

Example — the influence of rigid body motion on the Green-Lagrange and Cauchy strain
tensors.

A good example of the rigid body motion is the rotation of a rigid body around a fixed point.
In such a case any line segment of that body represents the rotation of the whole body.

I

;Cx FX ~

W

Fig. KI 5 ... Rigid body rotation

In Fig. KI 5 there is shown a 2D case with the material line segment represented by the
vector ’x belonging to the configuration °C. This vector rotates with the body to a new
configuration 'C and it is denoted 'x . Since we are dealing with the rigid body rotation, the
lengths of all the material lines do not change and thus ‘tx‘ = ‘Ox‘ =r. The vector ‘u= 'x-"x

represents the displacement of the material point being determined by these vectors.

The displacements components are

tu, = %, — %, =rcos(w+a)-rcos(a)= % [cos(a))—l]— ), sin(@),

.. (KI 41)
'u, = %, — X, = rsin(@+a)-rsin(a)= ° sin(@)+ %, [cos(w)-1]
In this case, the material displacement gradient is
ou
0 0 cos(w)—1 —sin(w
iz, - 8tx1 atx2 _ .( ) (@) | (KI 42)
ou, Ju, sin(w)  cos(w)—1
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Then, the Cauchy and Green-Lagrange strain tensors are

-1 0
ECauchy — l ((t) Z+(;ZT ) _ COS(a)) , (KI_43)
2 0 cos(w)—1

o :%(3Z+(§ZT+5ZT(§Z):

{cos(a)) -1 0 } 1 {2 —2cos(w) 0 } [0 O}
_ L _ , (K1 44)
0 cos(w)—1| 2 0 2—-2cos(w) 0 0

This way, we have shown that The Green-Lagrange strain tensor is really independent of the
rigid body rotation, while the Cauchy strain tensor depends on it. Also, we can state that the
Cauchy strain tensor might be safely used for infinitesimal values of the angle @ since
}Uiilg[cos(a)) ~1]=0.
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03_ST. Stress
3.1. What is stress?

The term stress in current communication is understood differently from the way it is used in
mechanical engineering practice. The Cambridge International Dictionary offers for the item
stress the following: Great worry caused by a difficult situation or a force that acts in a way,
which tends to change the shape of an object’. Among many examples from the same source
let's quote the one, which might be considered amusing in our engineering community, i.e.
Yoga is a very effective technique for combating stress. Often the stress is being considered to
be almost equivalent to the strain as in: Many joggers are plagued by knee stress and foot
strain caused by unsuitable footwear. Other sources offer similar explanations. Another
example is taken from Wikipedia: We generally use the word 'stress’ when we feel that
everything seems to have become too much - we are overloaded and wonder whether we
really can cope with the pressures placed upon us. Anything that poses a challenge or a
threat to our well-being is a stress. Some stresses get you going and they are good for you -
without any stress at all many say our lives would be boring and would probably feel
pointless. However, when the stresses undermine both our mental and physical health they
are bad. In this text, we shall be focusing on stress that is bad for you. In our texts, in
contradistinction to the previous example, that might invoke a gloomy mood in reader’s mind,
we will concentrate on meanings that are good to you, i.e. on the mechanical stress
(Spannung in German, contrainte in French, napéti in Czech). The IFToMM (International
Federation for the Promotion of Mechanism and Machine Science) online dictionary gives a
more acceptable explanation for the stress, i.e.: Limits of the ratio of force to the area it acts,
as the area tends to zero. The definition of stress, being presented this way, however, says
almost nothing about the distribution of the force 'above' the mentioned area. Furthermore, the
mentioned dictionary defines the stress by introducing a new term, namely the force that is, in
turn, specified as an action, i.e.: Action of its surroundings on a body tending to change its
state of rest or motion. Evidently, a definition from the pen of a rigid body person. Other
force definitions appearing in solid mechanics textbooks are not more comprehensive either
and describe force rather circularly by its effects.

A few examples are presented here. In Encyclopedia of Physics — Vol. I1I/1, on page 532 one
finds an alleged d’Alembert's quotation, i.e.: Force is only a name for the product of
acceleration by mass.

Similarly, in one finds: Forces are vector quantities, which are best described by
intuitive concepts as push or pull.

In terms of proper and clear definitions, the mechanical variables force and stress can be
compared to the definition of time. St. Augustine in his Book 11 of Confessions ruminates on
the nature of time, asking: What then is time? If no one asks me, I know: if [ wish to explain it
to one that asketh, I know not’.

So both time and stress (and force and other terms in mechanics, not mentioned here) are
consensually defined variables. We understand them rather intuitively; we might have a

" The second part of the definition might be agreed with.
Quid est ergo tempus? Si nemo ex me quaerat, scio, si quaerenti explicare velim, nescio.
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problem to measure them directly, which — however — does not prevent us to purposefully use
them in engineering practice. No one would ever have a tendency to challenge them.

A nice definition of stress, from en.wikipedia.org/wiki /Stress _(mechanics), is as follows.

In continuum mechanics, Stress is a measure of the internal forces acting within a deformable
body. Quantitatively, it is a measure of the average force per unit area of a surface within the
body on which internal forces act. These internal forces are produced between the particles in
the body as a reaction to external forces applied on the body. Because the loaded deformable
body is assumed to behave as a continuum, these internal forces are distributed continuously
within the volume of the material body, and result in deformation of the body's shape.

It should, however, be emphasized that the forces in mechanics are of different origins and the
loaded area could be related either to the reference or to the current configuration. Generally,
we distinguish the body forces and the traction forces. When the forces are related to the
reference configuration then we define so-called engineering stress, while the forces related to
the current configuration lead to the definition of the true stress or the Cauchy stress. For
small displacements and infinitesimal strains, these two types of stress are numerically
indistinguishable. The linear theory of elasticity works with the engineering stress only.

3.2. Body and traction forces

The forces acting on the body from outside
are called the external or loading forces.
The forces preventing the body from being
torn apart are called the internal forces.
From outside the internal forces are
invisible; to visualize them, we use the
technique called the free body diagram —
we mentally remove a part of the body and
replace it by an equivalent system of
forces. This way, the internal forces
become accessible to the consequent
equilibrium analysis. In detail, the
principle was thoroughly explained in the
text devoted to rigid body mechanics See
Fig. ST 1.

Fig. ST 1 ... Free body diagram
The external forces might be classified either as the body forces or the traction forces.

The body forces provide a sort of the action at a distance — they are represented by gravity
forces, magnetic forces or by inertia forces. When analyzed, the body forces are related either

to a unit of volume — then their dimension is [N/mS] and they are sometimes called the
volumetric forces — or to a unit of mass, then they are measured in [N/kg].
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The notion of body forces emanates from a limit approach of the resultant of elementary
forces Ar, acting on the elementary volume AV . The vector of body forces is

(ST 1)

The traction forces act on the surface of the considered body. Their dimension is [N/mz]. A
typical example is a contact force. If the resultant of elementary forces Ar, is acting on the
elementary area A4, then the vector of traction forces, often called the stress vector” is

Ar,

t=Jim . (ST 2)

The traction forces could also be imagined as acting on the elementary area of the inner part
of the body being uncovered due to the process of free-body-diagram reasoning. Then, there
is a known relation between the components of the stress vector ¢, and the components of the

stress tensor 7. It has the form

t=T.n,. (ST _3)

JtoJ

This relation, known as the Cauchy relation, is based on expressing the equivalence of forces
acting on elementary material element depicted in Fig. ST 2.

Fig. ST 2 ... Equilibrium forces element

To simplify the derivation of the Cauchy relation, consider a 2D situation, where the
equivalence of forces is expressed by two equations.

t,d4 =T, ,d4sina+1T, dAcose,

' (ST_4)
t,d4 =T, d4sina +T,,d4cosa.

? This is a real vector quantity; as such it should be clearly distinguished both from the strain tensor and from the
Voigt’s stress array.
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Since the length of a normal vector |n| =1, its components thus are

n, = |n|sina =sina, n,= |n|cosa =cosa . (ST_5)
Then,

t,=1,n+T, n,, (ST 6)
t,=1,n+T,n,.

Generally, in 3D, it holds

t,=T.n, or t.=T.n, (ST _7)

since the stress tensor is considered symmetric. The presented analysis was provided in the
current configuration and the upper left and upper right indices were temporally omitted.

3.3. True stress and engineering stress

Generally, the stress tensor is considered in the deformed configuration, i.e. ‘C . This tensor is
called the true stress tensor, or the Cauchy stress tensor or simply the true stress. It is defined

as the ratio of the current forces A'r, to the geometry of the current configuration, i.e. A’A4. In

the linear theory of elasticity, the changes of deformation are negligible and are thus
neglected. Then, the engineering stress tensor, or simply the engineering stress, is defined as

the ratio of the current forces A'r,, as before, but related to the geometry of the reference

configuration. i.e. A’4.

The true (Cauchy) and engineering stress vectors are thus defined as follows

A A
tCauchy — ttrue — ;t - lim rt and tene = ét = lim Ort . (ST 8)
A4->0 A'A4 A0 A4 -

The relations between the stress vector components, i.e. /¢, and ¢, and the stress tensor
components, 1.€. ZTﬂ and (’)Tﬂ , for true and engineering quantities, are defined by means of the
Cauchy relation, as follows

true: ¢, = T, ‘n, ...engineering : oz, = ;T ‘n,. (ST 9)

t
r

In the following text, the symbol T,,or in a shortened form T;, will be used for the true or

the Cauchy stress tensor, while the symbol (T',, or in an alternative form (X, = X, will serve
for denoting the engineering stress tensor.
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The stress tensor components could be depicted as shown in Fig. ST 3a and Fig. ST 3b.

3

i 61y ‘ 6;

X4

Fig. ST 3aand Fig. ST 3b ... Different notations of 3D stress components

Evidently, the true stress is the correct representation of the state of stress, and the engineering
stress is just its approximation. Even if the true stress tensor definition is obvious, its
evaluation is from the definition is impossible since the deformed configuration, due to the
applied load, is a priory unknown.

In the linear theory of elasticity the displacements are considered small and the strains
infinitesimal. Under these conditions, the deformed (current) configuration is negligibly close
to the non-deformed (reference) configuration and thus when stresses are evaluated, the initial
geometry dimensions °A4 are used instead of the current dimensions, i.e. ‘A. If the above
conditions are accepted, then the true stress becomes numerically indistinguishable from the
engineering stress. And since the geometry of the reference configuration is known, the
evaluation of the engineering stress is much simpler.

The Cauchy stress is the true measure of the state of stress, while the engineering stress is an
acceptable suitable approximation if the above assumptions are satisfied. Care must, however,
be taken when non-linear tasks (large deformations and finite strains) are treated — in those
cases one has to work with the true stress tensor.

3.4. Motivation for inventing additional stress measures

Inventing so-called fictive stress tensors (i.e. the first and the second Piola-Kirchhoff tensors)
allows circumnavigating the problem of the impossibility of the direct true stress evaluation.
It should be emphasized that these fictive stress tensors do not have any physical meanings;
they represent, however, useful tools for the evaluation of the true stress — the only measure of

the state of stress, which is of engineer’s interest.

When deriving a ‘proper’ stress measure we require its independence of rigid body motion
and of the choice of the coordinate system.

We will show that both the engineering and true stress tensors do not possess this property.
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We will also prove that both Piola-Kirchhoff stress tensors are independent of the rigid body
motions and of the choice of the coordinate system, and furthermore that they are
energetically conjugate with a suitable choice of the strain measures. By this, it is understood
that their tensor double dot product produces the mechanical work or the mechanical energy.

3.5. The first Piola-Kirchhoff stress tensor

Let the elementary force d'r be responsible for the deformation of the elementary tetrahedron
from the reference configuration °C to the current configuration ‘C is depicted in Fig. ST 4.

0 A f
(1x:T C ;xz C
't
Cll"1 S
0
n
.
[Jxl X,
”, ; dU A fx; dr A

Fig. ST 4 ... Elementary forces tetrahedron

As before, in the current configuration ‘C the situation is described by the relation between
the elementary force and the true stress vector, and by the Cauchy relation, so

dr='td4 and ‘t='T"'n. (ST _10)
Eliminating the stress vector from above equations we get
dr="T'td4. (ST _11)

Now, in the configuration °C we ‘invent’ a fictive force d’r and assume that it is equal to the
real force acting in the configuration ‘C *. So we suppose that

d’r=d'r. (ST 12)
The corresponding fictive stress vector °t is thus defined by
d’r = "t d’4. (ST 13)

To this fictive stress vector ’t there is related a newly defined stress tensor — it is denoted | P
and called the first Piola-Kirchhoff stress tensor. Again, we use the Cauchy relation

* This mental process is a work of fiction, but it safely ends up on the real ground.
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"¢= !PT 'n. (ST_14)
Substituting Eq. (ST 14) into Eq. (ST_13) we get
d’r=P" °nd’4. (ST_15)

Comparing Eq. (ST _15) with Eq. (ST _11) and taking into account Eq. (ST 12) we get the
relation between the true stress tensor ‘T and the newly defined fictive first Piola-Kirchhoff

tensor ,P in the form
‘T" 'md'd=P" °nd4. (ST_16)

This is a useful relation, but there are too many unknowns in it so far. To minimize their

number we have to determine the relation between the elementary surfaces d'4 and d’4. As
before, we rely on the assumption of the mass conservation during the deformation process

between configurations °C and ‘C . So,

pd’V ="'pd'V . (ST _17)
The initial volume of the un-deformed tetrahedron element in the configuration °C is
d’v = %doxl d’x, d’x, (ST _18)
and can be rearranged into the form

4y = é(doal d°, +d’a, d%, +d’a, d’, )= é(d()a,. d°, )= édOaTdox : (ST_19)

where we have introduced a new ‘vector’ variable containing the projections of the
elementary area d’4 into the coordinate plates in the form

d’a, 1d%, d’x,
d’a={d%, {=<1d%d"%; ;. (ST 20)
d’a, 1d%, d’x,

So, the relation between the area d’4 and its projections could be expressed by means of the
normal vectors, as

d’a=d’4 °n or d’4=d’a" n="‘n"d"a. (ST 21)

Analogically, the volume of the elementary tetrahedron in the configuration ‘C is

d'v = %dtx1 d'x,d'x; = édtaT d'x. (ST 22)
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Substituting Eqgs. (ST _22), (ST _19) into Eq. (ST_17) we get
’pd’a"d’x='pd'a"d'x. (ST 23)

Expressing the current coordinates d'x as functions of the reference coordinates d’x by
means of the deformation gradient we get

d'x=(Fd’x. (ST 24)
Thus,
‘pd’a" d’x = ‘pd'a’ ’F d’x.

The previous expression has to be independent of the choice of the coordinate system, so it
simplifies to

‘pd’a’ ='pd'a’ °F . (ST 25)

Using Eq. (ST _21), the Eq. (ST _25) can be rearranged into
t

d°4'n"=Ld4n" [F. (ST 26)
yo,

Substituting Eq. (ST _26) into Eq. (ST_16) we get
‘T'd4'n" =L PT F" d'd'n. (ST 27)
o,

The result has to be independent of the choice of the elementary area defined by its normal, so
the relation between the true stress tensor and the first Piola-Kirchhoff stress tensor is

t

T = % FlP. (ST 28)

The inverse relation, expressing the Piola-Kirchhoff stress tensor as a function of the true
stress tensor, is obvious

"p
P=-"F''T. (ST 29)

=7

We have shown that the ratio of densities before and after the deformation could be expressed
as the Jacobian of the transformation ‘x = ’x(ox,t) defined between configurations "C and

'C,ie.
0

J= f = det(/F), (ST _30)
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so Eq. (ST _29) could be rewritten into the form
P=J F''T. (ST_31)

It is obvious that the product of the non-symmetric deformation gradient and the symmetric
true stress gives a non-symmetric result. So, the first Piola-Kirchhoff stress tensor is non-
symmetric.

3.5. The second Piola-Kirchhoff stress tensor

The non-symmetry of the first Piola-Kirchhoff stress tensor is an unpleasant feature and leads
to further considerations. To derive a new — this time symmetric stress tensor — let’s ‘invent’

an alternative fictive force acting in the configuration °C . Instead of accepting d’r =d'r, as
before, we define

d’r=F"'dr. (ST 32)

This relation for forces is based on the analogy of the previous relation for coordinates that
was derived in the form d’x = jF~' d'x.

Following the same sequence of steps as before, when deriving the first Piola-Kirchhoff stress
tensor, we arrive at the expression relating the true stress ‘T and the second Piola-Kirchhoff,

say ,S, in the form
‘P
‘7 - 'F IS IT. (ST _33)

The inverse relation is

‘p
'S = DS SFT FT (ST _34)

On the right-hand side of Eq. (ST_34) one can see the quadratic form of variables, so the
second Piola-Kirchhoff is really symmetric.

3.6. Piola-Kirchhoff stress tensors in the linear theory of elasticity

It should be emphasized that both the first and the second Piola-Kirchhoff stress tensors have
little physical meaning. They represent, however, useful tools for the treatment geometrically
non-linear tasks.

In the linear theory of elasticity the change of volume and thus the change of density due to
0

the deformation is neglected, so the Jacobian of the transformation J = t_p =1. Furthermore,

yo,
the deformation gradient F =1, since the current coordinates are approximately considered to
be identical with the reference coordinates and thus the first Piola-Kirchhoff and the second
Piola-Kirchhoff and the true stress tensors are approximately equal to engineering stress
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tensor. And as said before, the true stress tensor under conditions of small deformations and
infinitesimal strains becomes the engineering stress tensor.

So, in the linear theory of elasticity, we approximately take that

P S, =T =X, (ST _35)

ij i

The Green-Lagrange strain tensor, multiplied by the second Piola-Kirchhoff stress tensor — by

(fSij— gives the scalar quantity which represents

means of the double dot product, i.e. %JEU

the mechanical energy or the mechanical work.

For more details
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04_CR. Constitutive models
4.1. Material models

After explaining and defining the geometry of deformation — gauged by strain measures —
occurring due to loading — quantified by stress measures — it is time to pose the question of
the relation between the strain and stress measures. Such a relation is often called the
constitutive relation. Having it at our disposal allows determining the ‘amount’ of the
deformation due to the prescribed loading. And together with the theory of the strength of
material and the failure theories to determine the ability of a machine part, made of a
particular material, to withstand the particular loading.

There are thousands of engineering materials and they deform differently when being loaded.
To ascertain their geometric response to the prescribed loading, a properly prepared
experiment is needed. The experimental results, in the form of stress-strain relation, have to
be generalized and presented in a suitable mathematical form to be used in engineering
computations.

In this text, we will concentrate on the mathematical models describing the stress-stress
behaviour in bodies made of different materials. These models are of phenomenological
nature, they disregard the actual corpuscular structure of materials — they describe the material
as being continuous, homogeneous, with no gaps. It should be emphasized that each model
has the clear limits of its validity but does not contain embedded warnings about its misuse. It
is always the analyst who is fully responsible for the application of the model within proper
limits of its applicability.

The material models can roughly be classified as follows

* Linear elastic

* Nonlinear elastic
* Hyperelastic

* Hypoelastic

» Elastoplastic

*  Creep

* Viscoplastics

For more details see
4.2. Linear elastic material

In this text, we will primarily limit our attention to the linear elastic model. For the detailed
study of other material models, listed above, the book [ 6] i1s recommended.

The linear elastic model is based on the validity of Hooke’s law o, =C,&, or ¢=Ce,

which means that the infinitesimal (Cauchy) strain is linearly proportional to the engineering
stress. The tensor C,;, and the matrix C,, represent the proportionality ‘constant’.

The Hooke’s law is an acceptable approximation of the material behaviour under the
following assumptions.
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There is a unique relationship between stress and strain.

Material properties are independent of the specimen size.

Strains are said to be reversible, it means that no hysteresis occurs.

The material is the rate-of-loading independent.

No thermodynamic effects are considered.

The material is homogeneous, which means that limAm = lim pAV = plimAV.

Corpuscular structure of the matter is disregarded.
Generally, it is valid for the fully anisotropic material behaviour.

In mechanical engineering, the linear elastic material model is the most frequently used model
for the material behaviour. It is applicable for cases with small displacements and
infinitesimal strains. This model assumes that the material deformation (expressed in
infinitesimal strains) linearly depends on the applied loading (expressed in engineering stress)
— it is known as the generalized Hooke's law. Its tensor and Voigt’s forms are

2. = Cijkl E, and o =C.c¢. or

i 6=Cs¢.

(CR_1)

The tensor €, and the corresponding matrix C, (represent the proportionality ‘constant’.

Sometimes, the matrix C , is called the matrix of elastic moduli.

The stress tensor and the Voigt’s stress array are presented here in various forms appearing in
textbooks.

0, 2y O O
o P o o
2 2 ,

2y 2, 2y . g
O, 23 o O,

=2, 2, 2, = (CR_2)

O, 2, Ty T,

2y 2y 2y 5
Os 23 7, Ty
O 25 [ T,

& E,, xx
E, E, E, - Ea “n
&; E; 2z
E=E, E, Ej g= . 2E y (CR 3)
E, E, Ej; 52 2EZ }/i
€6 2E, V=

The tensor C,,,, appearing in the tensor form of the generalized Hooke’s law, is symmetric

and has 81 components. Generally, there are 21 independent material constants for the linear,
homogeneous and fully un-isotropic material. See . The equivalent matrix C,

appearing in the Voigt’s notation, has 36 components. It is symmetric as well.
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In the case of the linear isotropic material, there are only 2 independent material constants,
i.e. the Young modulus E and the Poisson ratio v.

The simplest un-isotropic material behaviour is known as the orthotropic — it is characterized
by different material properties in two mutually perpendicular directions and in this case there
are 9 independent material constants. This behaviour is typical for materials with warp-and-
weft structures, for rolled sheet steel plates, for wood, etc. The survey of more complicated
un-isotropic materials can be found in

The simplest material model is described by the following attributes — linear, anisotropic and
homogeneous'. How to find the material constants for this kind of materials is briefly
sketched in the following paragraphs.

The story of stress and strain measures presented in paragraphs devoted to strain and stress is
retold here, this time using the engineering style based on treating the individual cases
sequentially, starting from the simplest and proceeding to more complicated ones. In this part
of the text, dealing with the linear theory of elasticity, we will exclusively work with
engineering stresses and infinitesimal (Cauchy) strains, without repeatedly specifying this
fact. For practical engineering computations, the Voigt’s notation is almost exclusively used.

4.3. Uniaxial stress

o . . . M
This is the simplest loading mode. All the applied loading forces are XX
acting within a single line of action. The loading of an elementary
element, representing this loading mode, is shown in Fig. CR 1. It is A2
assumed that the direction of loading is associated with the x ar
direction.

Fig. CR_1 ... 1D stress

Example. If a prismatic rod of a constant cross-sectional area A is loaded by an axial force

) ) F
F, then the axial stress is o = VR

4.3.1. Prelude — Uniaxial state of stress expressed by
equivalent stress components in an oblique cross
section

A clamped thin rod, see Fig. CR 2, with the cross-
sectional area S, is loaded by an axial force F .

N \\\\\\
NV
X
B

N
Fig. CR 2 ... Stress components in oblique cross section Ré‘;‘_}
N

The corresponding axial stress is o, = F'/S,. Let’s cut the rod by a fictional plane defined by
the normal » forming an angle ¢ with the lateral axis, say x.

! Linear means that the strain is proportional to stress, isotropic means the material properties in different
directions are identical and homogeneous means that the material properties within the body are the same. The
last attribute also means that the corpuscular structure of the matter is neglected.
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Consequently, the cut cross section has the area of S=S,/cose. Using the free-body-

diagram principle, we add an internal force R, representing the removed part of the body, that
has to be in equilibrium with the loading force . So, R=F.

Then, the internal force is decomposed into the normal and tangential components as depicted
in Fig. CR_2. So,

N =Rcosep, T =Rsing. (CR 4)
The normal stress (corresponding to the normal force) in the oblique cross-section is

2
g:ﬁ: Rcosg =Rcos ¢=£cos2(p, (CR_5)
S §,/cose S, S,

while the tangential stress (corresponding to the tangential force) in the oblique cross-section
is

T Rsing F . Stress in oblique section
T=—=———=—S8IngY cosQ
S S,/cosp S,

... (CR_6)

It should be emphasized that the
actual state of stress in the body
is unique, it does not change. We
have only expressed it by
equivalent stress components in
differently  inclined  planes
characterized by the varying
angle ¢.

tau

Fig. CR 3 ... Stress components in oblique cross section

Using the trigonometric relations for the double angular arguments and reminding
thato, = F/§,, we get

o= %O‘O (1+cos2¢), (CR_7)

T= %O‘O sin2¢@. (CR_8)

In the coordinate system (o,7), these relations represent the parametric equations of a circle
. .1 .
having the radius 50'0 . Both stress components, as functions of the angle ¢, are computed

by the program mpp_005e_oblique_section_cl and are depicted in Fig. CR 3.
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% mpp_005e_oblique_section_cl

clear

f = 0:1:180; fi = pi*f/180;

sig0 = 3;

sig = sig0*0.5*(1 + cos(2*fi)); tau = sig0*0.5*sin(2*fi);
22 = 22.5;

fi22 = pi*f22/180;

sig22 = sig0*0.5*(1 + cos(2*fi22)); tau22 = sig0*0.5*sin(2*fi22);
Ffigure(l)

plot(sig,tau, sig22,tau22,"o","linewidth® ,2.5, "markersize®, 8)
axis("equal®); % axis("tight®)

axis([-0.5 3.5 -2 2]

title("Stress in oblique section®, "fontsize®, 16)
xlabel("sigma®, “fontsize®", 16)

ylabel("tau®, “fontsize®", 16)

grid

4.4. Plane stress and plane strain

o L
This loading mode is characterized by the fact that all the ’ Jyx
loading forces are applied within a single plane. The A —— Ty
loading of an elementary cube, representing this loading - F"""‘
mode, is depicted in Fig. CR_4. ™ 6,
dx i 61
Fig. CR_4 ... 2D stress B ! C

Depending on how the elementary cube is constrained we
distinguish two cases.

If the face ABC of the cube is free to deform in the z-axis direction, then we are dealing with
so-called plane stress state of stress.

If the face ABC of the cube — together with its parallel face — are restrained (no displacements
in that direction allowed) then we have the case called plane strain state of stress. In detail,
we will analyze both mentioned cases later.

By the term plane state of stress we
understand the idealized situation when a
body is principally loaded in a certain plane
only, and thus the forces and stresses in the
direction perpendicular to that plane are
considered to be equal to zero. See Fig.
CR 4 and Fig. CR 5.

Fig. CR 5 ... A loaded strip

Beforehand, it should be emphasized that the corresponding deformations and strains in that
perpendicular directions are non-zero because the specimen is not constrained in that direction
and is thus allowed to ‘breathe’ freely.

Instead of rods, we have dealt with so far, consider a thin strip, depicted in Fig. CR 5, whose
transverse dimension, say /, in the direction z, perpendicular to the plane of the drawing
X,y , is relatively small with respect to the strip dimension in that plane. It is assumed that the
distribution of the axial stress within the transverse cross-sectional area is uniform. Assume
that in the direction of x - axis, the strip is loaded by the prescribed stress o _ defined in the
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coordinate system x,y. Let’s analyze what are stress components in another coordinate
system” defined by axes &,7. The & axis forms an angle ¢ with the x axis.

4.5. Transformation of stress components into another coordinate system

Applying the same reasoning as before and using a slightly different notation, we get the
relations for the normal and tangential components of stress in the coordinate system &,7.

The newly defined stress components are called the normal stress and the shear stress,
respectively.

1
O =0:=—0_(1+cos2p),
&k £75 N ®)
. ...(CR9)
O: =T. =—0, SIN20Q.
én Ny X 4
Now, define a new coordinate system, say &',7’, that is turned counterclockwise with respect
to the system &,7 by an angle 7 as depicted in Fig. CR 5. Due to the periodicity of

trigonometric functions we get

o, = lax (1+cos(Rp+ 7)) = lax (1—-cos2p),
21 1 2 ... (CR_10)
T = Eax (sin2p+ 7)) = —EO'X sin 2¢.

Notice, that the absolute values of normal and shear stresses differ by a sign only. Analogical
results can be derived for opposite coordinate systems that were obtained by the rotations of
/2 and 37 /2 respectively with respect to the system &,77.

Let’s extend the present analysis by assuming that the strip is
loaded not only by the stress o, but also by the stress o, in

& q’
the perpendicular direction, defined by the y-coordinate. P .
. dx -
Then, the considered element, shown in Fig. CR 6, will have g kA1 4 b
the internal normal stresses (o,,0,) and internal shear L)
. o ds &
stresses (7,7, ) components acting at all of its sides. c
8 —F— D

Fig. CR_6 ... Plane stress ’

Since the element is infinitesimal — its dimensions are dx x dy— we disregard the changes in
stress quantities alongside the element dimensions.

From the theory of rigid body mechanics, it is known, that three conditions have to be met to
satisfy the equilibrium of a body in the plane. Two of them — in directions of x and y— are

evidently satisfied identically. The forces acting in x-and y -directions are equal but of

2 1t should be emphasized again that the state of stress at a given point is still the same — only its stress
components differ.
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opposite signs. The remaining equilibrium condition is of the moment type. The shear stresses
acting at the element sides are 7, , 7, . For the corresponding shear forces (stress x area x

distance), the moment equation, related to the center of the element, has the form

T, hdy%— T rhdxd—y =0. (CR_11)
7 2 2
From this follows that

T.=T, . (CR_12)

This identity expresses the so-called rule of conjugate shear stresses’.
4.6. Mohr’s circle representation for two-dimensional state of stress

For the given state of stress, characterized by the stress components o, o, ,7,. in the basic
coordinate system, we have to determine the corresponding stress components, say o, 7, ,

in the cross section AC, defined by the normal line inclined by the angle ¢ with respect the
X - axis.

TyydSc asgﬁ z?_’?

gdS cosgp

6,dSsing (6,+0,)/2

Fig. CR 7 ... Equilibrium of forces acting on ABC element.
Fig. CR_8 ... Corresponding Mohr’s circle.

Consider the equilibrium of forces acting on the element ABC, depicted in Fig. CR_6 and in
Fig. CR 7. The cross-sectional area corresponding to the line AC is dS, and its projections
are dSsing and dS cos¢@ respectively.

Taking the material element as the point in a plane, only two scalar equilibrium equations are
needed.

* This is not a law — it is an accepted rule. All this reasoning is based on assumptions of neglecting infinitesimal
increments of higher orders. There is a so called Cosserat theory of continuum which takes into account the
increments of higher orders. See COSSERAT E., COSSERAT F. Théorie des corps déformables, Hermann, pp.
iii-xlv, 2009. In that theory the rule of conjugate shear stresses is not valid.

CR 7



£: 0.dS-o0,dScos’ p—o,dSsin’ ¢ + 7, dScospsing + 7, dSsingpcosp =0, (CR 13)
n: 7,dS-o dScospsing+o,dSsinpcosp -7, dScos’ ¢ +7,,dSsin’ ¢ =0. .

Realizing that dS = hdy/cos@ = hdx/sing and that 7 =7, we get

0.=0, cos’ @ + o, sin’ ¢ — 27 ,sin@cos g, (CR_14)
7.,=(0,—0,)cosgsinp+ 7, (cos’ ¢ —sin’ p) = 0. R

Using the double-argument relations for trigonometric functions, i.e.
sin2¢ =2singcosg a cos2p=cos’ @ —sin’p=1-sin’p=2cos’p—1, (CR_15)
and rearranging we get

o.,to, o0,-0
o=

+ =c0s2¢ —7,,sin 29,
2 2 ... (CR_16)

G.—Gy

Tpp =

. sin2¢+ 7, cos2p.

These equations represent a circle in o,,7,, coordinates. It is called the Mohr’s circle — it

depicts a graphical representation of the stress components in different planes, defined by a
varying angle ¢. It should be emphasized again, that the same state of stress at a point of a

loaded body could be expressed by different stress components belonging to particular cross-
sectional directions defined by the angle ¢ . The situation is depicted in Fig. CR 8. Due to the

rearrangement of the above formulas by the double-argument relations, we use the angle 2¢
in the Mohr’s circle diagram instead of the actual ‘material’ angle ¢.

4.7. Drawing the Mohr’s circle with rule and compasses
for the stress components o,0,,7,, measured in the coordinate system x, y .

e Draw the Cartesian coordinate system with o,7 axes.
e Plot two points A (o,,—7,,) and B(o,,7,,).

e To do so, we have to accept a sign convention for shear stress components in the
‘material space’ and in the ‘Mohr’s circle space’. In literature, there are a few
approaches. In the text, we will follow the procedure depicted in Fig. CR 9. In the
material space, the shear stress components could have the appearance shown in
subplots la and 2a respectively. This kind of shear stress (being applied separately)
would evoke the deformations depicted in subplots 1c and 2c respectively. For the
purposes of a unique representation in the ‘Mohr’s circle space’, we accept the
following rule. If the outer normal 7, being turned clockwise by the angle 7/2,
coincides with the direction of the considered shear stress component, see 2c, then that
shear stress component is plotted as a positive value in the Mohr’s circle diagram, see
2d. Otherwise, the counterclockwise rotation of the normal, see 1b, requires plotting
that component as the negative value in the Mohr’s diagram as indicated in le.
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¢ Another step. Connecting the points A and B we get the point S from which we can
draw a circle with the radius r =SA .

4.8. Finding principal stresses by means of the Mohr’s circle

The circle intersects the o - axis at points 1 and 2. At these two points, there are no shear
stress components. The corresponding stress components o, and o, are so-called principal

stresses. They are important for evaluating the strength of material capabilities. We will deal
with the subject in more detail later.

Observing the Mohr’s circle we might notice and define:

e the radius r = \/(%(Gx —Gy)z + Tiy)’

2
o.to, +\/(O'x -0,)
2 2
e average stress o,, =5(0, +0,),

e principal stresses o, , = + 7fy )

* maximum stress o, =0, =0,,+7,
* minimum stress o, =0, =0, ~ 7,

e maximum and minimum shear stress 7 =%r,

max,min

7,
o,—0,

e plane orientation for the principal stress o, is obtained fromtan2¢ = , while

the corresponding material angle is ¢. It is an oriented angle and the corresponding
orientations are indicated in subplots 1e and 2e.

A <%
a b & T ] G4 J .
1
€y tornducelock S | X
N(C:\Irt b Ce. L | G G\
{;x __>T 3€“ \l{}' - *B I:_ 5
PR N L
| e
| T 20 M '
6':" -
gﬁ W’['ﬂt : ol vnse | A 63_
2 [TSx 50 ] 1 Towo ¢
= |?— ; "’:>
2 BTS2 e
y LY | G] ==
; vy —*g}‘ II 0y

Fig. CR 9 ... Mohr’s circle and sign convention.
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4.9. Finding principal stresses by means of the standard eigenvalue problem

Let’s remind how the same vector could be expressed in two Cartesian coordinate systems
x,y and &,n, having the same origin, and being turned by the angle ¢ . See Fig. CR 10.

The scalar notation of this transformation is ¥

A.=A . cosp+ A sing
: R , ...(CR_17)
A4,=-Asinp+ A4 cosp

Fig. CR_10 ... Vector in two coordinate systems
while the equivalent matrix expression, using the rotation matrix R, is

A i A A
4,| |-sing cose||4, 4,

R

The same expression in an alternative notation, where the letters denoting the axes are
replaced by numbers such as x > 1, y — 2, leads to

A A
A2 A2

Let’s introduce a new entity, namely the stress vector, _
which expresses the force acting in a particular cross- dF
section determined by a unit normal, as depicted in 1 1e
Fig. CR 11. The stress vector, denoted dF, has -~

components dF,dF),, while the corresponding normal Ty dS

can be expressed as D R

Fig. CR 11 ... Stress vector and stress components

___|m| |cose
n=n= =1 . . (CR_20)
1, sing

The condition of equivalence of elementary forces in the x - direction requires that
dF, =o,dScosp+7,,dSsing.

Similarly for the y - direction. The stress components are defined as elementary forces related
to a unit of corresponding areas. So, the stress vector could be written as

CR 10



f:f: £ _ dr’ /dS _ 0,COSQ+7,, Sing _| 9 Ty |jeosp| _|on o |m ¥
£ dr,/dS o,SINQ+7, cosQ 7, O,|(sing 0, Oy || '
-

z

... (CR_21)

We have already taken into consideration the validity of the rule of conjugate shear stresses,
1.e. 0}, = 0,,. Using the tensor notation, we could write

fi=oyn;. (CR _22)

This expression represents two equations for 2D (i =1,2) and three equations (i =1,2,3) for
3D space. So, Eq. (CR_21) in a plane could be rewritten into

2
=Y, oyn; i=12. (CR_23)

J=1

This is the so-called Cauchy relation which relates the stress vector components f; to the

stress components o; by means of the normal components 7;. See

4.10. Principal stress

It should be emphasized that the notion of the principal stress plays an important role in
continuum mechanics. The principal stress is a scalar quantity, uniquely attached to the stress
tensor quantity — generally composed of nine components. The principle stress is a tool
allowing express the “magnitude” of the tensor quantity and permits to determine the safe
conditions for a material to withstand the applied loading.

Let’s find such a cross-section, defined by an angle ¢, in which the stress vector f becomes a

A -multiple of the normal line n. So, we require that the relation f; = An; holds. In other

words, we require that the stress vector has the same direction as the normal vector defining
the cross-sectional area at which the stress vector ‘lives’. This could happen if and only if the
matrix X becomes diagonal. Under such conditions, the shear stresses vanish.
Mathematically, this is the matrix eigenvalue problem which leads to the diagonalization of a
matrix.

Substituting the required condition f; = An; into Eq. (CR_22) we get

o,n;, —An, =0,
o,n, —Ao;n; =0.

g

... (CR 24)

. 1 proi=j
for which 6, = . (CR 25)

Here, we have used the Kronecker’s symbol &, 7
0 proi#j

lj’

n I Offn
This allows expressing the normal components as n; = 6;n;, or { 1} = {0 IH 1}. (CR _26)
n, n,
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In the matrix form, we have

| 22l et
-1 = , (CR _27)
0, Oy 0 1]||n, 0

while in a scalar notation we can write

(o, —A)n, +o,n, =0, (CR 28)
Ty +(0y = A)n, = 0.

This is a system of homogeneous algebraic equations. They have zero on the right-hand side.
Such a system has a non-trivial solution only if its determinant is equal to zero. Thus,

)
u 92 |_g. (CR_29)

01y Oy — A

The determinant evaluation leads to the quadratic equations whose roots are

2
- o1 *2“722 i\/(o'u ;Uzzj +od . (CR_30)

o, O
The roots 4, and A, are eigenvalues of the matrix X = { ! 12} . Physically, they represent

O, Op

the principal stresses. They are denoted by o, and o, respectively. Thus, as before we get

2
alzzaxw%\/(ax o) e (CR_31)
> 2 2 y
The state of stress at each point of a loaded body is defined by a unique stress tensor formed
by an array of nine stress components. The set of these components differs, depending on the
orientation of the coordinate system in which the stress components are expressed. Using
different but currently used notations we might express the stress tensor o, as

O-l 1 Gl 2 61 3 O-xx O-xy ze O-xx Xy Xz O-x Tz 3 y
oc=|0, 0, 0y|=|0, O, O, |=|7, O, T, |=|T, O, T, (CR _32)
J31 032 J33 O-zx O-zy 0. z-zx zy zz T ¥y z-)c o,

This tensor is symmetric since we have accepted the rule of conjugate shear stress
components, i.e. 6, =0 ;.

This is a form frequently used in texts devoted to the mathematical theory of elasticity. In
engineering, we prefer another notation* based on the above-mentioned symmetry. From it
follows that only six stress components — out of nine — are independent. Thus, it suffices to

* Sometimes called the the Voigt’s notation.
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express the state of stress as an array of non-repeated stress components. They are usually
assembled in such a way that the normal stress components are listed first, being followed by
the shear stress components.

O, Oy O O,
o, 0 o, o,
O. O. (o2 (o2
3 33
O} = = =q Tr=1 T (CR_33)
gt - _
0-4 O-12 ny z
O-S 0-23 O-yz Z-X
O O3 O 7y

Example — determine the principal stresses

graphically and numerically To [®

Given: The state of stress is given by the stress a F"'fr* s
components o, =50;0, =—-10;7, =7, =40. “_1 ?’
All in [MPa]. See Fig. CR_12. “Ta :

Fig. CR_12 ... 2D State of stress.

Determine: The principal stresses and their directions. Use the graphical and the numerical
approach.

Defining the proper scale of drawing, using the rule and compasses, considering the sign
convention and applying the procedure described above, we obtain the values of principal

27
stresses as o, =70Mpa, 0, =—-30Mpa. Using the formula tan29=—""—, we get
c,—0,

$=26°30".

And now, numerically — using the program mpp_008e_principal_stress_cl.

% mpp_008e_principal_stress_cl
clear

% stress components

sx = 50; sy = -10; txy = 40;

% stress matrix
sig = [sx txy; txy sy];

% Tind eigenvectors and eigenvalues
[v, lambda] = eig(sig);

% components of the first eigenvector are the actual normals
nl = v(1,1); n2 = v(2,1);

% the angle between normals in radiand and degrees
psi = atan(n2/nl);
psi_deg = 180*psi/pi + 90

% eigenvalues of the stress matrix are the principal stresses
sl lambda(1,1)
s2 lambda(2,2)
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Running the program we get

psi_deg = 26.5651; sl = -30; s2 = 70;

Since a picture is worth a thousand words, study carefully Fig. CR 13 to understand the plane
state of stress.

Y oy
|
| T
Tx I 0x
A RPN —_—
| -
Ty
P 1

Fig. CR_13 ... Understanding the plane state stress
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4.11. Plane state of strain

If a prismatic rod of a constant cross-sectional area of the length / is loaded by an axial force,

then the overall axial deformation is A/, and the corresponding axial strain is & = % .

7 Consider the deformation of an initially square
element shown in Fig. CR_14.

Assume that due to the prescribed deformation a
material point, initially located in A, moves to
A'. Its displacement, decomposed into directions
of coordinate axes x,y are denoted uandv,

respectively.

Fig. CR 14 ... Plane strain deformation

To express the displacement components of the point B, we utilize the Taylor series and
neglect the quantities of the second and higher orders. We assume that the functions
describing the displacement field, together with their derivatives, are smooth. Then, for the
horizontal and vertical displacement components of the point B, one can write.

= u(x+de ) =u(e, ) + 28 der v u+ P, (CR_34a)
ox|, ox
ov ov

Vg =v(x+dx,y)=v(x,y)+— dx+...xv+—dx. (CR_34b)
ox|, ox

Denoting the length of AB =dx, then the length of A'B'is

&

A'B'= \/ (dx + a—”dx)2 + (—dx)* . (CR_35)
Ox ox

The relative change of the considered line in the x- direction is called the strain and is
expressed as

o dx + —dx)” +(—dx)” —dx dx + —dx —dx
:AB—AB:\/( P ) (ax ) ~ ( +ax ) +(6x )

g, = 5 —-1=
AB dx dx

ou Ou, ,0v,
— () + () -1=
ox (ax) (ax)

d® + 2dx P v + (v + (Zdry?
_ ox ox ox 1= \/1 )
dx?
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1 . ou ,Ou, ,0v., ou | Ou, ,0v,
=1+—Q2—+ () +(—))-l=—+(—)"+5(—)". CR 36
2( ox (8x) (Ox)) ox 2(8x) 2(8x) (CR_36)

When simplifying the above formula we have used an approximation for expressing the

square root function as v/1+x =1+ x/2. This approximation is safely applicable only if the x
value is substantially less than 1. It does not hurt to observe the order of that approximation.
See the Matlab program square_root_approximation.m.

% square_root_approximation.m

format long e

i =0;

xrange = [0.1 0.01 0.001 0.0001 0.000001];
for x = xrange

=1+ 1;
al = sqrt(1l + x);
a2 =1 + x/2;

rel = (al - a2)/al;
r(i,:) = [al a2 rel];
end
rr = [xrange® r]

The program output is

X sqrte(1+x) 1+x/2 rel. error
le-01 1.048808848170152e+00 1.050000000000000e+00  -1.135718707871894e-03
le-02 1.004987562112089e+00 1.005000000000000e+00  -1.237616103905176e-05
le-03 1.000499875062461e+00 1.000500000000000e+00  -1.248751170242068e-07
le-04 1.000049998750062e+00 1.000050000000000e+00  -1.249875216692911e-09
le-06 1.000000499999875e+00 1.000000500000000e+00  -1.250110500672832e-13

Similarly, for the y - direction.

Generally, the longitudinal strains for plane deformation are

ou 1au2 16‘}2 ou
_u Qg Dy O CR 37
& ox Z(Gx) 2(8x) ox (CR _372)

ov ,,0v, ,,0v, 0Ov
W 1Py Y CR_37b
&y oy 2(8)/) 2(8y) oy (CR_37b)

In the linear theory of elasticity, the quadratic terms are neglected.

And now, the shear deformation. See Fig. CR 14 again. Due to the deformation, the initially
right angle BAC is changed by

Yy=nt7r, (CR_38)
It is known that

siny =sin(y,+ y,) =siny,cosy, +cosy,siny,. (CR _39)
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P i Zudy
siny, = ‘ZB' , siny, = Z'—C" (CR _40)
ov
dx jidx dy + @dy
=— dx COSY,=— CR 41
cosy = = (CR_41)

Substituting Egs. (CR_40), (CR_41) into Eq. (CR_39) we get

(CR 42)

. dxdy [au ov Oudu Ov av}
sin y —_——t——.

T(ABYAC)|dy  ox oxdy  oxdy

For small angles, i.e. » — 0, we could approximate siny ~tany = y and cosy — 1.

The area of the non-deformed element is dxdy, while that of the deformed one is
(A'B')(A'C')sin(%— 7)=(A'B")(A'C')cosy . (CR _43)

By common consent, the shear strain is defined as the tangent of the angle » multiplied by
the ratio of deformed and non-deformed areas.

Generally, the shear strain is

Oou Ov Ouodu Ovov
=t — 4+ ——+

_u oy ouon Vo CR 44
Vs dy Ox Ox0y Oxdy (CR_49)

while for small deformations the relation is simplified by neglecting the quantities of higher
orders. Then, it has the form

ou ov
_ _ CR 45

Concluding, the strain components — for the plane deformation case — are defined by

ou ov _Ou  Ov

&, =— £, =—, L=t
L PP

) , CR 46
oox Yoy (CR_46)

These relations represent so-called kinematic relations expressing the strains as functions of
displacements.
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Often, these relations are formulated by means of the differential operators as

9
£, ox
et=lo 2 {”} (CR_47)
oy | |v
o) o o
|0y Ox |

4.12. Transformation of strain components into another coordinate system

In the previous paragraph, we analyzed how the un-
deformed length of AD diagonal, depicted in Fig.
CR 14, changed — due to the applied deformation — into
the line having the length A'D’. Using simple geometric
considerations, we derived the strain components

&ysEy, Yy, 1N the coordinate system x,y .

A=A
Fig. CR_15 ... Transformation of strain components

Now, we are interested in how these strain components change when expressed in a different
coordinate system &,77 which is rotated, with respect to the original one, by the angle ¢ as

depicted in Fig. CR_15. It should be emphasized that the strain quantity is still the same — it is
independent of the chosen coordinate system — its strain components, however, differ.

Projecting the increments of displacements du,dv of the point D into the & direction we get
Adl =ducosp+dvsing. (CR_48)
The change of direction of observed lines (for small deformations) could be expressed by

—dusinp +dvcosg
d/ '

7, ~tany, = (CR_49)

Assuming that the displacements u =u(x,y),v=v(x,y)are continuous functions of
coordinates, their increments can be expressed in the form

du :a—udx+6—udy and dv:@dx—i-@dy. (CR_50)
ox oy ox oy

Observing Fig. CR 15 one can write
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dx=dlcosep a dy=dlsing. (CR _51)

Then, the strain in the direction of the £ coordinate is

) a—udxﬁt(fa—udy cos@ + @dx+@dy sin @
o Adl  ducosgp+dvsing | Ox oy ox oy 3
© ol dl dl
oudx oOudy ovdx ovdy) .
=|——+——|CoOsQp+| ——+—— (sm@p =
ox dl oy dl oxdl  oydl
= a—Mcos +8—usin cosQ + @cos +@sin sing =
ox 4 oy 4 v ox ¢ oy v v
= a—ucos2g0+a—”singpcosw + @sin¢cos¢+@sin2¢). (CR _52)
ox oy Ox oy
So,
ou ou ov) . ov . »
E.=—COS  Q+| —+— [sIn@cos@p+—sin" @. CR 53
° ox ¢ [Gy 8xJ peosey oy ¢ (CR_53)

Similarly for the 77 direction. From

_ —dusing+dvcosg

Vo= 4 (CR_54)
we get
ou ov). ou . , ov 5
= ——— [sin@cosp ——sin° @ + —cos CR_55

Yo (8}( 8y] @ ¢6y P+ 008 (CR_55)
and

y .= ou _ov sin(pcosgo—a—ucosz(p+@sin2(p. (CR_56)

s ox oy oy Ox

The shear component is given by the difference of angles corresponding to &,7 directions

ov Ou) . ou Ov 2 .2
=2 ———|[sin@cos@ +| — +— ||cos” @ —sin . CR 57
Yen ( o 8x) Ppcosp [ o GxJ( ® (p) (CR_57)

CR
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So finally, the strain components are

_ Ou ov ou Ov

E=—, &, =", V=" +—. CR 58
x@xyﬁyyyayéx (CR_58)

Substituting the Egs. (CR 53), (CR _57) into the previous one we get the shear strain
component for the &- direction being turned by the angle ¢ with respect to the original

coordinate system

Er =&, cos® @ + Yy SINQCOSP + &, sin’ @, (CR _59a)

Vep = 2(5}) —&, )Sin pcosp+y,, (0052 @ —sin’ (p). (CR_59b)
Using the trigonometric relations for the double argument we get

e te, &,-¢, 1 .
= + cos2¢ +57xy sin 2¢,

T 2

...(CR_59, c,d)
| T 1 B
57/5,] R sm2go+§)/xy cos2¢.

These relations are formally similar to those derived for stress components in Eq. (CR_60).
So, the similar conclusions could be deduced for the strain components related to various
directions and a corresponding Mohr’s circle for strain components could be plotted. Fig.
CR 16 graphically represents relations in Eq. (CR_60). Also, the principal strains are clearly
defined.

N

The actual deformation of bodies is always three
dimensional. To simplify things we have assumed that the
analyzed body is approximately two dimensional and has the
shape of a thin strip, whose outer faces are parallel with the
(x,y) plane and whose transversal dimension is negligible.
Furthermore, we pretended that in the z direction there is no  * %%
deformation. This is, however, a crude, on the other hand
often useful, idealization of reality.

Fig. CR 16 ... Mohr’s circle for strains

To describe the state of idealized two-dimensional deformations, we generally proceed by two
independent ways.

Either we neglect the stress components occurring in directions perpendicular to the z -axis.
This is a model called the plane stress. The stress components o,,0,,7,, are non-zero and

other components, i.e. o_,7..,7,,, are neglected.

zobzxo b2y

Or we assume that the strain components &, =y, =y,, =0. This model is called the plane

strain or plane deformation.

CR 20



4.13. Tension (tensile) testing

Before presenting and analyzing the constitutive relations for a linear isotropic material, let’s
briefly dwell into experimental procedures needed to determine the material constants. It is a
mature and extensive subject of material science requiring usually a full semester course.
Here, only a brief survey is presented. The thermal effects and the ‘speed’ of loadings are not
analyzed.

It is the tension test, which is a basic tool OVERALL LENGTH

for finding the fundamental material B DISTANCE BETWEEN SHOULDERS -
constants that are needed for the strength- B = -

of-material computations. The test is GRIP SECTION - -

~

unique for each material. A specimen, see
Fig. CR 17, is subjected to successively W,
increasing values of axial forces until the WIDTH OF DIA. OR WIDT

. GRIP SECTION -
failure.

—"'REDUCED" SECTION
Fig. CR_17 ... Specimen for tensile test

During the test, the axial force as a function of axial elongation is registered. Then, the data
are recomputed into the axial stress vs. axial strain quantities. The resulting plot is known as
the stress-strain diagram. Schematically, it is depicted in Fig. CR_18.

o

Ultimate —,_ |
stress

i ireee.
Yield stress Sl

Proportional ™
limit

0, ohe €
: Perfect Strain Necking
Linear plasticity hardening
region or yielding

Fig. CR 18 ... Stress-strain diagram

The stress-strain diagram, seen in Fig. CR 18, is highly idealized. It describes the axial
(longitudinal) stress o as a function of the axial strain ¢. The function starts at the point O
corresponding to initial conditions — that is no stress, no strain. Then, due to the gradually
increasing axial loading, the stress-strain function rises linearly to the point A that is called
the proportionality limit. In this region, the stress is directly proportional to the strain — we
say that in this region the material obeys the Hooke’s law — for 1D cases could be expressed
in the scalar form

oc=FE¢. (CR_60)
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The coefficient of proportionality E is called Young’s modulus. The stress corresponding to
the point A is called the proportional limit, say o, . As a rule, it is defined by the occurrence
of the linearity deviation not-exceeding the value of 0.005 %.

The term linearity should be clearly distinguished from the term elasticity. By elasticity, we
understand the ability of the loaded body — after it is unloaded — to return to its original state.
Generally, the elastic material might follow a non-linear stress-strain curve — what is in this
case important is that the material — when being unloaded — does not show permanent
deformations — in other words, is not subjected to the plasticity behaviour. So, the elasticity is
the ability of a material to return to its previous shape after the loading stress is released —
regardless of the linear or non-linear loading stress-strain behaviour. The non-linear but still
elastic behaviour is typical for rubber materials.

If the specimen is subjected to a still increased load, we come to the point B. From now on,
the structural bindings of material start to collapse and the permanent deformations occur.
When the material is unloaded we witness the phenomenon called &ysteresis — the body will
not return to its original geometrical shape.

The stress corresponding to the point B, i.e. o, is called the yield stress. When the loading

stress overcomes this value, the internal permanent deformations lead to so-called yielding of
the material or by other words to almost perfect plasticity. In this loading region, the strain
increases without a noticeable increase of stress. The yield strength indicates the crucial
situation where permanent deformations of material occur. So, the yield stress is a value,
while the term yield strength indicates a material property.

Machine parts should be designed in such a way that the value of the usual working stress oy,

has to be always less than the allowable stress o,; . And the allowable stress is determined
from

o, =0y/k, (CR_61)
where o is the yield stress and k 1is the factor of safety.

If the loading stress increases above the o value (point C) the material starts to resist again.

This part of loading is called the strain hardening. The maximum value of stress at point D is
called the ultimate stress. It is the maximum stress that a material can withstand before it
breaks or weakens. During this process the cross-sectional area of the test specimen starts to

narrow — this process is called necking — and the immediate cross-sectional area, say 'S, is
subsequently smaller and smaller being thus different from the original one, i.e. from °S .

For a still increasing value of the loading force P, the stress in the specimen might be
computed by two different ways. The former leads to the definition of so-called engineering
stress, which is related to the original cross-sectional area by

o, = (CR_62)

CR 22



The latter, called the frue stress (sometimes Cauchy stress), is related to the current cross-
sectional area, and is defined by

o P (CR_63)

Both stress representations are depicted in Fig. CR_18. The dotted curve belongs to the true
stress, which actually a more ‘correct’ stress representation. For small strains, however, both
stress descriptions are numerically undistinguishable. In the text, we will mostly use the
concept of the engineering stress since it is typical for the linear theory of elasticity with
infinitesimal strains.

For the further loading beyond the point D (the ultimate stress) the failure of the specimen
occurs. This is indicated by points E or E’ respectively.

4.14. Plasticity

If the loading process is stopped above the yield stress value o, — the current value of the

strain is just & as indicated in Fig. CR 19 — and then the loading force is gradually removed,
the specimen starts to shorten again. The unloading stress-strain curve goes from the point A
to B. Notice that the unloading curve is linear and parallel to the line representing the virgin
elastic part of loading. For axial strains, we can write

E=¢.té,, (CR_64)

where the fotal strain ¢ is composed of two parts — the elastic (part of) strain ¢, and the
plastic (part of) strain &,. The actual shortening of the specimen is associated with the elastic
part of strain &, only. If we started the loading process again then the new stress-strain curve
would approximately follow the direction from B to A and the stress o, becomes a new yield

stress o,"" . This process is known as the material hardening.

Fig. CR 19 ... Idealized stress strain diagram Fig. CR 20 ...Stress strain diagram
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Typical values for steel materials are as follows

Steel Ultimate stress [MPa] Yield stress
lower strength 350 -500 about 60 %
medium 700

high 3000 about 85 %

The stress-strain curve, typical of non-ferrous materials, is shown in Fig. CR 20. In that case,
the yield stress point is not clearly pronounced as before and is consensually defined as the
stress corresponding to the permanent strain value of 0.2 %.

stress strain curve g

. stress strain 0
for gray cast iron

curve for marble
| ultimate

|

ultimate stress
tension

ultimate stress

] ultimate .
compression

I stress
| in compression

.
l
|
|

o

S F— X ‘

Fig. CR_21 ... Stress strain curve for gray cast iron
Fig. CR_22 ... Stress strain curve for marble

The stress-strain curve for the gray cast iron is in Fig. CR 21. Notice the different material
behaviour in tension and compression loadings. Fig. CR 22 shows the stress-strain curve for
marble materials.

Of course, the real-time experiments are not as smooth as their idealized appearances shown
above.

Real life 1D tensile test, cyclic loading

1 | | |
e Iventi . . -
ecring stress [Mpal Conventional yield 01/;,/
%: e /'/J':"/’
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engineering strain %

Fig. CR 23 ... Real life tensile test
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In Fig. CR 23 there is the record of the actual tensile test for a material not having a
pronounced yield stress point and shows how it is determined by applying the above-
mentioned rule of 0.2 % strain. Also, it shows what happens when — after a certain above-
yield stress is reached — a repeated loading and unloading occur. One can observe that
hysteresis loops move step by step to the right — this phenomenon is called the ratcheting.

The material properties are substantially influenced by the applied heat treatment of the
material. This is shown in Fig. CR 24.

Mild carbon steel
before and after heat treatment

Gham 1 //J
MPA g0 I

L /
] / ]
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500 / | Conventional yield pdmt 4. 0.2%
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100 —
] /
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e %
Fig. CR_24 ... Influence of heat treatment on tensile test.

The tensile testing determines the character of uni-axial relations between the axial stress and

the axial strain quantities. In 1D these measures are pure scalars. The stress-strain relation in
its first part is linear. The coefficient of proportionality between 1D scalar stress and strain

quantities is called Young’s modulus and is denoted E . It is measured in [N/m*].

The testing specimen is not only elongated due to the loading process but it is narrowed as
well. So, the pure axial loading produces not only axial deformations but the radial as well.

For more details see

4.15. Axial (longitudinal) vs. radial (transversal, lateral) deformations

Assume that the tested specimen, being clamped in its R
upper part, has a circular cross-sectional area. In this It N
experiment, the weight of the specimen is neglected. P (R

dad)l |
Due to the applied tensile force F, the specimen is : '"*l_g IF |
elongated, and at the same time it is contracted — its gL‘| it
cross-sectional area is diminished. The overall axial L
elongation is A/, while the average radial contraction is < l L
Ad . See Fig. CR_25. S
1

Fig. CR 25 ... Hanging rod
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If the rod were compressed instead, its cross-sectional area would increase. The dependence
of axial (longitudinal) to radial (transversal) deformations was proved by experiments carried
out by Siméon Poisson — 1781-1840. The phenomenon is known by the name of Poisson’s
effect. For small strains, it is quantified by the coefficient x called the Poisson’s ratio. It is

defined as the ratio of the radial strain to the axial strain. For the radial strain, we can write

Ad Al lo)
radial d lu axial lu l /u E ( — )

&

This formula is of phenomenological nature. This means that it cannot be proved
mathematically. Furthermore, its validity is limited to linear cases.

The minus sign expresses the fact that the positive axial deformation (elongation) is
accompanied by the negative radial deformation (narrowing). For most engineering materials,
the value of the Poisson’s ratio is in the range <0 0.5>. A typical value for steels is about 0.3;
for rubber materials, it approaches the value of 0.5. The Poisson’s ratio for cork materials is
close to zero. These materials show very little radial expansion when compressed — that’s why
the cork stoppers are advantageously used for corking the wine bottles.

4.16. Hooke’s law appearances for different types of loading
4.16.1. Hooke’s law for 1D

In this case, Hooke’s law states that there is a linear relationship between the axial stress
component o (sometimes simply o, or o) and the axial strain component & _ (sometimes

simply ¢, or &). Since there are no other ‘alive’ directions we often omit the direction

indices, because the notation of a particular direction is meaningless, and write the Hooke’s
law in the scalar form as

o=Eeg, (CR_66)
where the coefficient of proportionality E is called the Young’s modulus.

4.16.2. Hooke’s law for the plane stress

The considered stress components, acting on the elementary cube, are depicted in Fig.CR 26.

The corresponding strain component in the x direction consists of

g, the elongation due to the o, stress component accompanied by the
Fox
A —_—;:, g shortening due to the o, stress component.
A
S
* Adx 1
dx 1 e, =——=—\o,—uo,). CR 67
B l ¢ [\ . x dx E( x —H y) ( _ )

Fig. CR_26 ... Plane stress
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Analogically, for the y - direction

Ady 1
6= " E(ay ~uc,). (CR_68)

Even if we assume that there is no stress component in the z -direction, the considered
element — due to applied positive stresses o,,0, has to shorten in the z direction. This

phenomenon was experientially proved by the French mathematician and engineer Siméon
Denis Poisson (1781 — 1840). Thus, the strain component in the z - direction is

z

£ = —%(ax +o,) (CR_69)

We have shown that the change of the right angle of the considered element, expressed by the
shear strain, is proportional to the shear strain.

1 1

yxy = J/yx = Ez-xy = Efyx . (CR_70)

So far, we expressed the strain components as functions of the stress components. The inverse
relations can be easily derived and have the form

o, = £ 5 (5x +,ugy), (CR _71a)
1-u

c, = E (e, +us,), (CR_71b)
1—u

t. =1 =Gy =Gy, = . CR 7lc

Xy x yxy yyx 2(1+ﬂ) yx} ( — )

Hooke’s law for the plane stress in the matrix form is

o, E I u O &,
o, = - J7| 1 0 Ey - (CR_72)
7y 0 0 _T” Vi
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4.16.3. Hooke’s law for 3D

3D state of stress

4.0
. y
For a body being loaded by a 3D system of forces we
generally have nine stress components. Their action 41 T,
on an elementary cube is depicted in Fig. CR_27. The / Tyze” -
triple trio of stress components is called the tensor. % < 0,
This is how the stress tensor components might be el
denoted and expressed in various matrix forms K ot o
Zx
% dx
Fig. CR 27 ... Stress components in 3D.
O-x Txy Xz O-m xy sz J1 1 Tl 2 z-1 3 01 1 O-l 2 J1 3
Tyz O-y Tyz = z-yz O-yy 7’-yz = 7’-21 0-22 T23 = 021 0-22 0-23 =0. (CR_73)
x t O T oy O 731 T3 O3 O3 O3 Og

The strain components in 3D — engineering notation

£, =%(0x - o, - o),

g, =%(0y - po. - o),

1
o= Mo, ).

1 201+ p)
yxy = Erxy = Tz—xy 4
1 2(1+ u)
yyz :Eryz = E Tyz 4
yo=tp 2EH, (CR_74a ... CR74f)

G zx E zx *
Due to symmetry

Eq TEHE, TELE,TELELTY 008, =V 0 =V (CR_75)
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The strain components in 3D — matrix notation

& 1 —H —H 0
€y —H 1 —H 0
| _1| —H —H 1 0
&, E 0 0 0 2(1+ )
Ex 0 0 0 0
&y 0 0 0 0

&y 1 I —u 0 On
&y =z -u 1 0 0, ¢; €=Deo.
&1 0 0 20+up]lon

oS O O

(e}

2(1+ 1)
0

The element is contracted in z - direction, so &,; = —%(0'11 + 0, )

Summary for Hooke’s law representations

Hooke’s law in 3D space

O €l l-p

Oy 35 uo l-p

O ( _ E €33 H H

Oy Y2 E= B 0 0

onl |7 (1+p)(1-24)

O3 V31 0 0
0 0

&y 1 —H —H 0

& —H 1 —H 0

| _1| —H —H 1 0

&, E 0 0 0 2(1+ p)

&y 0 0 0 0

& 0 0 0 0

CR

oS O O

2(1+ w)
0

0 o,
0 o,
0 O
0 (o
0 (o
2(1+ p) || 0%
0 0
0 0
0 0
1 —22 Y7 0
1-2u
2
0 0
0 On
0 0,
0 O3,
0 o),
0 O,
21+ ) || o3

; €=Do

... (CR_76)

(CR_77)

(CR_78)

... (CR_79)

(CR_80)
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4.16.4. Plane stress vs. plane strain

Depending on how the elementary cube is constrained we distinguish two cases. See Fig.
CR 28.

If the face ABC is free, then we are dealing with so-called plane stress state of stress. If the
face ABC, and its parallel face, are fixed (no displacements allowed) then we have the case
called plane strain state of stress. In the case of the plane stress the material element is
allowed to freely deform in the z-direction and thus the displacement u_and the strain ¢_ are

non-zero, while the corresponding stress o is equal to zero. In the plane strain case, the

material element is constrained in its z-direction motion and thus ¢_ =0 and consequently
o,#0.

X
Fig. CR 28 ... Plane stress and strain
Hooke’s law for plane stress (0,;, =0,, =0, =0, ¢, =&, =0)

Oy r w0 |l

Oy ¢ = a1 0 K&yt - (CR_81)

1 —H 1 —u

Oy 0 0 — |l

The element changes its dimensions in z - direction, so
H H

&y = _E(O-n + ‘722) = _1_—(311 + ‘922)- (CR_82)
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Hooke’s law for plane strain (0'23 =0,=0; &,=¢6,=65= 0).

Oy z l—p 0 i
Opt=————""—| 1 1-u 0 & (CR_83)
Ul e ma-2p) 1=2u |,
12 0 0 —lé
2
and also oy; = u(o,, +0,,). (CR_84)

4.17. Principal stresses — once more

The stress vector’ f acting in the plane ABC,
as depicted in Fig. CR 29, can be decomposed
into a component in the direction of the normal
n i.e. odS, and into another component, i.e.
7dS, lying in the plane ABC. The normal n is

defined by its direction cosines, i.e.

n cosa;
Ny r=4COSA; ¢ . (CR_84)
1y cos a;

Fig. CR 29 ... Stress vectors

The stress tensor could be expressed in the matrix form® as

01 O Oy
6=|0,, Oy Oyl (CR_89)

O3 0Op3 O3y

The stress vector components f; are related to components of the stress tensor o;; by

fi Oy;1 O O3 ||M
S O3 Oj3 O33 ||/

This expression, called the Cauchy relation, is based on satisfying the force equilibrium
conditions in directions of coordinate axes.

Now, we are looking for such a position of ABC plane, in which the stress vector f would be
perpendicular to that plane. In other words, the stress vector would have the same direction as

> Stress is a tensor. Stress vector is a rarely used in engineering computations, but it is a useful entity allowing to
express the relations between forces and stress components. The stress vector dimension is in [N/ m’ ]
® The indices x,,z are replaced by 1,2,3.
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the normal vector m and its tangential (i.e. shear) components disappear. Under these
conditions, the stress vector f would become a scalar multiple of the normal n.

So we require that

f = An or expressed in components f; = An;, (CR_87)

where the so far unknown scalar multiple is denoted A .

Beforehand, we could claim that the disappearance of shear stress components would lead to
the diagonal form of the original tensor o .

Substituting Eq. (CR_87) to Eq. (CR_86) we get
An =on and consequently A = n'on. (CR_88)

This is, however, the way how the eigenvalue problem is defined in mathematics. The
geometrical meaning is: find such an eigenvalue A and such a normal vector n, called
eigenvector, which causes that the Eq. (CR _88) is satisfied. Generally, there are n
eigenvalues and n eigenvectors for a matrix of the order nxn.

Using the unit matrix, Eq. (CR_88) could be rewritten into the form
on—-Aln=0or (c-An=0. (CR_89a)

This is a system of homogeneous algebraic equations which has a non-trivial solution only if
the determinant of the system is identically equal to zero. Thus

o, —4 Oy O3
o-A|=| 0, o©0y,-4 oy |=0. (CR_89b)
O3 O3, O3 —A

We have already stated that the matrix is symmetric, so o, =0 ;.
Evaluating Eq. (CR_89b) leads to the cubic equation
A =J X +J,A-J, =0, (CR_90)

Solving Eq. (CR_90) leads to three real roots 4,4,,4; — these roots are called the

eigenvalues of 6. The constants J,, known as the stress invariants, have the form

J =0y, +0, +0y;, (CR 91a)
O Op| (O O3 [On Oy

J, = , (CR_91b)
O, Op| |03 O3 [0 O3
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Jy =0y 0, Oyl (CR 9l1c¢)

For each eigenvalue, we can write

A=mN)'on", i=123. (CR_92)
Alternatively,
Q)] Q] M Q] (2) 3)
A m n, ny” |0y O O || 1y n n
_ _ (2) (2) (2) Q] 2) 3)
A= A, =|n n” n” | o, 0, Oyln’ n” n|. (CR _93)
3) 3) 3 Q] 2) 3)
4 n n, Ry 1013 Oy O3 || M7 1y ny

Or, in a more compact form

cosa”

A=N"o N, where N = [n(” n® n(3)] and n) = cosag) . (CR_94)
cosa3(i)

The eigenvalues A, of the matrix ¢ correspond to the principal stress components o;. The
matrix N is known as the eigenvector matrix. In this case, it has three columns containing the
vectors n”. The components of these vectors contain the cosines of direction angles
determining the vector orientation with respect to coordinate axes. These angles (we have
three triples of them) determine the cross section orientations in which the shear stresses
disappear — the ¢ matrix becomes diagonal and their diagonal entries (eigenvalues) are the
principal stresses.

It was shown how the principal stresses and their orientations can be determined by means of
the Mohr’s circle reasoning. The process could be substantially simplified by numerical
techniques available in Matlab. To find the eigenvectors and eigenvalues of a matrix, say o,
it suffices to write the command

[N, Lambda] = eig(Sigma);

It is understood that N ... N, Lambda ... A and Sigma ... ©.
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05_SE. Strain energy
5.1 Introduction

In this paragraph, we are dealing with infinitesimal strains and engineering stresses. Also, the
validity of the Hooke’s law is assumed.

In continuum mechanics, the strain energy is the internal energy accumulated in a body being
deformed.

5.2. Strain energy for uniaxial stress

An elementary cube being loaded in the x-direction only by a |
force P, is depicted in Fig. SE 1. @'—' = gxdlltdz
Az

Ar

Fig. SE 1 ... 1D elem cube loaded in x

Due to the applied loading, the side of the cube dx is elongated by Adx. So, the

corresponding strain in this direction is &, :%. The acting force could be expressed by

means of the stress o, and the corresponding cross-sectional area S =dydz, and the

elementary force P. = o dy dz. One-dimensional appearance of the Hooke’s law is o, = E¢,

and could, in this case, be reformulated as P, =%SAdx. This formulation states that the

elongation of the cube side Adx is proportional to the
loading force P. The coefficient of proportionality, say Ed

Toku
k=L5 i called the stiff 4 '
—dx,sc ed the stiffness. Fea
During to the loading process, the force P, linearly increases
from zero to its maximum value P, while the
corresponding elongation u increases from zero to the 7 W A = Ja
maximum value Adx. Knowing the stiffness, we could plot
the force-displacement line, 1.e. P =ku, as seen in Fig. *‘”I_D
SE 2. A AX

Fig. SE 2 ... 1D force displacement line.

It is known that the mechanical work, which is an equivalent of the mechanical energy, can be
expressed as a scalar product of the force and the displacement. Since the loading force varies,
the elementary work dU done by the force P, during the elongation of the side of the cube by

Adx , has to be evaluated in the integral fashion, as

SE 1



Adx Ady 1 W o1
dU = [P du= [kudu=—kl?}" =22 (Adv) = £
g q 2 2 dx 2 . (SE_1)
:lngdxdydz:lngdV.
2 2

Realizing that o = FEe_ the relation for the elementary strain energy could be further
elaborated as follows

2
1 o,

wW=Lrar=Le Lo,
2 2

2
ar=1% gy 1% poqy Lo ar (SE_2)
E’ 2 E 2FE 7 2

The strain energy density is the strain energy that is related to a unit of volume, thus

2 2
Azd_U_lEgj=lEJ);=lax=la"ng=lax€x. (SE_3)
dr 2 EF 2FE 2F 2

5.3. Strain energy for plane state of stress

An elementary cube in the state of the plane stress is depicted in Fig. SE 3.

We have already shown that this type of loading evokes the normal e
strains, i.c. E€ys and the shear strains, i.e Yy - A N F Ty
NEPRA
) dx 1
Fig. SE 3 ... Plane stress B J ¢

In the linear theory of elasticity, the strain energy due normal strains and the strain energy due
to the shear strains are independent and could be superimposed.

5.3.1. The strain energy due to normal stresses

The total elongation Adx of the cube side dx is composed of the elongation due the stress o,

and of the shortening due the perpendicularly acting stress o, . Thus,

Adv=¢, de= (o po,)dx . (SE_4)
E

Similarly, for the y-direction
1

Ady =z, dy = E(ay —uo,)dy. (SE_5)

The strain energies due to the normal stresses are composed of two parts.

e The work done by the force o dydz due to the elongation Adx is o & dxdydz.
e The work done by the force o ,dzdx due to the elongation Ady is &, dxdydz.
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Since the stress components and the corresponding strain components are mutually
perpendicular their scalar products do not influence each other.

Generally, the loading process occurs in time — it is assumed that both stress and the strain
quantities rise linearly from zero to their maximum values'. Let’s define an auxiliary
parameter, say A= A(¢), 0< A <1, which formally describes the loading and deformation

processes in time. Then, the increments of exerted work (strain energy) for immediate values
of the forces Ao dydz and Ao ,dzdx by incremental elongations dAe dx and

dAe, dy respectively, are

(Ao, dy dz) (dle, dv)=o.e, AdAdxdydz= o0&, AdAdV, (SE_6a)
(o, dx dz) (dde, dy) = 0,&, AdA dxdy dz = o,¢, AdA dV . (SE_6b)

The elementary strain energy due to the normal stresses is a cumulative process that can be
evaluated by the integration process in “time”

i, =(0.6 +0,6,)dv j Adi= %(ngx +o,8,)dV . (SE_7)
2=0

Often, we define the strain energy density, which is related to a unit of volume

1L oz +0,2) or A= (0407 2000 (SE_8)

The formula on the right was obtained by substituting the Hooke’s law relations, i.e.

£, :%( ; —,uay) and ¢, :%(ay —,uax) . (SE 9)

5.3.2. The strain energy due to shear stress

A part of the strain energy attributed to the shear strains can be deduced analogically in the
form

d4, = %rxy Vo dV . (SE _10)

Similarly, the shear strain energy density is

4. 1 7]
=3y :Erxy}/xy = 2(y}' (SE _11)

The total shear strain energy density for the plane stress is

"In statics, we normally do not take the time variable into consideration. The applied force is either zero or it has
its maximum value. The process of the force application is, however, assumed to be so slow that the inertia
effects could be neglected.
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1
A=A, + 4, =§(0'ng roe, +T,7,)- (SE_12)

5.4. Strain energy for the 3D state of stress

Oy

Analogically, the strain energy density for the 3D state of stress, P
depicted in Fig. SE 4, is [—?_— e
Tey f e
A= b2 ) SE13) ll/:l | E'
=3 0.£, +0,E,+0.6 |+ 5 Tl Y027, T 7.7 ) (SE 13) /
g ax

Fig. SE 4 ... 3D stress

Eliminating strains, using the Hooke’s law relations, we get

A= ot v ot ot -2uloo vo o oo ool vet el (SE_14)

5.5. Strain energy in a beam subjected to pure
bending

In Fig. SE 5 there is depicted a part of the beam

subjected to pure bending. We have derived that the axial
stress due to the bending is 202
AL
M( x) aS
o, :J—Z. (SE_IS) z -

y

Fig. SE 5 ... Beam defo 1

Ak
[ = 2
2 Tk, W= ) S A7, BT

4
@___# Tu= S Az
" Az

The pure bending means that the axial stress is of
uniaxial nature, and that the influence of shear
forces is non-existent or neglected. So, the strain
energy of pure bending is analogous to the strain
energy in tension — compression as explained
before. See Fig. SE 6. So, the elementary strain
energy, contained in an element of a beam between
two infinitesimally close slices, depicted in Fig.
SE 5,1s

2 2 | b S e
dU:(O-"dedx: M [ 2ds |ar= = R Ay
2E 2677 )3 S d Sy
M) (SE_16) enal =5Stn AV
2E] -

y

Fig. SE 6 ... 1D strain energy
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To explain the analogy of bending with the tension it should be reminded that for a bar of the
length / we write

o= Ee: g Al ES

And similarly for a beam element of the length dx

P=Eonde: P-kAdy k=25 (SE_18)
dx dx

The strain energy contained in the whole beam is obtained by the integrating Eq. (SE_16). If
J, = const, then

1 ¢
U=— M dx. SE 19
2EJy£ (x) (SE_19)

5.6. Strain energy expressed in tensor notation

It is of interest that all the strain energy density formulations for the cases examined in this
paragraph could be simply and uniquely described by the tensor analysis notation. In the form
of the tensor scalar product, also known as the tensor double product, we have

1 1

__ _ y-engineering Cauchy __ _ wyrengineering , g Cauchy
A=-2; E; or A=—-X 'E .

Here, it is necessary to use one’s wits and to properly distinguish the tensor and Voigt’s
(engineering) notations when the tensor and engineering formulas for the strain energy are
alternatively employed for the strain energy computation. Of course, the result has to be same.

The Green-Lagrange strain tensor, multiplied by the second Piola-Kirchhoff stress tensor — by

means of the double dot product, i.e. %JE,

i OtSij_ gives the scalar quantity which represents

the mechanical energy or the mechanical work.
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5.7. Analogy of relations for tension, bending and torsion

1D stress bending torsion
o=E¢ o=E¢g =Gy ... Hooke’s law
0'=£=E8=EA—Z G=M° r=%...stress

S l W, ,

where M and M, are bending and torsion moments respectively

J, J
S W, = W, =1
Zmax rmax

these relations are valid for circular cross sections only

area W, and W, are section modules in bending and torsion
longitudinal strain curvature rate of twist
LA F 1M, g_do_M,
[ ES p EJ, dr  GJ,
stiffness
ES 1 GJ
F= =2 A M,= EJ, — M, = s
HZ,_‘ elor:g;ion J l t\;V;st
longitud. stiffness bending Stlffnesscur:;;ure torsional stiffness

strength theories

[3)

O-max = Egmax < O-Dt o =

max

_ k
< Opt Thax = < Tp
o k

where o, is the allowable stress in tension and 7}, is the allowable stress in torsion.

strain energy

2 / 2 2
:Fl U:IM"(x)dx U= M1
2FES o 2EJ ) 2GJp
constant force variable moment constant moment

For more details see

SE



06_FT. Failure theories
6.0. Introduction

It should be reminded again that the term the strength of material is understood in two distinct
meanings. First, the subject of the university course dedicated to th e engineering continuum
solid mechanics, also known under the nam e the mechanics of material. Second, the property
of a particular material to withstand safely the applied loading.

Having learnt how

the loading modes are classified,

a body is strained due to the applied loading,

to compute the stress and strain invariants,

to assess the strain energies for particular loading modes,

to evaluate the principal strains and stresses,

the fundamental material constants are experimentally obtained,

we are ready to analyze the conditions under which the examined body could safely withstand
the applied loading.

The most common m aterial test is the tens ile test, which w as briefly described in P aragraph
04 CR. This type of test provides the m aterial constants for 1D load ing. The question arises
how to apply the 1D material data to cases where the 2D and 3D state of stress occur.

The problem is rather complicated since at each material point (particle) of a loaded body the
state of stress is described by a stress tensor, the quantity generally having nine stress and nine
strain components. How to decide w hich stress component is crucial for the capability of the
body to withstand the applied load ing? That’s why the scalar  quantities, as the principal
stresses, stress invariants, etc. are im portant. Based on these scalar quantities, the various
failure theories and hypotheses were derived. In the following text, a brief survey is presented.

6.1. Rankine’s hypothesis of the maximum stress

The spatial state of stres s is compared with the uniaxial one in such a way that th e maximum
stresses are com pared. If the pr incipal stresses are ordered as o, > 0, > o;, then th e failure

occurs if o, = o}, , where o, is the stress corresponding to the allowable tensile strength. If
o, <0, then |03| = 0y, Where o, 1s the stress corresponding to the allowable compressive

strength. So,

Rankine (FT_ 1)
If &, >0, >0,> |, then the failure occurs for o, = o,

If 0, 2 0, 2 0, and at the same time o, <0, then the failure occurs for |03| =0py-

FT 1




6.2. Saint-Venant’s hypothesis for the maximum shear

This hypothesis assum es that the f ailure occurs if the m aximum strain reaches the critical
value ¢_, . Again, the uniaxial and the spatial state  of stress are com pared. Assume that the

crit *

max

. . . Op v : o
critical stress o, evokes the critical strain & = EO . Similarly, if the principal stresses are

max

. o 1
orderedas o, >0, >0, thenthe m aximumstra inwillbe ¢, = E(al — 1O, — u03).

Comparing them, we get % = é(o] — UO, — ,110'3). From it follows

Oy = (61 — HO, — /UO-3) =O0p> (FT_2)

where o, is the allowable tensile strength. The value o, is often called the equivalent stress.

Saint-Venant (FT 3)
If 0, 2 0, 2 0;, then the failure occurs for o, = o}, where o, = (01 — 1O, — UC, )

6.3. Guest’s hypothesis of the maximum shear stress

For the uni-axial state of stress we get 7, =o,/2. For the spatial state of stress, assum ing

mq

that the p rincipal stres ses are ord eredas o, >0, 20,, the m aximum shear stress is

z,. =(o,—0,)/2. Comparing we get that the equivalent stress is &, = &, — o, .

Guest (FT 4)
If 0, 2 0, 2 0;, then the failure occurs if o, = o5,

where o, = 0, — 0, and o, 1s the allowable tensile strength.

6.4. Beltrami’s hypothesis of the strain energy density

According to this hypothesis, tw o states of stress are equiva lent, if their strain energy
densities are equal. For the uniaxial and for the spatial state of stress we have derived

2
O

1 2 2 2 1 2 2 2
Ap= ﬁ and A= E[GX to,+0; - 2,u(axay +0,0,+0,0, )]+ %(Txy +7y, + TZX).
... (FT_5)

Comparing them we obtain the equivalent stress in the form

o, =2EA,, . (FT_6)
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Beltrami (FT_7)
The failure arises for o, = o,,,, where o, =,/2EA,, ,

and A,,= %[@f + 0'5 +o. - 2,u(0'xo-y +0,0,+0,0, )]—i— %(Tfy + sz + TZZX),

and o, 1s the allowable tensile strength.

6.5. Mises’s hypothesis of the deviatoric part of the strain energy density

The stress com ponents corresponding to the spatial state of stre ss could be divided into two
parts.

e One of them causes th e change of shape of the element only, w ithout influencing its
volume.

e The other causes the change of volum e of the element only, without influencing its
shape.

Evidently, the stress tensor could be decomposed as follows

Oy xy Ly o,—Pp Tyy yz p 0 0
w Oy Ty |=| Ty o,—Pp v |0 p O (FT_8)
x y O x Ty o,—p 0 0 p
Terminology
Stress = deviatoric stress +  volumetric stress
i.e. the change of shape, i.e. the change of volume,
volume is conserved. shape is conserved.
It should be reminded that for the change of volume we can write
AV =dx(1+&,) dy(1+¢,) dz(1+&,) = (¢, + &, +¢&,) dxdydz. (FT 9)

Neglecting the higher-order quantities, the relative change of volume is
AV
Tz(gx te,+5,). (FT_10)

Now, the q uestion is. W hat value the qu antity p has to attain in o rder that the condition
dV =0 is satisfied? Meaning — no change of volume. Evidently,

(8X+8y+6‘z)=0. (FT_11)

From the Hooke’s law, we get

&, =é(ax - p—-uo, —yaz), (FT_12)
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g, = (O'y - p—uo, —,LlO'X), (FT _13a)

y

m|— m|—

g, = (az - p-uo, —/JO'y) . (FT _13b)

And substituting into &, + &, + &, =0 we obtain

L2 (5 4o, +0,-3p)=0. (FT_14)

(gx +e,te, ) =

From the last equation, the p value could be evaluated as
1

ng(axmy +0,).  (FT_15)

6.5.1. A part of the strain energy density evoked by the volumetric stress

If the body is loaded by pressure only, then all the normal stress component are equal to p.
The corresponding strain components are also identical. We might write

E=¢g,=€6,=€,. (FT _16)

The Hooke’s law — for all three directions — is
1 p

5=E(p—ﬂp—ﬂp)=g(l—2ﬂ)- (FT_17)

For the strain energy density, we have derived

A= l 0.&+0,&, +0,8, +l Tty T Ty + Tl )- (FT_18)
2 2

In the case of the pressure loading, the shear stress components vanish and we can write

o,=0,=0,=p (FT _19)
and also
E=E, =6, =& (FT_20)

Then, from Eq. (FT 18) we get
A —3l pg—lp3g (FT 21)
vol 2 2 . _

Since all three normal strain components are equal, the relative change of volume is
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‘\'/—V=(gx te,+5,)=3s . (FT 22)
So,
1 1 1 AV
A,=3—pe=—pP3c=—p—. FT 23
vol 2p 2p 2p V ( _ )
Comparing with Eq. (FT 17) we get
1 1P 3A-24)
A =3=—pe=3—p=1-2u)=—=—"2p". FT 24
w=37pe=30po(l=2u)==—p (FT_24)

1 . . .
But p= E(GX to,+o0, ), so finally the part of the stra in energy density corresponding to the

volumetric part of the stress is

A

3-2) L, 30-2m) 1 (1-24)
vol = 2E p2: 2E §(O-X+GY+O-Z)2:6—E(O-X+GY+O-Z)2'(FT—ZS)

We have already shown that the total strain energy density is
1 1
A= E[O-XZ + 0'5 +07 — 2,u(O'XO'y +0,0,+0,0, )]+ E(szy + 2'52 + rzzx). (FT _26)

6.5.2. A part of the strain energy density evoked by the deviatoric stress

So, the part of the strain energy density corres ponding to the deviatoric part of the stress is
given by the difference

Ay, =A-A,. (FT 27)

dev

After the rearrangement we get

1+ u 1
Ay, = —3E (af + aj + af —-0,0,-0,0,— GZGX)+ %(ij + sz + rfx ) (FT_28)
The strain energy density for the deviatoric part of uni-axial strain com es from the previous
relationship in the form

1+ pu
AP =—L¢2. FT 29
dev 3E 0 ( _ )

So, from the point of view of the m aterial strength, the uni-axial and sp atial state of stresses
are equivalent if their deviatoric strain energy densities are equal, i.e.

A=A

dev™ “tdev>?

(FT_30)
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So,

(Lt pog _1+p
3E 3E

1
(Jf +0,+0, —0,0,-0,0,— O'ZGX)+ %(rfy +7,, + z'zzx), (FT_31)

3E 1
= ﬂ)%(rfy rrl+7), (FT_32)

L ) 2 2
O, = (O'X +o,+0,-00,-0,0, —UZO'X)-I-(

And realizing that % = (1 + ,u), we finally get

o, = (O'f +0,+0, -0,0,-0,0,— O'ZGX)+ 3(1'X2y +75,+ z'fx). (FT_33)

So, according to the Mises’s hypothesis, the equivalent stress is

O, = \/(sz + O'j +o. — 0,0,-0,0, - O'ZO'X)-i- 3(rfy + rjz +72 ) (FT _34)

Mises (FT _35)

The failure arises for o, = o, , where

_ 2 2 2 2 2 2
O, = \/(O'X +o,+0,-0,0,-0,0, —O'ZO'X)+ 3(rxy +7,+ sz)=

and oy, 1s the allowable tensile strength.

This hypothesis is based on the as sumption that the m aterial failure is due to the deviatoric

stress com ponent only, or by other words due  to the deviatoric stra in energy density. In

literature, this hypothesis is also known under the abbr eviation HMH —m eaning Huber-
Mises-Henckey hypothesis.

6.6. Plasticity conditions
The subject of plasticity is a topic, requiri  ng an extens ive full sem ester course. There are

many theories available; here — just have a ju st feeling for the subject — we present the two
simplest hypotheses only.

Tresca’s condition (FT 36)

H. Tresca, after extensive experiments, came to the conclusion that the plastic deformation of
metals occurs if the following condition is met

o, =0y ,Where o,=0,—-0, =27, .
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Mises’s condition

The plastic deformation of metals occurs if the following condition is met

— _ 2 2 2
o, =0y , kde o, —\/01 +0;, +0; —0,0,—-0,0,—0,0,,

1 ) 2 2
or o, :\/E[(O] _O'z) +(O'z _0'3) +(‘73 _‘71) ]

(FT 37)

For more details see

FT




07_PS. The principle of superposition
7.1. Introduction

The principle is valid for linear elastic system s only. The linear systems are characterized by
the following assumptions: small displacements, infinitesimal strains, the equilibrium of force
and stress quantities is consider ed in the un-deform ed geometry', and finally the validity of
Hooke’s law. Under these assumptions the quantities to be determined are the linear functions
of the applied loads.

Consider a schematized bridge, depicted in Fig. PS 1, that is subjected to external loading by
two forces, say £}, F, . Let’s analyze the deflection at the location 3.

In linear cases, the deform ations are proportional to
the applied forces. 3 ! g

Fig. PS 1 ... Schematized bridge structure
We could thus state.

The deflection, at the location 3 due to the force F, alone, is w;, = a;,F] .

The deflection, at the location 3 due to the force F,alone, is w;, = a,,F,.

The quantities as,,a,, are the p roportionality constants. The principle of superp osition states
that the total deflection in the location 3 is

Wy =Wy + Wy, =ay B+ ayF, . (PS_1)

It can be shown that the proportionality constants are functions of the structure’s geometry
only.

7.2. Betti’s theorem?

Whether the acting forces are applied sequentially orall atonce, the def ormations of the
analyzed structure are identical. Again, the theorem is valid for a “slow” application of forces
and for linear elastic structures.

Imagine that the system of applied forces an d m oments is arb itrarily partitioned into two
groups. Say, I and II.

Due to the loading of forces and moments belonging to the first group, the strain energy A4, is
evoked in the system. Due to the consequent loading of forces and moments belonging to the
second group, the strain energy 4, is introduced. Furthermore, there is additional energy 4,

! This might happen if the large deformations occur. Then, due to the loading the initial geometry is substantially
changed. This phenomenon is called the geometrical non-linearity.
? Enrico Betti Glaoui (1823 — 1892) was an Italian mathematician.
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— this energy corresponds to the mechanical w ork done by fo rces and mom ents of the first
group due to deformations evoked by the forces and moments of the second group.

So, the total strain energy is

A=A+ Ay + 4y (PS_2)
If the order of the loading process is reversed, then

A=A, + Ay, + 4. (PS_3)
The total energy cannot depend on he order of the loading process, so

Ay = Ay, - (PS_4)

Summary for Betti’s theorem

If a linear system (for which the superposition principle is valid) is subjected to the forces and
moments belonging to two groups, then

— the mechanical work done by the first group of forces and mom ents due to the deformations
evoked by the second group of forces and moments

1s identical to

—the m echanical work done by the second group of forcesand m  oments due to the
deformations evoked by the first group of forces and moments.

7.3 Maxwell’s theorem

If the p rinciple of superposition is valid, then the def ormations (deflections and slopes) are
described by linear functions of the loading (forces and moments).

The so called influence coefficients are defined as follows

By the set o finteger v ariables, k£ =1,2,--- n, we define the points of action of single forces
and moments. By another set of variables, j=1,2,:-- n, we define the location s where the
deformations (deflection and slope) are observed.

So the influence coefficient is defin ed as the defor mation at the location ;j evoked by a unit
loading applied at the location & .
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They might be denoted as follows:

ay ... deflection at the location j ... evoked by a unit force applied at the location &,
B --- slope at the location j ... evoked by a unit force applied at the location & ,
Vi --- deflection at the location j ... evoked by a unit moment applied at the location &,
0, --- slope at the location j ... evoked by a unit moment applied at the location % .

Example — influence coefficients
Given: Cantilever beam subjected to the force and moment loading depicted in Fig. PS 2.
Determine: The slope and deflection at the location 4.

Mo EE M

e 12 l —

7

%

Z 7 2 3 |4
Fig. PS 2 ... Loaded beam - -
The deflection and the slope at the end of the beam are
Wy = My + Fyoy, + Fog + My, (PS_5)
G =M, + F,fy, + F.frs + M0, (PS_6)
Let’s sort the loading effects into two groups as follows
I: M,F,, (PS_7)
. M,F,. (PS_8)

Deflection evoked by the first group at the location 3, where F;acts, is  d, = M,y,, + Fya,,
Slope evoked by the first group at the location 4 , where M , acts, is s;=Mo,+Fp,,
Deflection evoked by the second group at the location 2, where F, acts, is d;; = M,y,, + F;a,;,
Slope evoked by the second group at the location 1,where M, acts, is sy =M 0, +Ep,;.

..(PS_9to PS_12)

The mechanical work done by the first group due to the defor mations evoked by the second
group is

Ay =Ms,+Fd,. (PS_13)

The mechanical work done by th e second group due to the defo rmations evoked by the first
group is

Ay, =M,s, + Fd, . (PS_14)

PS 3



According to Betti’s theorem these mechanical works (energies) are equal, so

Ay = Ay, (PS_15)

Substituting and rearranging we get

MF,(By = 75)+ MM, (8,4 = 8, )+ FyFy (@ — a3y )+ FuM (1 — By ) = 0. (PS_16)
In order that this equation be satisfied, the contents of its brackets have to be zero, so

Oy =04, ,Bjk:ykj, 5jk:5kj. (PS_17)

These equalities represent the Maxwell’s theorem.

Summary for Maxwell’s theorem

The deflection in the location j caused by the un it force in the location k& is the same as the
deflection in the location k& caused by the unit force in the location j .

The slope in the location j caused by a unit force in the location % is the same as the slope in
the location £ caused by the unit moment in the location j .

For more details see
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08 _PV. Principle of virtual work
8.1. Introduction

The virtual work is the mechanical work produced by forces and moments exerted during
their virtual displacements. By the term virtual displacement we understand any infinitesimal
displacement and/or rotation that are in agreements with the prescribed constraint conditions.
For virtual quantities Lagrange introduced the symbol o, to emphasize the virtual, i.e.
fictional or apparent, character of these quantities. We assume that while the body is being
transferred to a new, infinitesimally close position, the acting forces do not change their
magnitudes and directions and that the time, during that transfer, is frozen.

8.2. Virtual work

In mechanics of deformable bodies the principle of virtual work states that the virtual work of
internal forces , say dU , is equal to the virtual work of external forces, say 6/, so

SW =58U . (PV_1)

In mechanics of rigid bodies the deformations of loaded bodies are neglected, so the work
done by internal forces is identically equal to zero, thus

S =0. (PV_2)

The rigid body in equilibrium is characterized by the fact that the resultant of all the forces
and moments is identically equal to zero. If such a body is subjected to a virtual motion that is
in agreement with constraints, then the resulting mechanical work, called the virtual work, is
zero, as well. The condition of the zero virtual work is equivalent to the equilibrium
condition.

At the first sight, the conclusion, that the zero resulting force produces zero work, seems to be
trivial. But, the resulting zero is a sum of non-zero contributions of works produced by virtual
displacements of individual forces. We will show that the power of the principle is based on
the fact that the principle has to be valid for any virtual displacement.

The virtual displacements of deformable bodies are actually the displacements of individual
particles representing the overall change of the body’s shape — the rigid body motions are not
considered. If a deformable body is in equilibrium, then the virtual work done by external
forces is equal to the virtual work done by internal forces. The latter work is actually equal to
the strain energy.

So,

SW —8U =) F4s,—3U =0, (PV_3)
where ds, is a component of the virtual displacement of the point of action of the force F; ,

having the same direction as the force F;. It is assumed that the applied force does not change
during the virtual displacement. The time is frozen, so the values of acting forces do not
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increase from zero to its final magnitude — that’s why the factor % does not appear in these
expressions.

Often, the energy of external forces W, taken with the minus sign, is called the potential, i.e.
V=—W . So, the energy Wis capable to produce mechanical work, while the potential
V" consumes it. The strain energy is also capable to produce the mechanical work.

Introducing the total energy by

E=V+U (PV_4)

one can write

SE =84+ 08U =3V +3U =8(V +U)=0. (PV_5)
This is, however, the condition for the minimum of the function W . It can be proved, see
[22], that the condition of the minimum of the total energy is equivalent to the equilibrium

condition.

In other words: The equilibrium conditions of a body occur for such a deformation
configuration in which the minimum total energy is accumulated.

Example — the strain energy explained again

The linear elastic spring of the stiffness k£ is loaded by a force linearly increasing, i.e.
F =ku , from zero to its maximum value F, . Due to the loading, the length of the spring

increases, see Fig. PV 1, and the accumulated strain energy is

deu = jkudu :%kuz +C. (PV_6)

P

Generally, for a mechanical system Ry — [
characterized by displacements u and F |}
by the stiffness matrix K, the strain

energy expressed in the matrix form is ‘

EuTKu . (PV_7)

Fig. PV 1 ... Strain energy

We say that the strain energy is a quadratic function of displacements.
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8.3. Castigliano’s theorems

describe methods for determining the displacements of a linear elastic structure based on the
partial derivatives of the energy.

Consider a body loaded by forces £, F,, -, F; and by moments M ,M,,---,M . Let’s analyze

1

what happens if one of the forces, say F,, 1<k <i is changed by the increment dF;.

: . : . ou
Evidently, the strain energy increment is ——dF, . Due
k

to the applied force dF, the loaded body deforms. Its
point of action is displaced. Let the projection of this
displacement be ds,. Then, the increment of the

mechanical work has to be equal to the increase of the
strain energy. The strain energy increments are depicted
in Fig. PV_2. Thus,

1 oU
EdSdek +Sde;( :aTdF;( (PV_8)

k
Fig. PV_2 ... Strain energy increments
Neglecting the second order increments we obtain the first Castigliano’s theorem in the form

5 =20 (PV_9)
oF,

A similar analysis, carried out for the moment quantities gives the second Castigliano’s
theorem.

_ou
? oM,

(PV_10)

Example — application of the Castigliano’s theorem

Given: Dimension, cantilever beam loaded by uniform distributed loading. See Fig. PV 3.
Determine: Deflection and slope as a function of the beam X dx

foneth S
1 1

A trick. At the free end of the beam a fictive force F and a Mo

fictive bending moment M jare added. After the analytical F /

”
d

VY

part of the solution is carried out, these quantities will be set

to zero. - L %

Fig. PV_3 ... Application of Castigliano theorem

i
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The bending moment is

2
M(x)=-Fx—M, —%. (PV_11)

The strain energy accumulated in the beam is

l 2
U:jM ) g (PV_12)
) 2EJ,

Applying the first Castigliano’s theorem, we get the deflection at the free end of the beam in
the form

2
_ou _ J‘M (x)dx J'a M(x) I2M( )8M(x)dx_
" OF OF3 2EJ ) o OF 2EJ, 2EJ
l 2 l 4
L | BN VAR ) YR Lo =2 v 13)
EJy 0 2 substitute zeros EJy 0 2 8EJy

In the second line of the previous equation we have substituted zeros both for the fictive force
and for the fictive moment.

Applying the second Castigliano’s theorem, we get the slope at the end of the beam in the
form

oU J‘M()

dx = . (PV_14)
oM, EJ, M,  EJ

oM (x 1 fgx’ A
o= ( ) Iq q
0

Example

The Castigliano’s theorem could be advantageously
applied to solutions of statically indeterminate
cases. See Fig. PV 4. Removing the left support
and replacing it by the vertical reaction R, and

N
w
s3]
Z

x
realizing that there has to be the zero deflection /
there, we could write the Castigliano’s theorem in
the form
Fig. PV_4 ... Indeterminate beam
v = (PV_15)
OR
The bending moment as a function of the x-coordinate is
xZ
M(x)=Rx— L. (PV_16)

2

PV 4



The corresponding strain energy is

1 ] 2.4 273 4 275
=LjM2(x)dx=Lj R —Rg + 45 |ay = KL _Ral” | a7y g
2EJ,) 2EJ,) 4 6EJ, 8EJ, 40EJ, -

The derivative of the strain energy with respect to R has to be zero, so

oU _2RP gl
OR 6EJ, 8EJ,

=0, (PV_18)

which gives the unknown reaction

R 3?611 _ (PV_19)

The equation Z—Z:O could be viewed as the condition for the extreme of the function

U =U(R). We know that the condition for the extreme to become minimum requires that the

second derivative of U with respect to R has to be positive. Evidently, in our example this
2

condition is satisfied. Generally, the condition

> >0 represents the so-called third
R
Castigliano’s theorem.

Expressed in words: Out of all the statically acceptable indeterminate reactions, the
deformation condition is satisfied only for the reactions minimizing the strain energy.

This theorem is also known as the Menabrea’s theorem.
8.4. Saint-Venant’s principle

states that the difference between the effects of two different but statically equivalent loads is
very small at a sufficiently large distance from the load.

This principle is used whenever it is necessary to idealize the task to be solved. Of course, the
precise definitions of attributes very small and sufficiently large require a sound engineering
insight.

As an example take the standard tensile test where we analyze the state of stress in the middle
part of the test specimen specified by the uni-axial formula, i.e. o =F /S, knowing that in

locations where the specimen is clamped at its ends, there is a full 3D state of stress.

For more details see
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09 _LM. Typical loading modes
9.1. Introduction to bending, torsion, and buckling

In the strength of material theory, the ability of various engineering machine parts to withstand
the applied loading is treated by different approximate approaches — consequently, the different
chapters are devoted to rods, beams, thin plates, thick plates, shells, thin-walled vessels, thick-
walled vessels, etc. This scattered approach is — to certain respect avoided, when modern
computational approaches — based on discretization (as for example the finite element method)
are employed in practice. The author feels that knowledge of principles, on which the modern
numerical methods are based, might be profitable for a student who intends to employ these
methods efficiently. That’s why the classical approaches for the treatment of bending, torsion,
and buckling are presented in detail here.

9.2. Bending
9.2.1. Introduction
In engineering terminology the beam is a prismatic body being able to capture the external

moments, the lateral and the longitudinal forces. Beams and their schematic representations are
depicted in Fig. LM 1.

W N
b = .
3 ===
A |F B \\\Q\ S
- | A NN\
R -
h),l m_‘q_:__. /r_/; i
Q', - ;// ‘.‘,"‘i’: LA__ \ B
e otk MY
-:*E.. T | ’_ﬁ-m,* M‘ IR"'

Fig. LM 1 ... Beams and their schematic representations

9.2.1.1. Terminology

To remind the used terminology concerning the terms as the degrees of freedom, static
determinacy, etc, the following text — already presented in the study of the mechanics of rigid

bodies — is repeated here.

Different types of constraints — this subject was treated in detail the text devoted to mechanics of
rigid bodies, so a brief repetition only — beams in the plane are treated here.

joint ... radial — allows rotation, 2 reaction force components
... axiradial — allows rotation and displacement, 1 reaction force
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clamping ... no displacements and rotations allowed, 2 reaction force components
and 1 reaction moment

9.2.1.2. Explanation of terms: degrees of freedom, static determinacy, etc.

Six cases of a differently constrained body (a truss structure, composed of thin rods, also
called bars) connected at their ends by frictionless joints, are depicted in Table LM 1. Due to
miscellaneous constraints applied to that body, we can analyze six different cases with different
numbers of degrees of freedom. For simplicity, the bridge structure is assumed to be two
dimensional and all the constraints are considered frictionless. Two types of constraints are
considered. First, a radial joint that besides the rotation allows left or right sliding motions. This
constraint is also called a roller support. Second, a radial joint allowing a free rotation. This
constraint is also called a pin support.

e AM ,& M /ﬂ
1 0 -1 -2

#dof’s 3 2

0 1 2 3 4 5

# reactions comp.

»>

# equilibrium egs. 3 3 3 3 3 3
structure type | MOVING - ccoooaaanann | properly | --.. constrained ...
| | constrained | too much |
type of problem | ....... statically _...._._..... | statically | ... statically ... |
| underdeterminate | determinate | iInterdeterminate |
to be solved in | ...... dynamics  .......... | statics | strength of material |

Table LM 1 ... Degrees of freedom and free body diagrams

The first column corresponds to a free, unconstraint or unsupported body that has 3 dof’s in the
plane. There are no reaction forces to be associated with the case.

The second column. The body is attached to the frame by a radial joint that besides the rotation
allows left or right sliding motions. By mutual consent, the vertical motion in the up direction is
prohibited. The body could freely rotate around the joint and also could freely move in left or
right directions as well, it thus has two dof’s. In the FBD this joint could be replaced by one
unknown reaction component on the left, which would act vertically.

The third column. The body is attached to the frame by a radial joint allowing a free rotation

around this joint only, it thus has one dof. In the FBD, this joint could be replaced by two
unknown components of the reaction force in that joint.
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The constraint bodies, depicted in the first three columns, have one common property, — they can
move. Generally, the moving structures are characterized by the fact that their number of dof’s is
greater than zero. Mechanical systems composed of more rigid elements, having a positive
number of dof’s, are often called mechanisms. More about the subject is in the chapter devoted to
kinematics.

Any structure able to move will start to change its position in space and cannot be treated by
statics tools of mechanics. Their motions, due to the applied forces and moments, are described
not by equations of equilibrium, but by equations of motions having the form of ordinary
differential equations. In the following text, we will show how these problems are analyzed by
tools of dynamics.

The fourth column. The body is attached to the frame at two places. On the left, there is a radial
joint, which when considered alone, allows a free rotation. On the right, there is a sliding radial
joint allowing both the rotation and the horizontal motions. The left joint removes one dof, and
represents two unknown reaction components, the right one two dof’s and requires to add one
unknown reaction component in the FBD. Altogether, the body cannot move and has, in this case,
zero degrees of freedom. Reaction forces represent three unknowns, two on the left and one on
the right, and for a body in a plane, we have three scalar equations of equilibrium at our disposal.
This case is thus easily solvable. We say that such a system is statically determinate.

Generally, we can state that the actual number of dof’s of a body, say 7, plus the number
of unknown reaction components due to prescribed constraints, say m , is equal to the number of
dof’s of that body “freely” flying in the space (rigid body motions). In plane, we could write
i+m=3,inspace i+m=6.

The fifth and sixth columns correspond to structures that from the statics point of view are
‘constrained too much’. They have a negative number of degrees of freedom. We say that these
cases are statically interdetermine. In these cases, the number of unknown reaction components is
greater than the number of available equilibrium equations. Consequently, the conditions of
equilibrium do not suffice to find unknown reactions. Cases of this kind will be explained,
analyzed and treated in chapters devoted to the mechanics of deformable bodies. We will show
that adding an adequate number of so-called deformation conditions, the tasks of this type can be
solved.

The treated tasks could be classified according to the number of degrees of freedom.

If # dof’s = 0, then the mechanical system is said to be statically determinate and for given forces
and moments, the corresponding reactions are readily obtained from properly formulated
equilibrium conditions. In this case, the system is stationary and the number of unknowns is equal
to the number of available equilibrium conditions.

If # dof’s > 0, then the system is statically underderterminate and generally cannot be solved by
statics tools. For given forces and moments, the system would start to move with accelerations
and could only be treated by dynamics tools. Still, the tasks of this kind could be analyzed in
statics if the problem is reformulated.
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There are two possibilities.

First, for a given position determine such forces and moments that allow the system to stay in its
current configuration.

Second, determine such a configuration in which the system — for a sufficient number of
prescribed loads — will be in the state of equilibrium.

If # dof’s < 0, then the system is said statically indeterminate and cannot be solved by statics
tools since the number of unknown reactions is greater than the number of available equilibrium
equations. The tasks of this kind could be treated by tools of mechanics of deformable bodies,
where a suitable number of so-called deformation conditions are added, which together with
equilibrium equations will suffice to find all the unknown reactions.

Internal actions (i.e. the shear force a nd the bending moment) in a cross section — again this
was treated in detail in the text devoted to mechanics of rigid bodies

P
AI m B A cross section m-n divides the beam into two parts. See Fig.
n LM 2.

- The left part. In this cross section, the indicated shear force V
lvj and the bending moment M replace the effects of the removed
4 part. In this case, there are no forces in the lateral direction of

the beam.

B . . o .
MC T — | The .rlght part. According to the prln(.:lple of act.lon and
reaction, the forces and the moments acting on the right part

(©) are of the same magnitude but of opposite directions.

Fig. LM 2 ... Free body diagram

To determine the type of reactions the free-body-diagram reasoning is used. To evaluate the
magnitudes of reactions, the equilibrium conditions have to be applied and solved for reactions.
Then, the internal forces and moments are determined from the condition of the equivalence of
internal and external forces with reactions. For planar cases, two force components equations and
one moment equation are required. Each component equation could be replaced by a moment
equation. But not vice versa.
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9.2.3. Sign conventions

The shear forces are considered positive if the material element (’ TE l‘) lE T
turns clockwise. See Fig. LM 3. v v 4

The bending moment is considered positive if the upper part of the

element is shortened, while the lower one is elongated. v v
o], e

We also accept the statement that the positive shear force and the ®
positive bending moment deform the beam in a ‘downward’

fashion. ( [@® \\‘j C\ o /)

Fig. LM 3 ... Sign convention (b)

Example — simply supported beam loaded by two concentrated forces

Given: dimensions, forces. See Fig. LM 4. a .
Determine: the distributions of shear forces and the Ry v LI bPs
bending moments. R T

A 2]

Fig. LM 4 ... Simply supported beam forces - T

The considered beam is simply supported and thus statically determinate. Reactions are found
from the equilibrium conditions. In plane, two component force and one moment equations are
required. Since there are no axial forces applied, just two moment equilibrium equations are
sufficient for the task. Solving them we get

1 1
R, :;[Fi(l—al)+F2(l _az)]a Ry :;[Fial +F2a2]. (LM_1)

How do we proceed? At first, we cut the beam in a chosen cross section and apply the internal
forces and moments in such a way that the overall equilibrium is assured. Then, the free-body
diagram for internal, external and reaction forces and moments in the chosen cross section is
constructed and finally, the equilibrium conditions for unknown internal forces and moments are
solved. The equilibrium equations are considered for each part of the beam. Regardless of the
chosen part of the beam, i.e. the left or right one, the considered equilibrium conditions should
lead to the same results in terms of internal effects.
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Now, back to our example.
The internal forces for the first part of the beam, i.e. for 0< x<q,.

The removed part of the beam is replaced by forces and

moments satisfying the overall equilibrium. See Fig. A M
LM 4. Notice, that the principle of action and reaction PERY
is observed. To satisfy the equilibrium conditions, we E’A B '—TT I

added a vertical force 7 and a moment M . In this ]

case, there is no internal horizontal force since no n Vﬁ l@ £

external forces are acting in that direction. The force T M@ —*r"
is called the shear force, while the moment M is called ! [-x 1R
the bending moment. -— -

Fig. LM 4 ... Simply supported beam forces first part

In the first part of the beam, i.e. for 0 < x <g,, the equilibrium conditions, written for the left-
hand side of the beam, lead to

T:RA’

(LM 2)
M ZRAX. -

Similarly, for the internal forces in the second part of the beam, i.e. for a, <x<a,, see Fig.
LM 5, we get

T=R,-F,
A (LM_3)
M=R.x-F(x—a). X

Fig. LM _5 ... Simply supported beam forces second part

The internal forces in the third part of the beam, i.e. for a, <x </. See Fig. LM 5.

Here, we can show that regardless of considering the left or the right part of the beam we get the
same results. So, for the left-hand part we get

T=R,-F-F,

LM 4
M:RAX_E(x_al)_Fz(x_az)’ (LMD
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while for the right-hand part we have

T'=-R,,
(LM_5)

M =R,(I-x). -

When these, seemingly different, expressions are evaluated, they provide the same numerical

results. In practice, it is recommended to consider that part of the beam, which requires the less
effort for finding the result.

The distribution of the shear forces and of the bending moments as functions of the longitudinal
coordinate is graphically depicted in Fig. LM _6.

The shown procedure for finding internal forces was a !
already described in the text devoted to the mechanics of R - 3
rigid bodies. Here, it is repeated for the self-consistency =
of the text. This way, we have obtained information
about the distributions of internal shear forces and L
internal bending moments. So far, we know nothing ] —\

i

|

]
-n
|

about the deformations and stresses of the beam. This r
will be treated in the next paragraphs. { l

——
=

Fig. LM 6 ... Simply supported beam forces



Example — simply supported beam with a uniformly
distributed load of constant intensity

RA1 q Rs
Given: dimensions, uniformly distributed loading I H ,g
g [N/m]. See Fig. LM 7. A i
Determine: Distribution of shear forces and bending ' ! §
moments. N
T
This kind of distributed load might represent the
loading due to the own weight, the layer of sand or Al
snow, etc. It is measured in [N/m]. Due to the loading lf R x
symmetry, we get the reactions by inspection 0, | ! 1 Ry
I
l
R\, =Ry :q_l. (LM_6) _M [
2 N r E
< M|
0,

Fig. LM 7 ... Simply supported beam distributed loading 1

Considering the equivalence of forces in the left part of the beam at a
generic distance x, see Fig. LM_8§, we get q

Fig. LM_8 ... Simply supported beam distributed loading 2 )M

RIL_X*X
q I A 7
T=RA—‘]X=?—(]X=E(I(Z—2X),
| .. (LM_7)
X
M =R, x—qgx—=—qgx(l —x).
AX X Zq( )

The distribution of the shear forces and the bending moment is depicted in Fig. LM 7.
The maximum bending moment occurs in the middle of the beam, i.e. for x=//2, and is

_L

M :M|x:l/2 T3

max

ql’. (LM_8)

Notice that the maximum bending moment corresponds to the zero shear force. Generally, it
holds

T(x)= % . (LM_9)
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This relation can be proved in the following way. In Fig.
LM 9, there is depicted a beam element of the length dx being T gl x)
subjected to a distributed load g(x). Then for the shear forces,

neglecting the increments of higher orders, we can write the M( l)“ +dM

equilibrium condition in the form

T+dT

T+dT +qdx-T =0 (LM _10)
Fig. LM 9 ... Schwedler

from which we get

_dr

. (LM _11)

qg=
The moment equation of equilibrium, written with respect to the centre of the element, is
T%+M+(T+dT)%—(M+dM)=O. (LM_12)
From this equation we can deduce that

T=—m. LM_13
o (LM_13)

It is worth remembering that the shear force is the firs t d erivative of the bendin g¢ moment
while the distributed load is the negative derivative of the shear force, thus

d7T(x)

T(x):% and g(x)=- &

(LM_14)

These relations were derived by J.W. Schwedler (1823 — 1894). In European textbooks, devoted
to the subject of the engineering strength of material theory, they are known under the name of
the Schwedler’s theorems.
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9.2.4. Deformations and stresses in beams subjected to pure bending

After determining the internal actions
(shear forces and bending moments) in
beams, we can proceed to establish the
strains and stresses occurring due to the
applied loading.

We will concentrate on prismatic beams
living in the plane (xz) as depicted in Fig.
LM 10.

-

Fig. LM 10 ... Beam_ defo

The x-axis is positive in the ‘right’ direction, the positive z-axis is oriented ‘downwards’, while
the positive y-axis is perpendicular to the plane (xz) and is directed ‘to the viewer’. The beam is
considered symmetric in the (xz) plane.

All the loads are assumed to act in the (xz) plane. If, futhermore, the cross-sectional area is
symmetric with respect to (xz) plane, than the beam deflection occurs in the same plane — called
the plane of bending. The initially straight longitudinal axis of the beam is bent — after the
deformation it is called the deflection curve and is depicted by the dashed line. The normals to the
deflection curve at points A and B intersect at the point O which is called the center of curvature.

The indicated distance r is the radius of curvature, while its reciprocal value, i.e. —, is called the
r

curvature.

Assume, that the beam is loaded by a moment M only. The cross-sectional area of the beam is
S =bxh. The prescribed loading of the beam evokes a deformation — its upper fibers are
shortened, while the lower ones are elongated. Evidently, there must be a part of the beam cross
section that is not deformed at all, it is called the neutral surface — its section with the (xz) plane
is called the neutral axis.

Due to the deformation, the internal stress o(y,z) in the cross-sectional area S arises. The
elementary force in the element of area dS'is dV =o(y,z)dS =o . dS .

Since there are no other forces acting in the x-direction, the condition of equilibrium requires that
the sum of all the elementary forces has to be equal to zero, thus

N =[dN =[o(y,2)dS = 0. (LM_15)

The moment of elementary internal forces dN with respect to the y-axis has to be equal to the
external bending moment M . This moment is actually the magnitude of the moment vector

M=M,,ie. M=M,=|M,

y)

, which is perpendicular to the cross-sectional area. Equilibrium

condition requires that
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M, :jsz:jza(y,z)dS. (LM_16)

Since we consider the in-plane bending only, the moment M ., whose magnitude is M _, have to
be zero. Thus,

M. = j ydN =j yo(y,z)dS = 0. (LM_17)

The last three equations, i.e. Eqs. (LM _15), (LM_16) and (LM _17), do not suffice for the unique
determination of the internal actions in a cross section. Additional assumptions have to be
accepted.

One of the possibilities is based on the so-called Bernoulli’s' hypothesis, which assumes that the
infinitesimally close cross sections — that were planar before the deformation — remain planar
after the deformation as well. This assumption leads to the approximate theory which is known
under different names — the theory of slender beams, the Bernoulli hypothesis or Bernoulli-
Navier hypothesis.

Observe Fig. LM 10 again. The length of the part of the fiber between the points A and B, at a
distance of z bellow the neutral axis, and measured before the deformation, is AB=dx = rde,
where r» is the radius of curvature. After the deformation, this length changes to
AB, =(r+z)de.

So, the corresponding strain in the longitudinal direction is

E—E_ (r+z)dep-rdp _z
AB rde r

e(y,2)=¢,= (LM_18)

It is assumed that there is no interaction between the neighboring fibers. Assuming also the
validity of Hooke’s law the corresponding stress component in the longitudinal direction is

o(y,z)=0,=F¢, = EZ. (LM_19)
r

So, the longitudinal strain and stress components, in a beam loaded by pure bending, vary
linearly with the distance measured from the neutral surface.

It should be reminded that the first moment of area of the cross-sectional area evaluated with
respect to the y-axis could be expressed by means of the magnitude of area S and its centroid

coordinate z; in the form j zdS =z, S .

! Jacob Bernoulli, 1654 — 1705, born in Basel, Swirzerland. He studied theology, mathematics and astronomy.

Bernoulli discovered the constant e = lim(1+1/#7)", which is the base of natural logarithm.

n—»>0
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Substituting Eq. (LM_19) into Eq. (LM_15) we get

E'[zdS = £ZTS =0. (LM_20)
r S r

From this condition, we conclude that z, =0. This condition also defines the plane where the

components of the longitudinal stresses and strains are equal to zero. This way, the neutral
surface, where the strains and stresses are zero, is defined. Another important conclusion is that
the neutral axis passes through the centriod of the cross-sectional area.

Substituting Eq. (LM_19) into Eq. (LM_16) we get

E¢,.. E
M, =M=7jz ds==J,, (LM _21)

where the quantity J, = IzzdS, [m*] is called the second moment of area with respect to the y-

axis. For the plane bending problems the index ,, used for the quantities M ,J defined above,

is often omitted.
Summarizing, the theory for slender beams is based on the Bernoulli’s relation

M

- LM 22
EJ, (IM_22)

1
.

which states that the beam curvature is linearly proportional to the bending moment M and
inversely proportional to the product EJ , which is called the bending stiffness.

From Eq. (LM _17) one can deduce

j yzdS=J, =0, (LM_23)
where the quantity J . denotes the deviatoric moment of area with respect to axes y,z .

The Eq. (LM _23) is a necessary condition defining the state of the plane bending. It states that
the plane bending occurs only if the z-axis is the symmetry axis of the beam’s cross-sectional
area.

From Egs. (LM _19) and (LM_22) one can deduce that the longitudinal stress in the beam cross
section depends on the distance from the neutral axis. For the positive bending moment, the upper
part of the cross-sectional area shortens while the lower one prolongs. So, the cross sections of a
beam in the state of the pure bending are in the state of uniaxial stress
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o(y,z)=0, = JMZ . (LM_24)

y
Often, we are interested in the maximum value of the longitudinal stress only. In this case

M

(O-x )max = Gmax = J_|Zmax °

y

(LM_25)

=z and we can

max 2

If the cross-sectional area is symmetric with respect to the y-axis, then |z

max

write
O max — Ma (LM_26)
W,
JV
W, =—", (LM_27)
zZ

where we have introduced a new variable W, , called the bending section module of the area. The

moduli for various types of the frequently used beam cross sections are listed in textbooks for the
engineer’s convenience. See

9.2.5. The conditions for the safe applicability of the slender beam theory

It should be reminded that the Bernoulli’s beam theory (or by other words the slender beam
theory) is based on the assumption of the state of pure bending. In engineering practice, such a
loading is practically impossible to achieve — almost always there is a shear loading component
present.

It is known that the shear forces produce so-called warping of the cross sections (i.e. their out of
plane distortions). Thus, the cross sections, being planar before the deformation, are warped after
the deformation and a more complicated beam theory has to be used. See . It was, however,
shown that when the slender beam assumptions are observed, the results obtained this way are
acceptable.

The main assumptions for the safe applicability of the Bernoulli’s theory are

e the cross-section dimension has to be small with respect to length of the beam,
e the errors are more significant in the vicinity of supports.
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9.2.6. The second moments of area — see Fig. LM 11.

The second moments of area with respect to axes y,z are

J, = j Z%ds, (LM _28)

N

J, = j y%ds. (LM_29)
S

Fig. LM 11 ... Moment of area 1

The deviatoric moment of area with respect to axes y,z is

J.=[yzds.

) N
The polar moment of area is

JpzjrzdSzj(y2+zz)dS=Jz+Jy.

N N

The dimensions of these area moments are [m*].

Example — the second moments of area for a beam with a rectangular cross section bx /. See

Fig. LM_12.
b2 h/2 1
Y — 29 _ * 13,3
Jy—:[z dS__IJ/?y_hj/fdz_lzbh, (LM _32)
hi2 b/2 1
J.=1y’dS= |d *dy=—0b’h, LM 33
: !y hf/zybf/zy =1 (LM_33)
2 1 2 2
J,=[r dS:JZ+Jy:Ebh(b +17), (LM 34)
S
b/2 hl2
J,. = [yzdS= [ydy+ [zdz=0. (LM_35)
S -b/2 -h/2

Fig. LM 12 ... Beam defo 1

LM

(LM._30)

(LM_31)
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Example — the second moments for a circular cross section with the diameter d .

y

J =J =6—7;d4 and J, =%d4. (LM_36)

Example — the polar moment of area for an annulus with outer and inner diameters
D =2r,, d =2r, respectively

4 4
T =Z( —rt)= ”312 [l—%) (LM_37)

9.2.7. Parallel axis-theorem - the second moments of area with respect to shifted axes — see
Fig. LM 11 again.

The second moments of area with respect to axes x', " shifted by distances a,b are

Jy=[(z+bYdS = [(z* +2bz+57)dS = [ 2dS +2b[ zdS + 5> [dS =/, +2b2,5 + 1S, (LM_38)
S S

N N N

where z, is the area’s centroid coordinate measured with respect to original axes and § is the
cross-sectional area.

Similarly
Jo=[(y+afds = [(? +2ay+a*)dS = [ y2dS +2a[ ydS +b>[dS = J. +2ay, 5 +b°S,
i ) i i S ... (LM_39)
where y. is the centroid coordinate measured with respect to original axes.
And finally, the deviatoric moment of area with respect to the shifted axes are
Iy =j(y+a)(z+b)ds :jyzdS+ajzdS+bjde+abj dS=J, +(az, +by;)S +abs.
i ) i S S ... (LM_40)

If the original axes pass through the centroid of the cross-sectional area, i.e. y, =z, =0, then the
previous formulas simplify to

J,=J,+b’S, J.=J +ad’S, J,=J, +abs. (LM_41)
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9.2.8.The second moments of area with respect to the rotated axes — see Fig. LM 13.

The relations between the original and the rotated coordinates
are

n=ycosa+zsina (LM 42)
¢ =—ysina +zcosa -

Fig. LM 13 ... Turned axes

For the second moment of area with respect to 7 axis, one can write

J, = I{zdS = I(y2 sin’ @ —2yzsina cosa + z”° cos’ a) ds =
S S

... (LM _43)
=J,_sin’ a+2J sinacosa+J, cos’ a.
Similarly for the £ axis
J. = InzdS = I(yz cos’ a—2yzsinacosa +x” sin’ a) ds =
s s .. (LM_44)

=J,cos’ a+2J  sinacosa+J,sin’ a.
The deviatoric moment of area is

o = In(dS =—J_sinacosa +Jyz(cosza —sin’ a)—i— J,sinacos 3.
S

The above relations could be derived more efficiently in a matrix manner. Defining

Sy e :|:J1'1 J{z}:J,_ J, J,. :{J“ J”}:J R:[cosa sina}
e e S I R /S S N [V A A ’ —sina  cosa

.. (LM_45)
we could simply write

J=R"JR. (LM_46)

In the beam theory there is often used another geometric quantity, i.e. the bending section module
of the area, defined as

W= (LM_47)
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For the annulus with outer and inner diameters D and d respectively, we get

T 4 T .4

J =J ="0D LM 48
Y7 64 64 (LM_48)
and then the bending section module of the area is
J J 4
wy="tr = T 1—d—4 : (LM _49)
z.. D/2 32 D -

9.2.9. The influence of the shear force on the deformation of the beam

So far, only the influence of the pure bending moment was treated. Now, we will add analysis of
the influence of the shear force. Let’s consider a beam of the rectangular cross sectiond x A

depicted in Fig. Fig. LM 14. As before, the bending moment is applied within the (xz) plane. The
applied shear force is directed in the z-axis coordinate. The corresponding state of stress of an
elementary prism is described by stress components shown in Fig. LM _15a.

1
TZI
Ty —— &JN
G, N 0;""—x"dx
ar,
dx_ |Voat 35 dx
=, 0%,
+
o gy | T
dz
Fig. LM 14 ... Beam shear 1 Fig. LM _15a ... Beam shear 2

If the width of the cross-sectional area is sufficiently small, i.e. b <</, we might assume that the
shear stress 7 _, due to the shear force, is uniformly distributed along the beam’s width, by other
words it does not depend on the y-coordinate.
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The equilibrium conditions written for x,z directions are

(O‘Y + do, )bdz — o bdz + (sz + %]bdx —7,bdx =0,
’ ox Oz

(o‘z 2. jbdx — o bdx + (fxz + %jbdz —7_bdy =0.
0z ox ’

Simplifying, we get

do. Ot

X + zX — 0,
Oox oz
oo, N ot o
oz Oox

Substituting the relations derived for the pure bending, i.e.

o :@z and o, =0

y

X

and using the relation between the shear force and the bending moment

T(x) = —d]‘j;x)

we get

%__idM(x):_T(x)z

oz J, dv) J

ot _o.
ox

b

y

Integrating Eq. (LM_56) we obtain

2
sz=—lz—+C,
J, 2

y

(LM_50)

(LM_51)

(LM_52)

(LM_53)

(LM_54)

(LM_55)

(LM_56)

(LM_57)

The unknown integration constant can be obtained form the condition of the free (unloaded)

surface, i.e.

0.

Toelomsnsn =

LM

(LM_58)
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T’

So, C=—, (LM_59)
8J, -
and finally
1= (1 - 4z?). (LM_60)
8J, -

1 . .
For the rectangular area, where J = Ebh2 , we get the shear stress as a quadratic function of the

z-coordinate in the form

2
T =%%(1 —4hi2j. (LM_61)

The maximum shear stress value is for z=0. So,

(€ == (LM_62)

Fig. LM _15b ... Beam shear 3 Fig. LM 15c ... Beam shear 4

The shear stresses have the parabolic appearance which is depicted in Fig. LM 15b. Due to the
existence of shear stresses the initially planar surface AB is warped into the A'B’ shape. See Fig.
LM 15c, where the influence of shear stresses is schematically indicated. This result, however,
contradicts one of assumptions, which was accepted for the theory of beams being subjected to
the state of pure bending.

So, the Bernoulli’s pure bending theory presented above is approximate. But, still, it is useful in
engineering computations. What are the limits of its validity is shown in the following example.
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Example — validity of the pure bending theory
Given: Consider a cantilever beam, of the rectangular cross section b x /4, of the lenght /, loaded
by a force F onits free end, i.e. T =F = const .

Determine: the relative errors due to neglecting the influence of shear forces.

In this case, the bending moment is a linear function of the beam’s length and its maximum value
is

M

= Fl. (LM 63)

max

According to Eq. (LM_62) we have

3T
=——. LM 64
(sz )max 2 bh ( __ )

J
Also, we have derived that o, =%, W,=—"— and that for the rectangular area bxh
0 z

max

J, ~ L pptand 2 =h12.
- 12

Putting it together we get

6F1 [
(O-X )max = W = 4Z(TZX )max : (LM_65)
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The ratio (z..). /(o). for the varying ratio /// is in Fig. LM_17.

I’h - length to height of cross sectionratio

Fig. LM _17 ... Shear to bending stress

For a particular beam considered in this example, the figure shows that the shear stress is less
than two percents of the longitudinal one, provided that the beam’s length is more than twelve
times longer than the height of its cross-sectional area.

This conclusion might help to intuitive understanding what is the slender beam and under what
conditions the influence of shear forces could be neglected.

The figure was created by the program mpp_010e_beam_stress_ratio

% mpp_010e_beam_stress_ratio
clear

Ikuh = 2:0.1:50;

sigkutau = 4*lkuh;

taukusig = 1./sigkutau;

xx = [0 50];
yy = [2 2];
figure(l)

plot(lkuh, 100*taukusig, xx,yy, “linewidth", 2); grid

xlabel("I/h - length to height of cross section ratio®, “fontsize®, 16)
ylabel ("100*(\tau / \sigma)®", "“fontsize", 16)

title("\tau as a percentage of \sigma®, "fontsize", 16)
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9.2.10. The differential equation of the deflection curve

We have stated that when analyzing the slender beams, the influence of the shear forces on
deformations and stresses of could often be neglected and then the Bernoulli formula

1M 0
r EJ,’

could be employed. The curvature radius
is r, the curvature 1/7, the bending
moment M , the elastic modulus is £
and J, is the second moment of the

cross-sectional area. Often, the product
EJ, is constant and 1is called the

bending stiffness.

Fig. LM 18 ... Bernoulli beam 01
Let the distance of a generic point B of the beam centre line from the left support be x, while the

vertical deflection w is taken positively in the downward direction. See Fig. LM _18. We intend
to find the function w=w(x), called the deflection curve of the beam, describing the vertical

deflection (often called displacements) as a function of the longitudinal distance x .

The normals of the deflection curve at locations x and x +dx intersect at the point O, which is
the local centre of curvature.

The length of the indicated arc is
ds=-rdo. (LM_66)

The minus sign indicates that with increasing length of the arc the tangent of the deflection curve
diminishes.

It is obvious that

tanp = Z’—W =w and ds’ =dx’ +dw’. (LM_67)
x

The derivative of the inverse relation, i.e. ¢ =arctanw’, with respect the elementary length, i.e.
ds =—-rdo, gives

dp _dpde_ w' dx_ 1

_ - d>__Z LM_68
ds  drds 1+(w)ds (LM_65)
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We could thus express the ratio

dx dx 1

[ _\/”[dWT :\/1+1(w')2 '

dx

(LM 69)

Substituting Eq. (LM_69) into Eq. (LM_68) we get the formula relating the curvature of the
deflection curve to the x-coordinate.

v (LM._70)
T e wy)?
Realizing that 1 = % , the differential equation of the deflection curve has the form
r
y
M ld (LM_71)

EJ, __[l_i_(w,)z];.

This equation is non-linear. In the linear theory elasticity the slope of the deflection curve, i.e.
tanp = [%}j, is small and could be approximated by the angle itself. Also the derivative value

/

w' is small, thus the quadratic function (w’)2 is even smaller and could be neglected with respect
to 1.

So, the simplified linear differential equation for the deflection curve is

W) = d c]v)vc(z)c) __ J\é Ex) _ (LM_72)

The minus sign on the right-hand side indicates that a positive bending moment introduces such a
deflection that w" < 0.

LM 23



9.2.11. Beam examples
Example — Cantilever beam loaded by a force

Given: Cantilever beam clamped at its left part,
dimensions, force F . Fig. LM 19.

Determine: Distribution of shear forces and bending
moments along the beam.

PartIfor 0<x<a

M,(x)=—F(x—a) ... bending moment, (LM _73),
M(x) F(a-x)
EJ]  EJ
... differential equation , (LM_74),
Fa F

wW(x)=—x———x>+C,, ...slope, (LM 75),
(%) o 2EJ) 1 pe, (LM_75)

ﬂx2 —ix3 +Cx+C,
2EJ 6EJ

W) = -

w(x) =

... deflection, (LM_76).

Boundary conditions

w(0)=0 = C =0, (LM._77)
w(0)=0 = C,=0. (LM._78)

So, the slope and the deflection for 0 < x < a are

wi(x) = Eij[ax — gj , (LM_179)
F (ax* x°
w (X) = E[T - ?] . (LM_80)

Fig. LM 19 ... Cantilever beam loaded by a force

Part II for a <x </

M,(x)=0 ... bending moment,
wy(x)=0 ... differential equation,
wy(x)=C, ... slope,
wy(x)=Cx+C, ... deflection.

LM

Q‘D_h .
L
H,O __:.. !;_..._,_
=
g—-u_ g
M(x) fu\N“(!) L %
MO 1\ “‘“]‘
w (%)
nxE e
o=
\N(X) AN X

(LM_81)
(LM_82)
(LM_83)
(LM_84)
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Boundary conditions

Fa’
w(a)=w,(a) = C,= ,
1(a) = wy(a) T,
Fa’
wi(a)=wy(a) = C3a+C4:3EJ, ... (LM_85)
__Fa3
YO6ES
So, the slope and the deflection for a < x </ are
Fa’
wh(x) = , LM 86
0= (LM._86)
Fa’ Fa’
wy(x) = X — . LM 87
0= T ems (LM_87)

See the program mpp_014e_cantilever_beam single_force and its graphical output in Fig.
LM 20.

% mpp_Ol4e_cantilever_beam_single_force
% which is loaded by a point force at
% the distance a from the clamped end

clear; format long e
1 =1; % beam length
a = 0.6; % position of F force, measured form the clamped end
bl = 0.05; hl = 0.05; % dimensions of rectangular cross section
Jy = bl*h173/12; % cross-sectional moment
F = 1000; % loading [N]
E = 2.1el1; % Young modulus
incr = 0.01; % "x" variable increment
xrange = [O:incr:1]; % range of "x" variable
constl = F/(E*Jdy);
const2 = F/(2*E*Jy);
const3 = F/(6*E*Jy);
ix = 0;
for x = Xrange
iX = ix + 1;
if x<=a
s(ix) = constl*(a*x - x"2/2);
w(ix) = constl*(a*x"2/2 - x"3/6);
else
s(ix) = const2*an2;
w(ix) = const2*an2*x - const3*a"3;
end
end
xx = [a al;
yy = [0.05e-3 -4e-3];
figure(l)

plot(xrange,-w, "k-", xrange,-s, "k:", xx,yy, "“linewidth", 2)
title("cantilever beam, force applied at x=a®, “fontsize®", 16)
xlabel ("x-coordinate®, “fontsize®", 16); grid

ylabel ("slope and displacement®, "fontsize®, 16)
legend(“displacement®, “slope®, 3)
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«10° cantilever beam, point force at x=a

slope and displacement

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x-coordinate

Fig. LM 20 ... Slope and displacement for a cantilever beam loaded by a force

Example — a simply supported beam with a uniformly distributed load of constant intensity

Given: Dimensions, distributed load ¢ [N/m]. _%{ q ql
: 2

SeoFig LML2L. (T

Determine: The deflection curve w = w(x) and & N

its slope @ = w'(x). . B

2
i !

Fig. LM_21 ... Simply supported beam cont load

There are no forces in the x-direction. Due to the symmetry, the vertical reactions are
[ . . . .
R, =R, =%. At a generic point located in the distance x from the left-hand support, the

bending moment is

M (x) :%Zx—qx%:%qx(l—x). (LM_88)

Substituting it into w'(x) =— we get the second derivative of the deflection curve

M(x)
Jy
as a function of the x-coordinate in the form

LM 26



W(x) = — 2;’J (k- x2). (LM_89)

The slope of the deflection curve and the vertical deflection of the beam are obtained by
consecutive integrations of Eq. (LM_89) with respect to the x-coordinate.

2 3 2 3
wx)=——d |2 X |- 4 S —2x ) 4 (3lx2 —2x* 4+, ) (LM_90)
265,02 3) 285, 6 12EJ,
w(x)=— q (ZZx3 x4 2Cx + Cz) (LM 91)
24EJ ' -

Two unknown integration constants are obtained by satisfying the pertinent boundary conditions.
For the simply supported beam, it is obvious that the vertical displacements (deflections) at the
locations, where the beam is supported, have to be identically equal to zero.

So,
a) w(0)=0, (LM _92)
b) w(l)=0. (LM _93)

Substituting the condition add a) into Eq. (LM_91) and realizing that x =0, we get

q
0=- 0-0+0+C =C,=0. LM 94
24EJy( 2) 2 (LM_%4)

Substituting the condition given by Eq. (LM_92) into Eq. (LM _93) and realizing that x =/, we
get

3
0=—>=L 1" -1*+2¢)) - (LM_95)
24E] 2

y

Substituting the obtained integration constants into Egs. (LM_(90) and (LM_91) we get the slope
and the deflection of a simply supported beam subjected to a distributed load ¢ .

' q 3 2 3
o(x) =w(x) 24EJy( x X ) (LM_96)
qx 3 2 3
= I =2Ix"+x7). LM 97
w(x) 2 Jy( X" +x ) (LM_97)
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See the program mpp_011le_beam_deflection_slope and its output in Fig. LM 22.

% mpp_Olle beam_deflection_slope
clear

xrange = 0:0.05:1;

1 =1;

b =0.05; h =0.05;

Jy = b*h"3/12;

q = 1000; E = 2.1el1;

konst = gq/(24*E*Jy);

i =0;
for x = xrange
=1+ 1;

fi(i) = konst*(I"3 - B*I*x*x + 4*x"3);
w(i) = konst*x*(113-2*1*x"2 + x"3);
end

figure(l)
plot(xrange,fi, "k:
grid
legend(“slope”, “deflection®, 1)

, xrange,w,"k-", “linewidth", 2 )

X 10'4 simply supported beam, distributed loading

Fig. LM 22 ... Slope and deflection of a simply supported beam subjected to a distribute load
Notice that in Fig. LM 21 the positive deflection of the beam plotted is in the upward

direction. This is an ordinary tradition in mathematics, but in engineering texts oriented to beam
treatments, the positive deflection is often oriented downwards.
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Example — simply supported beam loaded by a single force

Given: Dimensions, force F . See Fig. LM 23.

o . b . E
Deterilmne. The deflection curve w = w(x) and its slope Fb . b 1k
p=w(x). ! =17
=
N
! ]

Fig. Fig. LM_23 ... Simply supported beam force load
At first, the reactions have to be found. From the equilibrium conditions we obtain
R, :FTb, Ry :%. (LM_98)

The bending moment is defined differently for the left-hand part of the beam, i.e. for 0<x<a,
and for the right-hand part, i.e. for a <x</.
For the left part, 0 < x < a, the bending moment is

M, (x) = FTbx : (LM_99)

while for the right part, a < x </, the bending moment is

M, (x) :FTbx—F(x—a). (LM_100)

o . M :
By subsequent substitution of M, (x),M,(x) into w'(x) = —# for both intervals we get two
y
relations.

For0<x<a

w"(x) _ M) _  Fb
‘ EJ IEJ,

y

x. (LM_101)

For a<x <!

(= M) Fb
’ EJ IEJ,

y

X+ F (x—a). (LM_102)
EJ,

Integrating Eq. (LM _101) twice we get

LM 29



Fb

‘(x)=———x"+C ... slopel, LM 103
w;(x) 2ET, | p (LM_103)
w(x)=— b X +Cx+C ... deflection]. (LM _104)

1 6ZEJy 1 2 —

Integrating Eq. (LM _102) twice we get

Fb 2 F 2
w(x)=- xX*+ x—a) +C ... slope2, LM 105
5 (X) ZZEJy 2EJy( ) 3 p (LM_105)
Fb 3 3 .
w,(x)=— (x—a) +Cx+C, ... deflection2. (LM _106)

X+
6IEJ,”  6EJ,

Four unknown integration constants are determined from the boundary conditions.

The first two boundary conditions require that vertical deflections at locations where the beam is

supported have to be zero. So,

w(0)=0, (LM_107)
wy (1) =0. (LM_108)

The third boundary condition expresses the condition of the deflection continuity under the

loading force, thus

wi(a) =w,(a). (LM _109)

The deflection has to be not only continuous but should be smooth as well. So, the first
derivatives of deflection at x =a from the left and from the right parts have to be equal. Thus,

the fourth boundary condition is
wi(a) =w,(a). (LM_110)
Four boundary conditions mentioned above, suffice to determine four integration constants.

Eq. (LM_107) substituted into Eq. (LM_104) gives C, =0.

From Eq. (LM_109) follows that C, = C;.

From Eq. (LM_110), follows that C, = C,. And thus, C, =0.

Eq. (LM_108) substituted into Eq. (LM _106) (deflection2) gives
Fbl*> F

+——(—af +Cy =0. LM_111
6EJ, 6EJy( af +G (LM_TTD

w,(l)=-

LM
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Realizing that / —a = b we finally get

¢, =0 (7). (LM_112a)
6IEJ

The slope and deflection for 0 < x <a are

' Fb 2 2 2
= =——-\"-b"-3x7), LM 112b
?(x) = w{(x) 6ZEJy( %) (LM_112b)
w(x)= [m—b"—x"). LM 113
0=t ) (LM_113)
The slope and the deflection for a < x </ are
! Fb 2 2 2 2
xX)=w,(x)=———\"=b" =3x" )+ x—a), LM 114
0.0 = 1) = | TR (LM_114)
W)= (2 )L (v —a). (LM_115)

6IEJ

For a given value of b we could determine the maximum deflection due to the applied force F .
The sought-after maximum of deflection is obtained from the condition wj(x,, ) =0, thus

max

b (2302 )=o0, (LM._116)
6lEJ,

which gives the location of the maximum deflection for the given position of the force indicated
by the distance b .

x = %(12 ~p). (LM_117)

max

For the symmetric loading, i.e. for b=1//2, we get

2
X, = 1(12 —l—j =é. (LM _118)

Substituting x_ = %(l2 —bz) into the Eq. (LM_113), we get the maximum value of the

deflection as a function of 4 in the form
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_mole v}

w_=w(x = = LM 119
max l( max) 9\/§EJyl ( — )

For the force F approaching the right support, i.e. for b — 0, the location of the maximum
deflection will approach the value

M= limx, = \E [~0,5771, (LM_120)

M p 50

which is not very distant from the centre of the beam. It is a little bit surprising. Finally, let’s
determine the deflection for the force acting just in the middle of the beam. Substituting
x=1/2into Eq. (LM_113) we get

/
AR N LA N -
w| = |=—2| - - |= 312 —4b). (LM_121)
2) 6IEJ, 4 ) 48EJ,
<10 force is at 0.5*length <10 forceis at 0.6*length <1 forceis at 0.7*length
2
o
(2]
©
C
©
=
IS
S -
[&]
o .
[e%
@
©
[0
Q
K]
0 |
© .
% | Sy |
E | | | | b 0
| | - | | |
2 e R e B et )
LS i 4H displacement [m] [
8— | | | | | | | | O location of max. displ. |
-.6-6————:————:———4‘———4‘———7 6————:————:————:———4‘———— 6H < location of force 774‘7777
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
length length length

Fig. LM 24 ... Simply supported beam — deflection and slope for a varying location of the force

In this case, however, b= é , so we finally get the often used formula for the deflection of the

beam being loaded in the middle in the form
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3
wl(ij = rl . (LM _122)
2) 48EJ,
In Fig. LM 24 there are depicted deflections and slopes along the length of the beam for a
varying location of the applied force. The series of subplots show the subsequent ‘motion’ of the
force from the middle part of the beam to its right support. The location of the force is indicated
by a diamond, while the location of the corresponding maximum deflection is indicated by a

circle. An interesting observation: The maximum deflection does not occur under the applied
force.

Fig. LM 25 shows the locations of the maximum beam deflections as a function of the force
location. Only the second part of the beam is treated.

simply supported beam loaded by a point force
0.6

T T T T T T T T
| | | | | | | |
| | | | | | | |
059 — — — — —
| i I i | | I I
— | | | | | | | |
S | | | | | | | |
:‘0'58 7777777 e T —_——_—_—————— i ] e ———_—_T———— o
c i | i | | | |
g I | | I I | | T
®0'57 7777777 [ [ T T T -
Q | | | | | | |
© | | | | | | | |
G086~ — = — — — - [ I S T~ | [ TTT T~ T~ -
5 | | | | | | | |
= | | | | | | | |
[ N e ——_—_——_—._— —
2 l k | ‘ l l | v
= | | | | | | | |
@© 054 — — — — — — —————- A — - - === === |—————= - o —
IS | | | | | I I I
= | | | | | | | |
g 053 ———— — — - —— - +-——— == - === === |—————= - o —
S | ] | | | | | |
b= | | | | | | | |
Q 052 — — — — — — - - e B e ——— — — — |- —— == A [ —
o | | | | | | | |
| | | | | | |
(| —— s - —— == . 4o R - - — — - — lm o — b b
| | | | | | —©— location of max. displacement
! ! ! ! ! [ limit value of max. displacement
0.5¢ 1 1 1 1 1 1 T T
05 055 06 0.65 07 075 08 0.85 0.9 0.95

Fig. LM 25 ... Location of the maximum deflection as a function of the force location

The Table LM 2 shows how the location of the maximum deflection and the value of the
maximum deflection depend on the force location. Notice, how the location of the maximum
deflection approaches to the theoretical limit value given by Eq. (LM_120).

Force location location of max. deflection value of max. deflection
5.0e-001 4.999999999999999e-001 1.904761904761905e-004
6.0e-001 5.291502622129181e-001 1.806166228353427e-004
7 .0e-001 5.507570547286101e-001 1.527432898447346e-004
8.0e-001 5.656854249492380e-001 1.103355952662894e-004
9.0e-001 5.744562646538028e-001 5.777388718803958e-005
9.5e-001 5.766281297335397e-001 2.921582523983270e-005

Table LM _2 ... Locations of force, locations of max. deflection and the value of max. deflection

LM
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See the program mpp_012e_beam_deflection_slope_single_force_ccc.

% mpp_012e_beam_deflection_slope_single_force_ccc
% deflection and slope for a simply supported beam of the lenhgt 1
% loaded by a point force a a distance a from the left support

clear; format long e

1 =1; % beam length

bl = 0.05; hl = 0.05; % dimensions of rectangular cross section

Jy = bl*h173/12; % cross-sectional moment

F = 1000; % force is applied at a distance "a® from the left support
E = 2.1lel1; % Young modulus

incr = 0.01; % *x* variable increment

xrange = [O:incr:1]; % range of "x" variable

arange = I*[0.5 0.6 0.7 0.8 0.9 0.95]; % range of "a" variable
% dimensions of arrays

ss = zeros(length(xrange), length(arange));

ww = SsS;

xmax = zeros(length(arange),1);

const3 = F/(2*E*Jy);
const4 = F/(6*E*Jy);
ia = 0; % distance counter
for a = arange % "a® loop
ia = ia + 1;
b=1-a;
constl = F*b/(6*1*E*Jy);
ix = 0;
for X = Xrange % *x"loop
const2 = constl*x;
iX = ix + 1;
if x <= a % the First part of the beam
ss(ix,ia) = constl*(I"2-b"2-3*x"2); % slope
ww(ix, ia) = const2*(1"2-b"2-x"2); % displacement
else % the second part of the beam
ss(ix,ia) = constl*(I"2-b"N2-3*x"2) + const3*(x -a)”"2;
ww(ix, ia) = const2*(I1"2-b"2-x"2) + constd*(x - a)”3;
end
xmax(ia) = sqrt(1/3)*sqrt(I”"2 - b”2); % location of max. dospl.
wmax(ia) = F*b*((1"2)-b"2)"N(3/2)/(9*sqrt(3)*E*Iy*1);
aa(ia) = a; % location of force
end
end
disp(” force applied at max. displacment is at maximum displacement*®)

disp([aa® xmax wmax®])

ax = [0 I -7e-4 7e-4]; % axis argument
figure(l)
ia = 0;
for a = arange
ia = ia + 1;
XX = xrange; yyl = ss(:,ia); yy2 = ww(:,ia);
subplot(2,3,ia)
txt =["force is at " num2str(aa(ia)) “*length"];
plot(xx,yyl, "k:", xx,yy2,"k-", xmax(ia),0,"0", a,0,"d",
"linewidth",2, "MarkerSize",10 )
grid; axis(ax); title(txt, “fontsize®, 16);
if 1a >= 4, xlabel("length®, “fontsize®, 16); end
if (ia == 1) | (ia == 4), ylabel("displacemnt and slope®, "fontsize", 16); end
if ia == 6,
legend("slope [rad]®, “displacement [m]", "“location of max. displ.", “location of force~,

3

end

end

figure(2)

isgrt3 = 1/sqrt(3);

xx = [0.5 0.95]; yy = [isqrt3 isqrt3];

plot(aa, xmax,"k-0", xx,yy,"k:", “linewidth",2); axis([0.5 0.95 0.5 0.6]);
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grid;

legend("location of max. displacement®, “limit value of max. displacement®, 4)
xlabel (" location of applied force [m]", “fontsize",16);
ylabel (" location of maximum displacement [m]*", “fontsize®,16)

title("simply supported beam loaded by a point force®, "fontsize®,16 )

Example — cantilever beam subjected to a uniformly 7
distributed load of constant intensity

Given: dimensions, load ¢ [N/m]. See Fig. LM_26. ‘

Determine: The deflection and the slope as functions of
the longitudinal coordinate. L

Fig. LM 26 ... continuously loaded cantilever beam

The bending moment as a function of the x-coordinate is
X [ X
M(x):MA—RAx+qu=g15—glx+qx5. (LM_123)

The differential equation of the deflection curve was derived in the form

M(x)
EJ

y

w'(x)=- (LM _124)

Substituting Eq. (LM _123) into Eq. (LM_124) and after by two consecutive integrations, we get

1 / X
wW'(x)=—| gl——glx+qgx = |, LM 125
()Ejy(gzg qzj (LM_125)
1 I? x* x
wx)=—-I|qg—x—qgl—+q—+C, |, LM 126
(%) EJy[qz 9l +a IJ (LM_126)
1 2x2 X x!
wx)=—/|qgl"——-qgl—+g—+Cx+0C, |. LM 127
(x) Jy[q g oty tG > (LM_127)

The beam is clamped on the left. This means that no deflection and no rotation are permitted at
this location. This constraint, expressed mathematically, means that

w(0)=0 and w'(0)=0. (LM _128)
Substituting the boundary conditions into Eqs. (LM_126) and (LM_127) we get
C,=0and C, =0. (LM_129)

The slope of the deflection curve and the deflection as functions of the x-coordinate are
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P(x) = W(x) = é(yzx S3 4y (LM_130)

y

q 2.2 3 4
w(x)=—>"——\6/"x"—4Ix" +x" ). LM 131
) 24EJ( ) (LM_131)

y

See Fig. Fig. LM 27 and the program mpp_013e_cantilever_beam distributed_loading_cl
This time, the positive deflection was plotted downwards.

The maximum slope and the maximum deflection for a continuously loaded cantilever beam
occur at its free end, i.e. for x = L.

3 4
Woae = W(L) = aL , e = W(L) = gL (LM_132), (LM_133)
6EJ, 8EJ, - _
X107 cantilever beam, continuous load

0 T T T

slope and displacement

e
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displacement
..... slope

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. LM 27 ... Slope and deflection for a continuously loaded cantilever beam

Program mpp_013e_cantilever_beam ditributed_loading_cl
% mpp_013e_cantilever_beam_ditributed_loading_cl

% deflection and slope of a cantilever beam

% which is continuously loaded

clear; format long e

1 =1; % beam length

bl = 0.05; hl = 0.05; % dimensions of rectangular cross section
Jy = bl*h173/12; % cross-sectional moment

g = 1000; % loading [N/m]

E = 2.1el1; % Young modullus

incr = 0.01; % "x" variable increment

LM 36



xrange = [O:incr:1];

constl = g/ (6*E*Jy);
const2 = q/(24*E*Jy);

ix = 0;
for x = xrange

IXx = Ix + 1;

% range of "x" variable

s(ix) = -constl*(3*IM2*x - 3*I*x"2 + x"3);
w(ix) = -const2*(6*IMN2*x"2 - 4*1*x"3 + xMN4);

end

Ffigure(l)

plot(xrange,w, “"k-", xrange,s, "k:", "linewidth", 3)

% axis([O0 1 -1.6e-3 0.05e-3])

title(“cantilever beam, continuous load",
xlabel ("length®, "fontsize”

. 16)

ylabel ("slope and displacement®, “fontsize®, 16)
legend(“displacement®, “slope®, 3)

Smax
wmax

q* 13/ (6*E*Jy)
q*1°4/ (8*E*Jy)

Maximum slope in [rad] and maximum deflection in [m] are
smax = 1.523809523809524e-003, wmax = 1.142857142857143e-003.

% max. slope at the end

% max. displacement at the end

“fontsize", 16)

Example — cantilever beam loaded at the free end by a single force

Given: Cantilever beam, dimensions, force F Fig. LM 28.
Determine: Distribution of slope and displacement along the

beam.

Fig. LM 28 ... Cantilever beam force

Bending moment

M(x)=—-Fx.

Differential equation and its integration

o M F
EJ, EJ,
w(x)= F x’+C,,
2EJ,
w(x) = = ¥ +Cx+C,.

y

LM

g

H(x)=-Fx

o

(LM_134)

(LM_135)

(LM_135)

(LM_136)
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Boundary conditions for the free end of the beam

, FI’
w(0)=0 = C=——, (LM _137)
2EJ,
3
wx)=0 = (C,= ri . (LM _138)
3EJ, -
Finally, the slope and displacement, plotted in Fig. LM 29, are
/ F 2 2
=——>Ix -1, LM 139
W () 2EJy(x ) (LM_139)
W) = (& —3Px 4 28). (LM_140)
6EJ -

y

The maximum slope and the maximum displacement occur at the free end, i.e. for x =0. So,

2 3
Wiax = L and Wiy = H (LM_141), (LM_142)
2EJ] 3EJ, - -

y

« igcantilever beam, point force at free end
0 T T T T T T T T

slope and displacement

0 0.1 0.2 0.3 0‘.4 015 016
x-coordinate

Fig. LM 29 ... Cantilever beam point force at the free end.

The slope and displacement distributions are evaluated and plotted by the program
mpp_014e cantilever_beam single force

% mpp_0Ol4e_cantilever_beam_single_force
% deflection and slope of a cantilever beam
% which is loaded by a point force at the free end

clear; format long e

1 =1; % beam length

bl = 0.05; hl = 0.05; % dimensions of rectangular cross section
Jy = bl*h173/12; % cross-sectional moment

F = 1000; % loading [N]

E = 2.1el1; % Young modullus
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incr = 0.1; % *"x" variable increment
xrange = [O:incr:1]; % range of "x" variable
constl = F/(2*E*Jy);

const2 = F/(6*E*Jy);

ix = 0;

for x = xrange

iX = ix + 1;

s(ix) = constl*(x"2 - 1"2);

w(ix) = -const2*(x"3 - 3*I"2*x + 2*I"3);
end

figure(l)

plot(xrange,w, "k-", xrange,s, “k:", "linewidth", 2)
title("cantilever beam, point force at free end®, "fontsize", 16)
xlabel ("x-coordinate®, "fontsize®, 16)

ylabel ("slope and displacement®, “fontsize®, 16)
legend(“displacement®, “slope®, 4)

Example — statically indeterminate beam subjected to uniformly distributed load

Given: Dimensions, distributed load ¢ [N /m].

See Fig. LM_30. R
Determine: Distributions of slope and displacements
along the beam

V¢

Aé\ki—’/'&'

X

{

Fig. LM 30 ... Beam indeterminate distributed load

Since the problem is statically indeterminate, the equilibrium equations do not suffice for the
determination of reactions. In this case, the role of the additional deformation condition will be
played by the equation of the deflection curve.

At the support A, there is a vertical reaction R. So far, it is unknown. Then, the bending moment
at the distance x is

M (x) = Rx qx%. (LM_143)
Substituting into w"(x) = _M(x) we get
EJ,
" 1 1 2
wi(x)=———| Rx——¢gx~ |.
(%) Z Jy( X J

Subsequent integrations give

w(x) = —L[%sz —éqx3 + Clj, (LM_144)

y
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w(x) = —L&Rf —2—14qx4 +Cx + CJ. (LM_145)
)

From the first boundary condition, i.e. w(0)=0, follows that C, =0.

The remaining two boundary conditions, i.e. w'(/)=0 a w(/) =0, provide two equations

Lrp —lqﬁ +C =0, (LM_146)
2 6
éRz2 —éqz2 +C =0. (LM_147)

Solving them we get

3 ql’
R=2ql, C =-1_ LM 148
gdh Gi== g (LM_148)

Substituting the expression for R into Eq. (LM_143) we get the bending moment in the form
M(x)= éqx@l —4x), (LM_149)

which could be substituted into Eq. (LM _145) for the vertical displacement. So,

qx 3 2 3
= I”=3Ix"+2x7). LM 150
w(x) 48EJ},( X X ) (LM_150)

«10° stat. indef. beam, distributed load

displacement
o .
[

Il Il Il Il Il Il Il Il
0 0.1 0.2 03 04 05 06 07 08 0.9 1

length

Fig. LM 31 ... indeterminate beam distributed loading
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The displacement function of the statically indeterminate beam subjected to uniformly distributed
load is evaluated by the program mpp_015e_indeter_beam_distributed_loading and plotted
in Fig. LM 31.

% mpp_015e_indeter_beam_distributed_loading
% deflection and slope of a statically indefinite beam
% contnuous soad

clear; format long e

1 =1; % beam length

bl = 0.05; hl = 0.05; % dimensions of rectangular cross section
Jy = bl*h1n3/12; % cross-sectional moment

q = 1000; % loading [N]

E = 2.1el1; % Young modulus

incr = 0.01; % "x* variable increment

xrange = [O:incr:1]; % range of "x" variable

const = q/(48*E*Jy);

ix = 0;
for x = Xrange
iX = ix + 1;

w(ix) = —const*x*(IN3 - 3*I*x"2 + 2*x"3);
end
figure(l)
plot(xrange,w, “"k-", xrange,s, "k.." "linewidth", 2)

title("stat. indef. beam, continuous load®, “fontsize®", 16)
xlabel ("length®, "fontsize®, 16)
ylabel ("displacement®, “fontsize®, 16)

Example — deformation of beams with variable cross sections
There is nothing new when solving this type of task — the

analysis, however, is lengthier and has to be carried out by F
parts.

Zd
2D
2d

Given: Dimensions, force F', see Fig. LM 32.
Determine: Distribution of the slope and the displacement as a
function of the beam length. 1'

Fig. Fig. LM_32 ... Beam variable cross section.

Evaluate the reactions at first. Due to the symmetry of loading both reactions are the same and
equal to F'/2. Due to the geometrical symmetry it suffices to solve only the first part of the
beam, ie. 0<x<//2.

In the first part of the beam the bending moment is
F
M(x)=3x. (LM _151)

There are two different cross sections and thus
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J=J =2d*  for0<x<a,
' 64

J,=J =2D*  fora<x<l/2.
' 64

In the first interval, i.e. for 0 < x < a, we have

AT
1
Wll(x)=_4EJ x2+C19
1
wl(x):—leJ ¥ +Cx+C,.
1

In the second interval, i.e. for a < x <[/2, we have

U F
WZ(X):_Q,EJ X,
2
w;(x):—4EJ ¥ +C;,
2
wz(x):—leJ ¥ +Cx+C,
2

Boundary conditions

w, (0)=0
wy(1/2)=0
wi(a) =wy(a)
wi(a) =w;(a)

zero displacement in the left support,

zero slope in the middle of the beam (symmetry),
distribution of displacements has to be continuous,
distribution of slopes has to be continuous.

From the boundary conditions we get

_Fa’ J,-J, . FI
' 4E JJ, 16EJ,’
C,=0,
_FP
> 16EJ,]
C, - Fa’ J,=J,
6E J.J,

LM

(LM_152)

(LM_153)

(LM_154)

(LM_155)

(LM_156)

(LM_157)

(LM_158)

(LM_159)

(LM_160)
(LM_161)
(LM_162)
(LM_163)

(LM_164)
(LM._165)

(LM._166)

(LM_167)
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The maximum displacement is in the middle of the beam

Fa’ J,—-J, FP
+

. (LM_168)
6E JJ, 48EJ, -

[
Wmax = W2 (5) =

The distributions of the slope and vertical displacement is evaluated by the program
mpp_016e_different_cross_sections_single_force for the following input data

% beam length

1 =1;

% diam. of cross sections
d =0.05; D=0.1;
J1 = pi*d™4/64;

J2 = pi*DNM4/64;

% loading [N]

F = 1000;

% Young modulus

E = 2.1el1;

% coordinate
a=20.3;

The graphical output is in Fig. LM _33.

The displacement in the location of a
sudden change of the cross section is 0
continuous. The derivative of the sl RPRCTLL
deflection curve (i.e. the slope) is
continuous as well but is not smooth.
From it follows that the second
derivative of the displacement curve (i.e.
bending the moment) makes a sudden
jump in the distribution. But the bending
moment is proportional to the stress.
And the jump in the stress distribution is
theoretically impossible to achieve. 351 —— displacement ||
Thus, the theory is approximate. R Sk o
Heisenberg, hOWeVer, Said that there are 0 0.05 0.1 015 02 025 03 035 04 045 05
no jumps in the Nature, since the Nature
is full of jumps.

2.5 o B

displacement and slope

Fig. LM_33... Beam with changing cross section

The program evaluating the task is mpp_016e_different_cross_sections_single_force

% mpp_Ol6e_different_cross_sections_single_force
% simply supported beam

% different cross sections

% symmetry

clear; format long e

% beam length

1 =1;

% diameters of cross sections
d =0.05; D=0.1;
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Ji pi*d~4/64;
J2 = pi*D"N4/64;
% loading [N]

F = 1000;

% Young modulus
E = 2.1ell;

% coordinate

a = 0.3;

b= - 2*a)/2;

incr = 0.01; % "x" variable increment
xrange = [O:incr:1/2]; % range of "x" variable
Cl1 = F*an2*(J2 - J1)/(4*E*J1*J2) + F*1"2/(16*E*J2);
C2 = 0;
C3 = F*1"2/(16*E*J2);
C4 = F*an3*(J2 - J1)/(6*E*J1*J2);
constl = F/(12*E*J1);
const2 = F/(12*E*J2);
const3 = F/(4*E*J1);
const4 = F/(4*E*J2);
ix = 0;
for X = Xrange
iX = iIx + 1;
if x <= a,
s(ix) = -const3*x"2 + C1;
w(ix) = -constl*x"3 + Cl*x + C2;
else
s(ix) = -const4*x"2 + C3;
w(ix) = -const2*x"3 + C3*x + C4;
end
end

wmax = F*an3*(J2 - J1)/(6*E*J1*J2) + F*113/(48*E*J2)

figure(l)

plot(xrange,-w, "k-", xrange,-s, "k:", "linewidth®, 2)
title("beam with changing cross sections®, "fontsize®", 16)
xlabel (" length®, "fontsize®, 16)

ylabel ("displacement and slope®, “fontsize®, 16)
legend(“displacement®, “slope”, 4)

Example — the complete differential equation of the deflection curve

From the relations derived and presented so far

W) = - M (),

EJ,

d7'(x) :
q(x) = T —T"(x), .. (LM_169)
T(x)= —% =-M'(x),

M"(x) =—q(x),

the complete differential equation of the deflection curve could be derived in the form

LM 44



d*w(x) W 1 1

=w (x)=———M"(x) =——q(x). LM 170

o (x) £, (x) Equ() (LM_170)
Example — complete differential equation for a
beam with distributed loading %{ 1 q %

. . o IR
Given: simply supported beam, dimensions, Wi >
uniformly distributed loading ¢ . Fig. LM 34. A N8
Determine: Distributions of the slope and of the X ] /
deflection along the beam length, and the

distributions of the bending moment and of the
shear force.

Fig. LM 34 ... Simply supported beam cont load

The task was already solved by another method before. Alternatively, using the above relations
(LM _169) and assuming that g(x) = ¢ = const, we could write

w" (x) =%. (LM_171)

y
Integrating we get

n q
w'(x)=——x+C,, LM 172
(x) EJ. 1 (LM_172)
, q x
w'(x) :H?'i‘CIX'FCZ, (LM_173)
y
qg x x’
W’()C) = Ez + Cl 7 + CZ)C + C3 , (LM_174)
y
g x* x x’
W(X):Eﬂ-i' 1€+C27+C3X+C4. (LM_175)
y

The unknown constants are found from the boundary conditions.

1)
No deflection at the left support ... w(0)=0.

2)

No moment at the left support ... M(0)=0, and since w"(x) =M (x)/(£J,), then w'(0)=0.
3)

No deflection at the right support ... w(/)=0.

4)

No moment at the right support ... M (/) =0, and since w'(x) =M (x)/(EJ,), then w'(/)=0.

From the first condition .. C,=0.

LM



From the second condition ... C, =0.

The fourth condition gives ... C, = L .
2EJ,
. .. . 1 gl
The third condition gives ... C; =— .
24 EJ,

Substituting the constants into the equations for the slope and the deflection we get

ax (13 2, .3
= P =2 +x7), LM 176
w(x) 24EJy( X" +x ) (LM_176)
, q 3 2 2
= I —6lx" +4x7). LM 177
w(x) 24EJy( x X ) (LM_L177)

The second derivative of the deflection curve is proportional to the bending moment

" _ _L
w'(x) = £, M(x). (LM_178)
So,
M(x)=-w'(x)EJ, = q(éx - x—;j - %(lx —x). (LM_179)

And similarly for the shear force that corresponds to the third derivative
T(x)=-w"(x)EJ, = q(é - x] . (LM _180)

Example — statically indeterminate beam with uniformly distributed loading

Given: Statically indeterminate beam, length /=1m, R, ” Ry

. o . B M M
uniformly distributed loading ¢ =40kN/m, surface area 4y 2 T, \3
S=12cm’*=12x10"m* =0.00012 m°, N\ | . J N
W, =39.7 cm’ =397x107° m’, K

Young’s modulus £ =2.1x10" Pa. See Fig. LM 35.

Fig. LM 35 ... Stat indeterminate beam distributed loading

Determine: Distributions of the slope and of the deflection along the beam length and the
distributions of the bending moment and of the shear force.
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Due to static indeterminacy, the normal (axial) force N arises. Due to symmetry, the vertical
components of reactions are identical, i.e.

R, =Ry =—". (LM_181)
Even if the reaction moment M , is unknown so far, the distribution of the bending moment is
M(x)= | q! | q 2

x)—MA+RAx—qu —MA+?x—qu —MA+Elx—x . (LM_182)

Now, the standard procedure is applied, i.e.

" 1 1 q 2
R Y S N VAR A (S 1 LM 183
W) =M ) Ejy[ 2l x)j (LM_183)
W(x) =—L(MAx+q—lx2 —ix3j+q, (LM _184)
EJ, 47 6
w(x)——L lM xz+q—lx4 +Cx+C (LM_185)
EJ\2 % 12 e -

v
Boundary conditions.

At the left support (clamping) the slope of the deflection curve has to be equal to zero
w(0)=0=C, =0.

At the left support (clamping) the displacement of the deflection curve has to be equal to zero
w(0)=0=C,=0.

At the right support (clamping) the slope of the deflection curve has to be equal to zero
: ql’
wilh=0=> M, =—"—.

Thus, the equation of the deflection curve is

w(x) = 2(1-x). (LM_186)

9 X
24EJ

Then, the distribution of the bending moment is
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2
M(x)=M, +%(lx —x)= —%+%(Zx—x2) - %(&x ) (LM_187a)

Its maximum value occurs at the location of supports, i.e. for x=0 and for x=/. In absolute
value we get

2
=%=3333 Nm. (LM_187b)

| max

The corresponding stress is

o, =|ﬂ=8.39x105 Pa. (LM_188)

max
o

The distribution of the displacements along the beam length is evaluated by the program
mpp_017e_beam_clamped_at_both_sides and plotted in Fig. LM _36.

begm clamped at both sides, distributed loading
0 T T T T T T T T T

EN
» N
T T
I I

deflection [m]

'
N
T
L

-2.5 q

_3 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

length [m]

Fig. LM 36 ... Stat indeterminate beam distributed loading results

Program mpp_017e_beam_clamped_at_both_sides

% mpp_017e_beam_clamped_at_both_sides
% uniform distributed loading

clear; format long e
% beam length

1 =1;

S = 12e-4;

Jy = 198e-6;

WO = 397e-5;

q = 40000;
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E = 2.1ell;

incr = 0.01;
xrange = O:incr:1;
const = q/(24*E*Jy);

ix = 0;
for x = xrange
iX = ix + 1;
w(ix) = const*x"2*(1 - x)"2;

end

Mmax = q*17°2/12
Smax = Mmax/WO0
Ffigure(l)

plot(xrange,-w, "“linewidth®, 2)

title("beam clamped at both sides, distributed loading®, "fontsize®, 16)
xlabel (" length [m]", “fontsize®", 16)

ylabel ("deflection [m]", “fontsize®", 16)

9.2.12. Strain energy in a beam subjected to pure bending

In Fig. LM 37 there is depicted a part of the beam
subjected to pure bending. We have derived that the axial
stress due to the bending is

o =MD
J

y

Fig. LM 37 ... Beam defo 1
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The pure bending means that the axial stress is of uni-axial nature, and that the influence of shear
forces are non-existent or neglected. So, the strain energy of pure bending is analogous to the
strain energy in tension — compression as it is reminded in Fig. LM 38. So, the elementary strain

energy, contained in an element of a beam between two infinitesimally close slices, depicted in
Fig. LM 37, is

wlg)eo (sl

A
ES
w-E2 ) Sedd ) e TE

@fﬁnnm Ayde

B

2
:M_(x) (LM_189) AU:J’P,Au: thm
2EJ, - ) .
To explain the analogy of bending with the Lo (san)" = & ES ()=
tension it should be reminded that for a bar L

of the length / we write

4B ddr gt ()= }‘—lEzl Av e =

T Ax

P Al ES

o=F¢ —=E—; P=—-Al. 2 Ty =
S I / :%EE;AV,M e
.. (LM_190) o Y

S hea. g
= %%Eixd\l =’i(}f}x%\1

Fig. LM 38 ... 1D strain energy
And similarly for a beam element of the length dx

ES ES

P="2Adx; P=kAdx; k=—2. (LM_191)
dx dx

The strain energy contained in the whole beam is obtained by the integrating Eq. (LM_189). If
J, =const , then

2EJ j M*(x) dx. (LM_192)

Survey of elementary types of the simply supported beam and the corresponding distributions of
shear forces and bending moments 7'(x) and M (x) is depicted in Table LM 3.
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Table LM _3 ... Beam survey of T and M

Lot of examples could be found in [21].
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9.3. Torsion
9.3.1. Introduction

By torsion we understand the twisting of a body when it is loaded by moments tending to produce
the rotation about the longitudinal axis of that body. In the text, we limit our attention to slender
prismatic circular bars (rods). In this subsection, the figures are numbered from 50, the equations
from 200, and the tables from 10.

Consider a circular prismatic bar, depicted in Fig. o A
LM 50, which is clamped at its left end and g
subjected to the twisting couple M = Pp. Within / . ___’

the linear theory of elasticity, the right cross- o
sectional surface rotates with respect to the left
surface by a small angle ¢ known as the angle of
twist. The value of the angle of the twist varies
linearly between the left and right surfaces from
zero to its maximum. The radial rays stay straight.
The initially straight line cd will become a helical
curve cd'. Every cross section is subjected to the
same torque — it remains planar and does not change

its radius. This way, the state of the pure shear
occur within the twisted bar.

Fig. LM_50 ... Torsion 1
9.3.2. Deformation, strain and stress

Let’s analyze how the element of the bar during the
twist deformation is deformed. In Fig. LM 51 there
is an elementary ring element with radius p (this
quantity varies from zero to the outer bar radius R )
and of the thickness dp and of the length dx.

The relative angular displacement of two layers,
displaced by the distance dx, is d¢.

Fig. LM 51 ...Torsion 2

Considering a sector element d iy before and after the deformation (the latter is plotted by dashed
lines) we can notice that the arc BC is displaced — with respect to the arc AD — by the distance

BB =CC' = pdo. (LM_200)
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Now, a new quantity, i.e. the shear strain, defined as an angle y~ BAB', is introduced.
Evidently,

pdp=ydx = y:p%. (LM _201)

Due to this deformation, the shear stress in the analyzed element arises. Since we are living in a
linear world, the shear stress 7 is proportional to the shear strain y . The proportionality constant

is denoted G and is called the modulus of elasticity in shear. So,
do
t=Gy=Gp— . (LM 202)

This relation is analogous to the relation derived for the uni-axial stress, i.e. o = E¢ .

., d . . . .
The quantity E(D corresponds to the relative angular displacement of two cross-section slices,

displaced by the unit of length — it is denoted 4 = ? and called the angle of twist per unit length
x

or the rate of twist.
So, the previous equation could be rewritten into the form
r=GYp. (LM_203)

Evidently, the shear stress is proportional to the distance p of the element from the axis. The
maximum shear stress occurs at the surface of the bar, say R.

9.3.3. How the applied torque (moment) is related to the shear stress in the bar
In Fig. LM_52 there is depicted a hollow cylinder with

inner and outer radii » and R respectively. The
elementary surface dS, displaced by the distance p

from the axis, is loaded by the force dF =7dS.

Fig. LM 52 ... Torsion 3
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The integral sum of these inner forces has to be in equilibrium with the outer moment A, , so

M, = [prdS =GI[ p*dS = GYJ, = GJ, %’, (LM_204)

where 9 = %ﬂ is the rate of twist and

J, = j p° dS is the polar moment of the cross-sectional area.

So,
YW1y —dp=—tmr, dx. (LM_205)
dr  GJ, GJ,

Integrating the previous formula with respect to the length, we get the total angle of twist for a
bar of the length / loaded by the moment M, in the form

!
=M, —. LM_206
¢ “GJ (LM_206)

The variable é is called the forsion flexibility.
P

p

Its inverse value, i.€. , 1s the forsion stiffness.
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9.3.4. Analogy of relations for tension, bending and torsion

1D stress bending torsion
o=Ee¢ o=Ee¢ =Gy ... Hooke’s law
0:£:E8=EA—Z GzM" T:%...stress

S l W, W,

where M and M, are bending and torsion moments respectively

J J
S W, =X W, =22
Z 7

max max

these relations are valid for circular cross sections only

area W, and W, are section modules in bending and torsion
longitudinal strain curvature rate of twist
LA_F 1_M, gdo_M,
[ ES p EJ, de  GJ,
stiffness
GJ
F= B N M- £, L M= =%
Z elorz:;ion \"_y‘ l o
—— bending stiffness  —~ —_ twist

longitud. stiffness curvature torsional stiffness

strength theories

— — o —_
O = E€,0 <Oy o = <op, Tox = <Tp

max
o k

where o, is the allowable stress in tension and 7, is the allowable stress in torsion.

strain energy

2 l 2 2
:FI U:jM”(x)dx U= M1
2ES o 2EJ , 2GJp
constant force variable moment constant moment

Table LM_10 ... Analogies

Lot of examples could be found in
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9.4. Buckling

9.4.1. Introduction

In engineering, the term buckling is related to a loss of stability. The machine part being loaded
might loose its geometrical integrity even if other conditions for its save conduct are satisfied. In
this chapter we will devote our attention to the axial loading of long slender structural members.
In this subsection, the figures are numbered from 200, the equations from 300, and, the tables
from 20.

9.4.2. Stability

Generally, there are three types of equilibrium in statics.

They could be classified according to the amount of mechanical work (energy) needed to displace
the body from its immediate position. See Fig. LM 200. We distinguish three cases of stability

- stable — a positive energy is required,

- indifferent — no energy is needed,
- unstable — a small mechanical pulse is required, then the body produces mechanical energy.

Fig. LM 200 ... Buckling stable unstable

In mechanics of deformable bodies, any deformation
could be considered as the possible displacement. In Fig.

LM 201 there is depicted a ring loaded by two forces, F
maintaining, after the deformation, their directions. g =
A i
N
Fig. LM 201 ... Buckling 2 / -
Due to the twist deformation d¢, these two forces exert
the mechanical work ¢
v ( A~ & ?3
2 -
0°A=2Fr(1-cosdp) =2Fr(1—(1 —@ +--)) = Fr(dp)*. o [
.. (LM_300) readf r
y.

LM 56



Fig. LM 202 ... Buckling 3

where » =d /2. See Fig. LM 201 and Fig. LM 202. In the previous equation the cosine function
is approximated by the Taylor’s series expansion.

The strain energy increases by

0U = %5Mk S = %GJP (69)°. (LM_301)

The total potential energy is defined as

w=U+V, (LM _302)
where V' — called the potential — was defined as the negative energy due to external forces.
Generally, the equilibrium condition could be alternatively formulated as

OW =0U + 0V =0U —0A. (LM_303)
It was proved that the stable equilibrium occurs if

OW =6"U+0V =5U-6°4>0. (LM_304)

. e . 1
In our example, the condition of stable equilibrium requires 6°4 <o6°U , so Fr<EGJpand

finally

GJ
Fe—2. (LM_305)
T

JP

Let’s define the critical force by F,, = . If the loading force reaches the critical force, the

state of equilibrium becomes indifferent. If the loading force overcomes the critical force, then
the state of equilibrium becomes unstable. It means that any — howsoever small — accidentally
evoked torsional displacement will be increased without bounds and the loaded bar will lose its
stability.
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9.4.3. Buckling of slender bars

A straight slender prismatic cylindrical bar”, depicted in Fig. LM 203, is loaded by two opposite
compression forces. The bar, being bended, is on the right. The deflection curve is described by
w = w(x) . The bending moment, in the cross-section displaced by x, is

M = M(x) = Fw(x). (LM_306) F l

We know that i' .
IR

o M) - T

W (x) = 5 (LM _307) | 5

I l.

o

Fig. LM 203 ... Buckling 4
Comparing the last two equations we get

Fw(x)
EJ,

y

w'(x)=-— (LM_308)

Introducing a new variable p* = %, the previous equation could be rewritten as

W(x)+ p°w(x)=0. y (LM_309)
Then, its solution could be assumed in the form

w(x) = Asin px + Bcos px, (LM_310)
where A4, B are constants of integration. The boundary conditions are

w(0)=0,w(l)=0. (LM_311)
The former gives B =0, while from the latter we get

Asin pl =0. (LM _312)

2 This kind of machine detail is also called rod or strut.
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The above differential condition could be satisfied under two conditions:

either 4 =0, leading to a trivial solution — the bar does not bend. This is the case which does
not interest us,

or the argument of the sine function has to reach the values pl/ =0,7,2z,- -, kx, where k is an
integer.

So, the above differential equation has a non-trivial solution — equilibrium in the state of bending.
This might happen if p/ =kn, kde k=1,2,---, thus for p=kn/l. The value k =0 was excluded

since it leads to the trivial solution again.

So, the solution of the differential equation has the form
.k
w(x) = Asin Tx . (LM _313)

The smallest possible force — the critical force, say F,. — for which this situation could occur, is

crit

obtained for £ =1. In such a case

p=(1xx)/l and also p* = %}” From it follows
y

="y (LM _314)

This force, known as the Euler’s critical force, specifies the limit load that leads to the loss of the
buckling stability. The corresponding critical stress is o, =—F,., /S, where Sis the cross-

crit crit

sectional area of the beam. The validity of Hooke’s law is assumed.

For the critical stress we get
Fk it EZEJY
o, =——kit_—_ ___V LM 315
krit S Slz ( _ )

Alternatively, the following quantities are used.

J
- radius of gyration i= ?y , (LM _316)
- slendering ratio A= 1 . (LM _317)
i
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Then, the critical stress could be expressed in the form

7’E

=—— ... the relation is valid for |ka

O e <o,, where o, is the proportionality limit. (LM_318)

9.4.4. Four modes of buckling

In engineering, according to the types of constraints being applied, four modes of buckling are
usually distinguished. They are depicted in Fig. LM _204.

<—
ﬁ

e N Ry

Fig. LM 204 ... Four buckling modes

The unified computational approach can be secured by defining four different values of n, for
i=1...4. They are presented in Table LM 20.

i 1 2 3 4

n, 0.25 1 2 4

Table LM 20 ... Four parameters of buckling

Then, for the i™ bucking mode, the critical force can be expressed by

FO =p g2 B (LM_319)

krit i 12
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Example — the first buckling mode, i =1, n, = 0.25

Determine: Determine the dimension of a slender bar (strut) of a rectangular cross section
2hxhmade of steel with E =200 MPa and the proportionality limit R, =200 MPa, and the

yield limit R, =250 MPa . The strut is clamped, its opposite part is free and is loaded by the force

F =2x10° N. The length is /=0.7 m . See the leftmost subfigure of Fig. LM 204. Consider the
safety factork =3.5. The critical force is

3 4
FY=kF=nnr % , where n, -1 R bh” . 2h_ (LM _320)
I? 4’ 12 12
Then,
4 2 2
kF =n, n° % =h= | RE12 \/ 24ka . (LM_321)
21 2En1 Ex

Substituting the input data we get 4 =44.6 mm, approximately 45 mm.
Check the elastic behaviour. The critical stress for this mode is

EY  kED  3.5x2x10°

Oy = it = Dt — =172MPa <R, =200MPa . (LM_322)
A 2h 2% 45

So, the condition is satisfied and the suggested dimension, i.e. £ =44.6mm, is acceptable.
Example — the second buckling mode, i =2, n, =1

Determine: The critical length / ., leading to a buckling instability of a steel tube loaded by an

krit >
axial force /'=1000 N. Consider the safety factor £k =3. Assume that the strut is constrained
by frictionless joints at both ends. The material constants are E =2.1x10° MPa, the
proportionality limit R, =190 MPa and the yield limit R, =230 MPa. The outer and inner
diameters of the tube are D =483 mmand d =40.3 mmrespectively. See the second subfigure

of Fig. LM 204.
The areais A= %(D2 —d2)= 557 mm?.

Quadratic moment is J

min

-z Z (D* —d*)=8200 mm*.
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The critical force is

Ey =kF=n7’ % (LM_323)

From the “braced” part of the previous equation we get,

2
kF =n, 7° EZJ—; =1 =1/% . (LM_324)

Substituting the input data we get / =/, , =2380mm.

rit
Check the elastic behaviour. The critical stress for this mode is

@ @
O P _ Ml 31000 _ 5 \1py < R, =190MPa. (LM_325)
A A 557

So, the computed length satisfies the prescribed stress conditions.

Example — the third buckling mode, i =3, n, =2

Determine: The allowed load value F, for a steel strut with the Young modulus
E =2.1x10° MPa, the proportionality limit R, =200 MPa and the yield limit R, =240 MPa .

The strut is clamped; its other side is constrained by a shiftable joint support. Consider the safety
factor k = 3. See the third subfigure of Fig. LM _204.

The area 4=4a”> —a* =3a°.

The quadratic moment J_, =J, —J,.

3 4
J, =bh3/12---b=2a,h=2a...2“><8a =16a .

12 12
3 4
J, b /12-b=ah=q--LL L
12 12
"]min = 15a4 .
12
The critical force is
R = Bl where n, =2, 326
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The allowed force is

F® EJ_.
F, =2kt —p g2 Zmin LM 327
b= 3 ¥e (LM_327)

Substituting the input data we get F,, =38862 N . To check the elastic behaviour, the following
condition has to be satisfied

(3) 3)
o =to _Kha g ..190MPa. (LM_328)
D A A u

Example — the fourth buckling mode, i =4,n, =4

Determine: The diameter d of a steel strut of the length /=1000 mm. Material data are
E =210 MPa, R, =210 MPa, R, = 250 MPa . The loading force is 5x10* N. Consider the safety
factor k£ = 4. The constraints are depicted in the rightmost subfigure of Fig. LM 204.

The critical force is

FW=kF=n, ”2% where n, =4. (LM_329)

krit l 2 H

(@)
First, the quadratic moment J,

min

is determined from the part (a) of the previous equation

2
_ nki ! . (LM_330)
4

min

4

.. T
then, realizing that J . =

d= 4,/64‘]“““ . (LM_331)
T

Substituting the input data we get d =38 mm.

, we get the diameter

For more details see
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10_EX. Simple examples
10.1 Tension — compression
Example — vertical rod loaded by its own weight and by an axial force

Given: The homogeneous prismatic rod is clamped at its upper end. The values of density p,
the constant cross-sectional area S, the length /, and the gravitational acceleration g are

known. At its lower end, the rod is loaded by a vertical force F . See Fig. EX 1.
Determine: The distribution of strain and stress along the rod. In this case, it is non-uniform.

Fig. EX 1 ... Hanging rod Fig. EX 2 ... Free body diagram
Free-body diagram allows determining the reaction force at the clamped area as
R=F+mg=F+pVg=F+pSlg, (EX_ 1)

where m is mass, V' is volume, p is density, g is gravitational acceleration, / is length, and
S is the cross-sectional area.

We are looking for deformations and forces occurring at a generic cross-sectional area
displaced by the distance x measured from the lower end of the rod.

As explained before, in the text dedicated to the mechanics of rigid bodies, we will apply the
free body diagram reasoning. See Fig. EX 2. The lower part of the rod is mentally removed
and replaced by a force, say N, which is equivalent to forces acting in the upper part of the
rod. Due to the continuous and homogeneous material distribution in the rod, the internal
force N varies as a function of the x coordinate. So,

N(x)=F+ pgSx, where Sx ... volume, pSx... mass, pSx g ... weight.

kgm , kgm
——-mm= =
m’ s’ s?

The dimensional check gives: N.

The stress as a function of x variable is
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o(x)= % = % + pgx. (EX 2)

The overall rod elongation A/, and thus the strain &, depends on material properties that are
expressed by the so-called constitutive relation, i.e. by the relation between the stress and the
strain. Its simple form is represented by a linear' function and is known as the Hooke’s law.
The coefficient of proportionality is denoted E and is called the Young’s modulus. It is
expressed by the same units as the stress, i.e. N/m”> = Pa . The usual value for the design steel

is £, =2.1x10" Pa.

In this case, the stress and the strain are functions of the x coordinate

_N&

o(x)=Ee(x), &(x)= S

Al(x)
—; o(x EX 3

™ (x) (EX_3)
Actually, the local elongationz is Al(x) =u(x) while the total elongation Al is a cumulative
quantity obtained by integration

AZ—IAI dx—ll dx—llF dx = 1 _1(F i VY
—! @) ‘E!"(’C) —El gHAgx fle= | oxk pe T =l S g | = AL+ AL

.. (EX_4)

Example — The above results could be applied to the analysis of the case of a long mining
wire rope to which a cabin of a given weight is attached.

See the Matlab program mpp_004e_elongation_of_mine_rope

% mpp_004e_elongation_of _mine_rope
clear all; format compact

% sigma(x) = a + b*x

% a = F/S; b = ro*g

F= 10000; % weight of cabin in N

L = 1000; % length of rope in m

E = 2.1el1; % Young modulus in Pa

ro = 7800; % density in kg/m~3

g = 9.81; % gravitational acceleration
d=0.1; % diameter of rope in m

S = pi*dn2/4; % cross section in m"2

a F/S; b = ro*g;

% elongation

deltall = a*L/E % elongation due to cabin®s weight
deltalL2 = (b*L"2/2)/E % elongation due to weight of rope
% deltaL = (a*L + b*L"2/2)/E

deltaL = deltalLl + deltalL2 % total elongation

deltall = 0.0061 ... eclongation due to the cabin weight,
deltal2 = 0.1822 ... elongation due to the rope weight,
deltaL = 0.1882 ... total elongation.

' The proportionality between the stress and the strain is not valid generally. It holds unless the plasticity
behaviour of the material is reached. The details are treated later.

? That is the elongation of the element dx .
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The results are in [m]. The above example shows a rather exceptional engineering case when
the own weight of the body is crucial and exceeds the effects of the external loading. In many
engineering applications, the gravity effects might often be safely neglected.

If the rod, depicted in Fig. EX 1, is loaded by the force F only, (the weight of the rope is
neglected) then the stress along the rod’s length is constant and can be expressed in the form

c=F/S. (EX 5)
Substituting the above relations for the stress and the strain we get

o= = L_g& (EX_6)
S L

while the total elongation is

A

Al = . EX 7
ES (EX.7)

Finally, the strain, i.e. the relative deformation, is constant along the rod’s length as well
g=—=—. (EX 8)

Example — rod with a variable cross-sectional area

.
olx+dx) = 6(x)+do
_Steete) otx) -_ ot )+do
— _;‘_!. I
i )

} olxl | +

Slx] « . o W b

| ) 1 e,

, ! | I
{ [ l J R

\F

Fig. EX 3 ...Variable cross section

Consider a rod with a variable cross-sectional area, clamped at its upper end, depicted in Fig.
EX 3 and Fig EX 5. The rod is loaded at its lower end by the force F . The length of the rod
is [/, the cross-sectional area is defined by a known continuous function S =S(x). For two

close cross sections, being Ax apart, we can express the equilibrium of forces in the form

S(x)+AS = S(x)+ %Ax : (EX_9)
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The force increment AS is expressed using Taylor’s series while the increments of higher
orders are neglected. For stresses, using infinitesimal elements instead, we can write

o(x)+do=0o(x+dx). (EX _10)

Using the free body diagram principles we can express the weight of the part of the rod being
removed as

O(x) = pg[dV =pg [S(£)ds . (EX_11)
v £=0

The normal force and the corresponding stress in this cross section are

Nx)=F+0(x), (EX 12)

No)  F opg
= — S d .
S S S io () de

a(x)

Knowing the cross-sectional area as a function of the length, the above relation could be
evaluated.

The total elongation of the rod is

o(x)

Al = jg(x)dx: j dx. (EX_13)
=0

x=0 x

Neglecting the increments of higher orders, simplifying the notation by 6 =o(x); §=S8(x),
and realizing that the weight of the element is pgSd&, then the equilibrium of forces acting
on opposite sides of the element can be expressed in the form

(c+do)(S+dS)—oS = pgSd&

oS+odS+doS+dodS —oS = pgSdé

odS+doS = pgSdé .-+ increments of higher orders were neglected .. (EX_14)
d(o8) = pgSd¢&

d(aS) _

A)
dz rg
Example — rod (rope) of the same strength, part 1

The idea is to define a rod with such a variable cross-sectional area that would have the same
stress along its length. Suppose that the allowable stress o, is known. How to find a function
S(x) satisfying the above criteria? We might start with equilibrium considerations

odS +doS = pgSdé& (EX_15)
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and realize that if the stress o should be constant, then its increment has to be zero, so
do =0. From now on, the required constant stress is just the allowable stress, so
0,45 = pgSdg,

a5 _ P2 g
S o,

(EX_16)

Integrating along the length of the rod (rope), and considering that the lower cross-sectional
areais §,, we get

S X

s _r [ (EX_17)
S, S ou £=0
lgiz Lt X,

Sy Oa

(EX_18)

§S=8(x)=S§, exp[

pe j
O AL

Example — rope of the same strength, part 2

Given: A rope of the length L =3000m, diameter at the lower end d,=0.1m, density
p=7800kgm™>, Young’s modulus E=2.1x10"Pa, gravitational acceleration
2=9.81ms™>, weight of the cabin attached at the lower end of the rope F =10000N,

allowable stress o,, =1x10° Pa.

Determine: Elongation of the rope due to its own weight, elongation due to the weight of the
cabin, diameter of the rope as a function of its length.

The elongation due to own weight

] ]
Al = ljcs(x) dx = ljcd dx = Sl ... In our case, we get 1.4286 m. (EX 19)
E-< Es E

The elongation and the cross-sectional area as a the function of the length due to the weight of
the cabin

1t F

M=t E o sey=sem; a=P%; 5,1 (EX 20)
E{ S(x) o} o}
I} l
Alz = F j I dx = F J‘e—ax dx = F __l[eax]f) = F l[eax]? = F l(1—eial). (EX_ZI)
ES,e” ESy ES, a ES, a ES, a

In our case we get 0.0071 m which is a negligible value with respect to the elongation due to
the weight of the cabin
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How to compute it shows the Matlab program mpp_002e_rope_of _equal_strength. The
results are presented in Fig. EX 4.

% mpp_002e_rope_of_equal_strength

clear all

sigd = 1e8; % allowed strength in Pa, i.e. N/m"2

do = 0.1; % initial diameter in m

SO = pi*d0n2/4; % initial cross section in m"2

g = 9.81; % gravity acceleration in m/s”2

ro = 7800; % density in kg/m"3

X = 0:3000; % the length

Sx = SO*exp(ro*g*x/sigd); % cross section as a function of x
dx = sqrt(4*Sx/pi); % diameter = f(x)

rx = dx/2; % radius

% elongation of the rope of the length 3000 m - due to gravity only
L = 3000;

2.1el1l;

ro*g/sigd;

10000; % the cabin weight in N

g0 = F/SO;

E
a
F
si
deltall = sigd*L/E % influence of gravity

deltalL2 = F*(1- exp(-a*L))/(E*S0*a) % influence of the cabin"s weight

sigd*x/E;
F*(1 - exp(-a*x))/(E*S0*a);

yl
y2

figure(l)

subplot(1,2,1)

plot(x,rx, “linewidth", 2)

title("rope of equal strenght®, “fontsize®, 16)
ylabel ("radius in [m]", “fontsize", 16);
xlabel (" length in [m]", "fontsize®", 16);
subplot(2,2,2)

plot(x,yl, “linewidth",2)

title("elongation [m]®, “fontsize®, 16)

ylabel ("due to gravity®, "“fontsize®", 16);
subplot(2,2,4)

plot(x,y2, “linewidth",2)

ylabel ("due to cabin""s weight®, "fontsize®, 16);
xlabel ("length in [m]", "fontsize", 16)

rope of equal strenght elongation [m]
0.16 T T 1.5
<
B2
0.14 (0]
=
g{ 0.5
— 0.12 o
E fudt
= OO 1000 2000 3000
» 0.1 3
= 8 x 10
> =
< 0.08} D,
2
» 4
0.06 -
a2
®
0.04 L ' © 0
0 1000 2000 3000 0 1000 2000 3000
length in [m] length in [m]

Fig. EX 4 ... Radius of the rope cross-sectional area as a function of length, elongations
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Example — rotating arm

Given: The arm of prescribed dimensions, see Fig. EX 6, rotates by the constant angular
speed w, density p, cross-sectional area S .

Determine: Using free body diagram and d’Alembert principle determine displacement, force
and stress within the body.

Apparent inertia force acting on the indicated mass element dm = p dV = pSd¢& is dméw’,
1.e. mass xradius x angular velocity squared. It is in equilibrium with the internal force N(x).

Fig. EX 5 ... Varying cross section Fig. EX 6 ... Rotating arm

The internal force acting at the cross section determined by the coordinate x is

N(x) = pSa’ j £dé = % pSa’ (- x7). (EX_22)
E=x

So, the stress as a function of the x-coordinate is

o(x)= %x) = % ,oa)2 (r22 —x%). (EX 23)

According to Hooke’s law the local elongation of the element of the elementary length dx is

2
Ade = T gy = PO (12 2y (EX_24)

E 2F

The total elongation of the arm is obtained by integration

x’ p’2 5 pa’
Ly = LY EX_25
3% 2£E3° 3E° (EX_23)

r 2 2
yold) s PO,
Al =|Adx=—|(ry —x)dx =—-r,x—
'([ 2F x'[o(z ) 2E[2

The obtained expression is approximate since the presented analysis does not take into
account the non-uniform state of deformation in the vicinity of the central hub.



Example — a thin prismatic ring of the cross-sectional rectangular area S = bk is loaded by
the internal pressure p

Given: Radius r, thickness 4, width b, pressure p . See Fig. EX 7.
Determine: Stress, strain, radial elongation.

T

Fig. EX 7 ... A thin ring

=

Use the free body diagram principle and observe the equilibrium of forces acting on the
element #bd¢e depicted in Fig. EX 7.

The equilibrium conditions for the element, determined by a small elementary angle d¢, give
the radial force in the form

dF =N do, (EX_26)

since the small circle can be approximated by a straight line. This elementary force could also
be expressed by means of a product of the pressure and the elementary surface as

dF = pbrde. (EX 27)
Combining the last two equations we get
N = pbr. (EX 28)

Assuming a uniform distribution of the force N within the cross-sectional area we might
express the stress as

o=N_N_pbr_ r (EX_29)
S bh bk T h

This is the circumferential or tangential stress. We found that the radial pressure inside the
ring evokes the tensional circumferential stress in the ring cross-section. Under these
simplifying conditions (a thin ring, i.e. » >> h) the radial stress in the ring — that evidently has
to be there as well — is not accounted for. The analysis of thick-walled vessels will give a
more detailed answer.
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Assuming a uniform circumferential strain distribution within the cross-sectional area we get

g_27r(r+Ar)—2ﬂr_£_g_ﬂ
27 r E Eh

(EX_30)

Due to the internal pressure p the radius of the ring is increased by

2
Ar = %. (EX_31)

Example — a rotating thin ring

Given: A thin ring rotates by a constant angular velocity @. In Fig. EX 7 disregard the
internal pressure. In this case the measure b is more important.
Determine: The circumferential stress due to the ring rotation.

The apparent inertia force — the centrifugal force in this case — acting on the mass element is
dF =dmro’ = pdVrw® = phbrde ro’. (EX_32)

As in the previous case, the tensional circumferential force is

=9 phb r* o’ . (EX_33)
do

Realizing that the circumferential velocity is v = r@, the circumferential stress is

N 2

=__ = . EX 34
o= =Py (EX_34)

This approach could be used for an approximate determination of the circumferential stress in
the rotating flywheel rim.

10.2. The strain energy and the work exerted by an external force — uniaxial case

It is taken for granted that in statics the time quantity plays no role — there are no
accelerations, no inertia forces. The actual loading process, however, always occurs in time
but in statics, we overcome this inconsistency by stating that the loading process is so slow
that the inertia forces could be neglected.

Here, for the proper understanding of the loading process, we will temporarily deal
with the time dimension. Imagine a slender rod of the length / and of the cross-sectional area

S being loaded by an axial force F(¢) that is a function of time. The initial value of that
force at time ¢ =0 is zero, then it raises to its maximum value, say F__ . As said before, the

max

loading process is assumed to be so slow that the inertia forces could be neglected.
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Let’s introduce a new quantity A, varying in the range <0,1>, as the time-dependent ratio of

the immediate to the maximum value of force in such a way that A(¢) = ];Lt) .

max

From it follows that
Ft)=F_ A(t). (EX _35)

Under these assumptions, the elongation of the rod as a function of time could be expressed
by

u(t) = ’“”E—];nl = A(HAl, (EX_36)

where Al is the total elongation corresponding to the maximum force F, .

Also, the elementary work of external force is a function of time. Thus,

dW () = F(t)du = A(t)F,, AldA(t) = F, AIAdA. (EX_37)

ax

The fotal (cumulative) work of external force — from the beginning of loading to its end — is
obtained by the following integration

max

1
W = F Al[2d2 = %Fmax Al. (EX_38)
0

Assuming the validity of Hooke’s law — (Al =F,, [/ ES) — the previous relation could be
rewritten into the form
F..l

W= Smax” (EX_39)
2ES -

10.3. Statically indeterminate cases

In courses dedicated to mechanics of rigid (non-deformable) bodies, we have stated that a
structure is statically indeterminate when the static equilibrium equations are insufficient for
determining the internal forces and reactions acting on that structure. The mechanics of
deformable bodies (strength of material) is able to solve these tasks by adding a sufficient
number of so-called deformable conditions.
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Example — statically indeterminate clamped rod

Given: Length [=a+b, force F, cross-sectional area S, Young modulus E. There are no
axial gaps between the rod and its supports. See Fig. EX 8.
Determine: Reactions R, R, .

R,
o
- i Nz
|
| I P S S
N‘I
F
. .
[‘] ;
WV, 1 l
R’ R, Rr

Fig. EX 8 ... Statically indeterminate clamped rod

The clamping reactions due to the loading by the force F are R, R, respectively. From the
point of view of the mechanics of rigid bodies only one equilibrium equation is available, i.e.

R+R,—F=0. (EX_40)

The equation contains two unknowns — so the tools of the mechanics of rigid bodies do not
suffice to solve the task. We say that the task is statically indeterminate. Living in the world
of the mechanics of deformable bodies we can add a so-called deformable condition (also
called the condition of compatibility of deformations). In this, case it represents the condition
that the length of the rod / cannot change due to the loading since the supports are assumed to
be perfectly stiff. A free body diagram is sketched for two cases — in a cross section below the
acting point of the force F and above of it. The internal forces N,, N, represent actions of the

“removed” parts.

For the shorter part of the rod — below the force F* — the equilibrium conditionis N, + R, =0,
while for the longer one, itis R, + N, — F =0.

So, the internal forces are
N,=-R, N,=F-R,. (EX 41)

The overall elongation of the rod (which has to be zero in this case) is composed of individual
non-zero deformations of two parts of the rod with lengths a and b respectively. So,

Nla+sz_—Rla+(F—Rl)b__Rl(a+b)+F_b
ES ES ES ES ES ES’

Al =Aa+Ab=

(EX_42)
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The clamping supports are assumed to be perfectly stiff, so the rod’s elongation A/ =0. From
it follows that the above deformation condition could be expressed in the form

—R(a+b)+Fb=0. (EX_43)

Now, there are two available equations

R+R =F,
(EX_44)
R(a+b)=Fb. -
Solving them we get
R=-LF R-F-R-F--2 ppa-—by_-pdtb=b_p a — (gx s
a+b a+b a+b a+b a+b -

Furthermore, we can determine, how the point of action of the force F is displaced

=N2b—R2b—F a b F ab

Ab =227 2= 2
ES ES  a+bES ESa+h

(EX_46)

Example — statically indeterminate truss structure

Given: Structure depicted in Fig. EX 9, length a, force F .
Determine: The forces in B, P,, P, and the displacements of the joint A, 1.e.u,Vv.

LC B
.' U
7 _ e i
7 2 1 .
7 45
v J
s .
7 E
:9/ B 3 \ﬁ__.
F7 d
7, a
F u

Fig. EX 9 ... Indeterminate truss structure

Assume that the rods are of the same materials and have the same cross-sectional areas. The
rods are connected by frictionless joints, and there is no initial pre-stress. The structure is
loaded by a single vertical force F' acting at the joint A.

Generally, only two equilibrium equations could be written for a system of forces passing
through a single point in the plane. In this case we have

P+ P,sin45°-F =0,

(EX_47)
P,cos45°+ P, =0. -
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In these two equations, there are three unknowns. The missing equation can be obtained from
the deformation condition — in this case, it represents the fact that the resulting displacements
of individual rods, ending at the joint A, have to be identical.

As always, small deformations are considered — from it follows that the small rod’s rotations
due to the applied loading are neglected. Under these approximations the deformed
configuration of the structure is plotted in Fig. EX 9 by dashed lines. The joint A moves to a
new position A’ defined by displacements u and v respectively.

The elongations of individual rods are

Al =u,
Al, =usin45°—vcos45°, (EX 48)
Al, =—v ...therodis actually shortened.

Eliminating u and v from the above equations and rearranging we get the deformation
condition in the form

RS

AL =Al—+AL—
(EX_49)
V24l = All + AL,
Assuming the validity of Hooke’s law the elongations of rods are
ap-Ba g _Pal2 o PRa (EX_50)
ES ES ES

Using the previously derived deformation condition, we get the missing equation in the form
2P, =R +Fh. (EX_51)

Summarizing, the required equations are

V2

P+PX=_F =0,
2

V2

B4R =0, ... (EX_52)

2P, =B +P,.

In the matrix form we have

1 2 o|(p)] (F
0 2 1pi=10}. (EX_53)
-2 1|lB] |0
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How to proceed in Matlab? See the program mpp_006e_three_rods.

% mpp_006e_three_rods

clear all

sq = sqrt(2)/2; K =1 sq 0; 0sq 1; 1 -2 1];
invK = inv(K); rhs = [1 0 0]";

P = invK*rhs

Notice, that the force F in the program was considered to be equal to 1. Then,

0.7929 0.2929 -0.2071

To find the response for the actual loading, it suffices to pre-multiply the previous
‘normalized’ results by the actual force.

Matlab could help to solve the problem symbolically to get the result in an analytic form as
shown in the program mpp_007e_three_rods_sym.

% mpp_007e_three_rods_symb
clear all
syms K s P F

S
F

sym(sqrt(2)/2)
[FoO]."

K=[1s0; 0s1;1-21]
invK = inv(K);
P = invK*F

The result is
P =
1/72*(2~N(1/2)+4) /7 (2+2~(1/2))*F
1/7(2+27(1/2))*F
~1/2%27(1/2)/ (2+2~(1/2))*F
This could be expressed in a ‘nice human’ form as

14242 » V2 » 1

T e BT

10.4. Thermal stress

(EX_54)

A tendency of a body to change its geometrical shape due to the change of temperature is
called the thermal expansion. If a body is mechanically constrained in such a way that it
cannot freely dilate when the temperature is changing, then an additional stress occurs in the
body even if no external loading is applied. This happens for statically indeterminate cases —
the suppressed dilatation evokes the thermal strain and consequently the thermal stress.
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Example — heated statically indeterminate rod

Given: A thin rod, of the length /=a+5b with cross-sectional areas S,,S, and Young’s

modulus £, is put — at a given temperature and with no axial clearance — in between two
supports as seen in Fig. EX 10. Then, the temperature is increased by Ar degrees.
Determine: The reaction R .

@ b
7 s
' 7
R R
—?j_- 7 1 K_A
Fig. EX 10 ... Statically indeterminate rod. 7 7 5,-" Z
1 2

If the rod were free (unconstrained) — then due to the temperature increase by A¢ — it would
increase its length by Al =« [At, where a[l/deg] is the coefficient of thermal expansion.
Due to the existence of perfectly stiff supports, the rod’s elongation is suppressed and
consequently the reaction forces, say R, are induced — they are of the same magnitude but of
opposite directions.

The elongations of individual parts of the rod consist of two parts — the elongation due to the
temperature increase and the contraction due to the loading by compressive reaction forces.
Thus,

A = aaht —g—“ Ab = abai—RL (EX_55)

1 2

Substituting these expressions into the deformation condition, requiring that the overall
deformation is zero, i.e. Al = Aa+ Ab =0, we get the unknown reaction in the form

R (a+b)S,S,EaAt '

(EX_56)
as, +bS,

Assuming the validity of Hooke’s law, the corresponding stresses in the rod’s parts are

__ R _(a+b)S,Ealt

” __ R _(a+b)S Ealt
s aS,+bs, ~ * S, aS, +bS,

(EX_57)

For current design steels the coefficient of the thermal expansion is & =1.2x10° deg™".

Lot of examples could be found in
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11_FE. A brief survey of finite element method
11.0. Introduction

Finite element method is a well-established procedure, routinely used in mechanical engineering
by means of commercial finite element packages. This text should help to understand the basics
and feel the flavor of the method and might help to realize what is behind seductive color screens
of those packages, full of rolled-out menus containing — for a beginner — a lot of often unknown
choices. There are a lot of publications recommended for future studies. For example

11.1. Discretization of continuous quantities in continuum mechanics

Modelling a dynamic rigid body system leads to equations of motion having the form of the
system of ordinary differential equations. Such systems have the finite number of
eigenfrequencies and eigenmodes.

Structural elements appearing in engineering practice (rods, beams, plate, shells, etc.) are,
however, not rigid, but generally flexible, having continuously distributed stiffness and mass.
Their mathematical descriptions lead to partial differential equations. Corresponding frequency
equations are of a transcendent type and give the infinite number of degrees of freedom and thus
the infinite number of frequencies. See

Rigid model systems are thus a simpler representation of reality, than continuous models, they
are, on the other hand, easier to solve. Continuous models are thus a better representation of
reality but at a cost. They are more difficult to solve, which leads us to the digitization again — but
of a different kind, that will be explained in the following paragraphs.

11.2. Basic equations of continuum mechanics

Continuum mechanics deals with deformations of bodies and forces that are responsible for those
deformations. We will limit our attention to solids, assuming that the material properties are
independent on dimensions of an investigated specimen. Also, the material quantities and those

describing the deformation process are assumed to be continuous functions of space and time.

The motion and deformations of a solid continuous body are described by three systems of
equations.

11.3. Cauchy equations of motion

relating inner, outer and inertia forces, have the form

0'o.
tto-lj + 7; — tp t.'x'_i . (FE_])
0'x;
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These equations have, however, a different interpretation in linear and non-linear concepts of the
world. Generally, in continuum solid mechanics with finite displacement, rotations and strains,

the stress tensor ;o (Cauchy or true stress) is measured in the current configuration at time ¢
(this is indicated by the upper left-hand side index) and is related to the same configuration at the

same time ¢ (indicated by the lower left-hand side index). The Cauchy (true) stress tensor is thus
defined as the current elementary force acting on the current elementary surface in its deformed

shape. Elementary forces ' f; and the density ‘p are also related to the current configuration.

This seems to be obvious, but in linear mechanics (where infinitesimal displacements and strains
are assumed) we are employing a simplified approach and instead of the Cauchy (true) stress we

work with so-called engineering stress — o, 0, (usually we write only o, ), which relates
the current elementary force to the not to the current but to the initial (reference) configuration
considered at time ¢ =0 . In the same, i.e. initial configuration are considered the inner forces and
the density, i.e. °f, = f,, "o = p. Also, the coordinates are considered in reference configuration

only, i.e. ‘x; = *x, — which is briefly denoted x, .

11.4. Kinematic relations

relate strains and displacements and secure thus compatibility conditions. There is an infinite
number of ways how to define strain tensors. As an example, let’s present the Green-Lagrange
strain tensor, which is independent of the choice of coordinate system as well as of rigid body
rotations.

t A at ) t t
8I?L :l Gou, N Ou_, N 0 Ouk 0 Ouk . (FE 2)
' 200x, 0x, 0x 0%

This tensor — in case of small deformations and strains — simplifies into a so-called engineering
(or infinitesimal) strain tensor having the form

(0w, O'u,
g?ng —— LIS J . FE 3
/ 2{8 ’x, 8°x,} (FE3)

11.5. Constitutive equations

relate stresses and strains. Generally, any couple of energetically conjugate stress and strain
quantities could be employed. In a linear case, the generalized Hooke’s law, with engineering

e o : eng
stress and Cauchy’s infinitesimal strain, is being employed, i.e. 0,/ =Cy, &, -

Impossibility to solve the system of partial differential equations for complicated geometrical
cases and for generic initial and boundary conditions led to the development of numerical
methods.
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11.6. Numerical approaches

It was probably the finite difference method which was primarily used for the solution of partial
differential equations describing the solid continuum problems. Partial derivatives appearing in
these equations were systematically replaced by finite differences.

For example, the second derivatives can be replaced by central differences according to the
following formula

_azay(zx) :%[y(x—h>+2y(x>+y<x+h>]+0<h2> (FE_4)
X

where / is a parameter denoting the mesh size and the term O(h’) represents the residuum,
showing the order of error. For more details see

Employing linear approximations and other simplifying assumptions allowed to find closed-form
solutions describing the mechanical behavior of simple engineering design parts, like bars,
beams, plates, etc. This way, the relations between generalized coordinates, displacements, and
forces in nodes connecting these parts were expressed. The approach, based on these ideas, is
known as the theory of transfer matrices. A nice introduction can be found in

What followed was the so-called direct stiffness method that was based on the idea of
decomposing the structure into the assembly of simple design parts (again bars, beams, plates,

etc.). Then, for each part, called element (e), were defined generalized forces Q' and generalized

displacements ¢'® related by means of so-called elementary stiffness matrices k.

Then, the elementary forces, displacements and stiffness matrices were assembled in such a way
as to create the global quantities, Q,q,K, describing the overall behavior of the considered

structure. Finally, the system of algebraic equations Kq=Q, was solved determining the

unknown displacements. One of the forefathers of this method was professor John Argyris. It was
during the Second World War.

Approximately at the same time, a similar method was conceived in the U.S.A. It was given the
name matrix displacement method. Besides, the elements derived by the direct stiffness method
the new elements, based on the continuum mechanics considerations were conceived, namely
triangular, rectangular, brick and other elements. The equations of motion were derived using
variational principles. In the mentioned form the above method was already very close to what is
known under the name the deformation variant of finite element method, where the
displacements are considered to be primary unknowns form which the force variables are
consequently evaluated. See

There exists a complementary formulation, namely the force variant of finite element method,

where the forces are considered to be primary unknowns and the displacements are computed
from them. The force formulation, based on the Castigliano theorem, did not gain such popularity
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as the deformation one. This was due to the fact that the resulting algorithm of force variant
depends on the correct determination of the static indeterminacy of the solved system. See

The Hybrid formulations of the finite element method are based on the combinations of
deformation and force variants. The stresses are approximated within the elements, while the
displacement on their surfaces. See

The Boundary integral method is just another tool for the numerical solution of continuum
mechanics problems, being based on variational principles. The method, while satisfying the
internal equilibrium conditions, allows solving the problem on the surface of the body only. See

In the following text, we will concentrate our attention on the deformation variant of the finite
element method within the scope of solid continuum mechanics. In order to better understand the
method’s nonlinear features presented in the following text, we will start with its linear
background here.

The Finite Element Method (FEM) is based on the discretization of the solid mechanics tasks in
space and time. In space we fill-up the volume occupied by the considered body (or bodies) by
many small parts (called elements) of simple geometrical shapes whose inertia, damping and
stiffness properties are known and expressed in matrix forms.

In time, we give up to find the response of the discretized body as a continuous function of time.
Instead, we aim to express all the geometrical and force variables at discrete time periods, whose
time distance — called time step — is rather small.

Satisfying compatibility conditions and equations of motion with prescribed boundary and initial
conditions, we are then able to determine the response of the body in kinematic and force
quantities at all parts of the body and at all considered time instants. See

There are many ways how to derive and explain the basic relations for the FEM. The one
presented here is based on the principle of virtual work.

11.7. The finite element method

The principle of the virtual work, formulated for solid continuum mechanics, states, see , that
the virtual work done by internal forces U is equal to that done by external forces oW , so

oU = oW . (FE_5)

The idea behind that thought experiment is, that all the particles (material points) of the body are
subjected to the virtual displacements odu, while the time, for a given moment, is frozen. It is also
assumed that the acting forces and boundary conditions do not change during that virtual
displacement. To prescribed virtual displacements are uniquely assigned the corresponding
virtual strains Og .
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As mentioned before, to clarify the presentation, the explanation will proceed in two steps — first
for linear and then for the non-linear case. This allows pinpointing the differences and
similarities.

11.8. Linear case

Let’s start with small strains and small deformation using the usual engineering notation. The
energy balance according to Eq. (FE_5) — for a considered body in Fig. FE 1 —1is

T T R
jaa chzjaqudmjau tdS+oq" Q, (FE_6)
14 14 S

where Ou are virtual displacements, Og are S ... surface
. . . . -~

virtual strains, ¢ are engineering stresses, V ... volume o
f are volumetric forces, t are traction forces,

0q are virtual displacements of nodes, Q are
generalized external forces acting at the nodes.  f... volumerric forces -

Fig. FE 1 ... Acting forces
Quantities ¥ and S denote the volume and the Faniistion ke
surface of the body in the reference
configuration. The integration process is carried out in reference (un-deformed) configuration, in
agreement with accepted assumptions about small displacements and strains. This is what the
linear theory is based on.

Deformation variant of the finite element method is based on the idea of approximation of
continuous displacements of individual particles (material points) by polynomial functions. The
approximation can be expressed by the relation u = Aq, by which we understand

u (x,y,z,t)
uexact = I/ly(x,y,Z,t) ~ uapprox =u= u(xbt) = A(X)q(t) * (FE_7)

u (x,y,z,t)

In continuum, the displacement field of the body is continuous in time and space. In FE
approximation this field is approximated by a product of so-called shape functions, contained in
A(x) matrix, and of displacements q of certain, a priory set, and points — called nodes. The
shape functions are polynomial functions of space and the nodal displacement are generally
functions of time. This way, we approximate the continuous system, which has the infinite
number of particles, and thus the infinite number of degrees of freedom, by a discrete medium,
with the finite number of elements, having the finite number of degrees of freedom.
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To make this process unique, the matrix A has to be determined. How to do it will be shown in
the following paragraphs. Also, the initially continuous strains have to be discretized. This will be
secured by another operator, i.e. B, called stress-displacement operator, which relates strains to
displacements in nodes by € = Bq .

By the strain approximation, we understand

gxx(xﬂy’zﬂt)
£,,(x,,2,1)
gzz(x’yﬁz’t)
8exact = ~ ‘c"approx =&= 8(X7 t) = B(X)q(t) ° (FE_8)

}/xy(x’y9z9t)
]/yz(x7yﬁzﬁt)

]/zx(‘x7y7z9t)

The A and B operators will be derived in the following text. So far, we can state that the B
operator will depend on A due to the existence of kinematic relations.

In linear cases, the kinematic relations are simplified as

. Ou; ~ Ou,
7o2(0%, 0°x ) 2(ox; ox

The virtual displacements and strains depend on accepted approximations given by Egs. (FE_7),
(FE_8),so0

ou=Ao0q+0Aq, Os=Boq+0Bq. (FE_10)

Since the operators A,B do not depend on displacements, the relations Eq. (FE_10) simplify to
ou=A0q, os=Bdq. (FE_11)

The volumetric forces might represent inertia forces. Using d’ Alembert’s principle we can write
f=—pii. (FE 12)

It is worth mentioning that in continuum mechanics the volumetric forces are defined as forces
related to a unit of volume, so their dimensions are [Nm%]. Double dots, superimposed on

displacements, represent the second derivative with respect time — that is the particle acceleration.
It is approximated by

ii=Aj. (FE_13)
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We tacitly assume that the A operator is not a function of time. The principle of virtual work,
formulated for a discretized body, can be obtained by substituting the above assumptions into Eq.
(FE_6). Rearranging we get

aqTDBTch+ijTAqu—jATtdS—6 =0. (FE_14)
Vv 14 S

This equation has to be valid for any virtual displacement dq. To satisfy this condition, the
contents of the bracket must be identically equal to zero. Rearranging we get

ijTAquzR—jBTch, (FE_15)
4 4

where the R vector covers contributions of both traction and point forces. The term appearing by
acceleration is called mass matrix and is denoted m. We assume that during the deformation
process the mass is conserved, so the mass matrix is constant. The Eq. (FE 15) holds at any
moment, that is at the beginning, at the time ¢ =0, so

"C: m°§="R-[B" s dV (FE_16)
as well as at a generic time¢ > 0, so
‘C: m'§="R-[B"'cdV. (FE_17)

In linear cases, the changes in geometry are neglected. If, furthermore, the linear relation between
stress and strain is considered, then we can write

‘6=C'e=CB'q. (FE_18)

The quantity C represents the symmetric matrix of elastic moduli. Substituting Eq. (FE 18) into
Eq. (FE_17) we get

m'j+k'q='R. (FE_19)

The previous relation, valid for a generic time ¢, represents the discretized equation of motion for
a generic element, where

m = pJ. ATAdV 1s the mass matrix and (FE 20)
14

k= IBTCBdV is the stiffness matrix. (FE_21)
4

It is not difficult to add another term representing the viscous damping being proportional to the
velocity

m'g+d'q+k‘q='R (FE 22)
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but a meaningful determination of material constants might pose a problem. Sometimes a so-
called Rayleigh’s approach, defining the damping matrix

d=am+ Bk (FE_23)
with constants «, f, is employed. See

If inertial effects could be neglected then the equation of motion (FE 19) becomes the
equilibrium equation having the form

k'q='R. (FE_24)

In linear cases there is no need to keep the upper left-hand side index, denoting the configuration
state, since the final result is obtained by a single computational step, i.e. by solving the system of
algebraic equations, supplying the unknown displacements.

The integration of Eqgs. (FE_14), (FE 15) and (FE_20), (FE_21) has to be carried out separately
for each element. Then, the individual results (mass and stiffness matrices) have to be
systematically assembled to represent the inertia and stiffness properties of the whole body. From
now on, we will assume that the volume V' belongs to a generic element as well as that the
matrices m, d and k. They are called mass, damping and stiffness matrices respectively.
Equations of motion for the whole body have formally the same form, only instead of the local
matrices m, d and k we formally write M, D, and K, meaning the global mass, damping and
stiffness matrices respectively.

The global matrices are obtained from local ones by so-called assembly process, based on an idea
of so-called nodal compatibility, meaning that the displacements on element boundaries are
continuous (going from one element to another) and that the nodal forces could be systematically
assembled into vectors. The assembling will be described in the following text.

11.9. Determination of A, B operators

Let’s start with Lagrangian and Hermitian elements that are frequently used in technical practice.
They are based on the idea of Lagrangian or Hermitian polynomial interpolations. There are also
other interpolation procedures. See

Let’s remind the Lagrangian interpolation procedure for a function of one variable. See
. For a given function y = f(x) defined in the interval <a,b> one has to find a suitable

approximation in the form of a polynomial function based on the knowledge of a few functional
values within that interval.

Knowing n couples of values (xi, yi) within the interval <a,b> it is possible to find a

polynomial function of the (n - 1)th degree passing through all the known # points. We can write
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Vapprox = €1 +CX + c3x2 +et cnx”’1 =Uec, (FE_25)
where
U= [1xx2-~-x"_1] and ¢={c,c,c;-c, | (FE_26)

Values x; define the locations of points in which the approximation is being provided. They are
often called nodes. Values y, represent the function values at nodes. The U is the so-called matrix

of approximation functions; the ¢ vector contains unknown coefficients of the polynomial
approximation. Substituting all n couples of (xA, yi) into the previous relation we get

1

y =Sc, (FE_27)
where
c= {cl CyCy0eC, }T , (FE_28)
y=mynt (FE_29)
and
1 X, X xl”_l_
1 x, x X
1 2 n—1
s=|, B . (FE_30)
1 :
1o, X x|

The unknown coefficients ¢, are determined from the condition ¢=S"'y. Finally, the
approximation function can be expressed in the form

=Uc=US"y=Ay, (FE_31)

Nz approx

where the A — matrix being the product of the approximation-function matrix U and the inverse
of S matrix — containing not functions but pure numbers only — is called the shape function

matrix. As stated above for n couples of points we get the Lagrangian polynomial of the (n — 1)th
degree.

They are the nodal displacements that play the role of unknown function values in the
deformation variant of the finite element method. Then, the shape function matrix A secures the
approximation of element displacements, based on displacements at nodes, while the B, secures
the strain-displacement approximation. This will be shown in detail in the following text.
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The Hermitean interpolation approach requires to deal not only with the values of functions at the
nodes but also with their derivatives. For more details see

11.10. Material non-linearity only
This case is based on assumptions of small displacements, rotations, and small strains. The only
non-linearity entering the game is the non-linear constitutive relation. The usual procedure is

based on replacing the actual non-linear stress-strain dependence by a series of relations which
are linear by parts. This way, the engineering stress in a new configuration is

"o ="'6+Ao, (FE_32)
where the stress increment Ac is expressed as a linear function of strain increment in the form

Ac = CAe, (FE_33)

where ‘C is a tangential value to the C =f(g) function at the 'C configuration. Introducing so-
called nodal displacement increment we get

Aq =t+Atq _ tq (FE_34)
and then the strain increment could be expressed in the form
Age=BAq. (FE_35)

Substituting into (FE _17) and rearranging we get

m g4+ kAq="""R-'F, (FE_36)
where
k= j B'CBdV (FE_37)

Vv

is the tangential stiffness matrix and
’F=IBT’ch (FE_38)
V
is the vector of internal forces at nodes and the vector “**'R is the loading at time ¢ + At .
The integration goes across the non-deformed volume. Using a suitable assumption for

expressing the acceleration at the time 7+ At as a function of displacement at time ¢, one can,
using Eq. (FE _36), express Aq as the first estimation of displacement increment that must,

however, be refined in a subsequent iteration process. The condition required for a successful
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iteration process is based on achieving the equilibrium of internal and external forces. The details
could be found in

11.11. Material and geometrical nonlinearity

By this we understand cases where there is a nonlinear relation between stress and strain; and
large displacements and large strains are taken into account. One of the possible approaches is
based on employing Green-Lagrange strain tensor with the second Piola-Kirchhoff stress tensor.
For more details see

11.12. Finite element method in mechanics of deformable bodies

Linear static problems are numerically treated by solving the system of algebraic equations
Kq =Q where K is the stiffness matrix, Q is the loading vector and q is the unknown vector of

generalized displacements at nodes.

When nonlinear static problems are solved, the stiffness matrix is not constant — generally it is a
function of unknown displacements, the system to be solved is K(q)q =Q and requires the

iterative solvers.

Linear steady state vibration problems are numerically treated by solving the generalized
eigenvalue problem, which is defined by (K — AM)X =0, where M is the mass matrix and K is

the stiffness matrix. The sought-after quantities are the eigenmodes X and eigenvalues 4.

Generally, n pairs could be found for the system with n degrees of freedom. The eigenvalues are
related to eigenfrequencies by the relation 4, = Q7 .

Transient dynamical problems are treated by solving the system of ordinary differential
equations, which — in linear cases without damping — has the form of ordinary differential
equations, i.e. Mq+Kq=R. The loading vector is a function of time. Explicit and implicit
numerical procedures are used to obtain the solution. The solution consists of a series of
displacements, velocities, accelerations, strains, and stresses for each time step. See

A general procedure for defining mass and stiffness matrices was illustrated in broad terms in the
previous text. Now, we will show how these matrices — for a few simple elements — are derived
in detail. We will use the standard approach based on so-called generalized coordinates. Later, we
will show another approach which leads to so-called isoparametric elements. The former process
could be summarized as follows.

Displacement approximation is secured by a polynomial function of coordinates in the form
u="Uc, (FE_39)

where u is the column vector containing the displacements to be approximated and U is the
matrix of approximation functions, containing the function terms appearing in the approximation
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polynomial. The column vector ¢ contains the constants of the assumed polynomial function.
Substituting nodal coordinates into Eq. (FE_39) we get

q=Sc, (FE_40)

where q is a column vector of nodal displacements and S is the matrix containing numbers, i.e.
nodal coordinates and their powers. For elements which are not geometrically deteriorated (we
will explain this term soon) the S matrix is regular, could be inverted, and so

c=S"q. (FE_41)
Substituting Eq. (FE_41) into Eq. (FE_40) we get
u=US"q=Aq, (FE_42)

where A =US™' is the matrix defining shape functions. Strain approximation could be generally
expressed in the forme = f(u), whose discretized form is

e=Fc, (FE_43)

where the F matrix contains the derivatives of functions appearing in A. Substituting Eq. (FE_41)
into Eq. (FE_43) we get

¢e=FS'q=Bq, (FE_44)

where B is the strain-displacement operator. Now, the stiffness and mass matrices could be
expressed in the forms

k= jBTCBdV : (FE_45)
4

m = jATAdV . (FE_46)
V

In the following text, we will derive the mass and stiffness matrices for a few geometrically
simple elements. Later, a procedure for assembling global matrices out of elementary ones will
be presented.
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11.13. Rod (bar) element

The element is schematically depicted in Fig. 9,
FE 2. This is the simplest element being used in
the technical practice. It lives in an one- 4

dimensional space defined by its axial O

(longitudinal) axis. 9 ,

It can transmit only axial forces and knows 4
nothing about the bending or torsion. With its
neighbors is connected, at its boundary nodes.

Fig. FE 2 ... Rod element with two dof’s

It communicates with neighbors by means of two axial displacements ¢, and ¢,, defined at
boundary nodes.

These displacements are measured in the local coordinate system x. To see their distribution in
space, they are plotted perpendicularly to their actual directions. The element is characterized by

its length /, the density p and the Young’s modulus E.

Now, we are looking for a suitable polynomial approximation u = Aq for this element. Since we
have only two free nodal displacement to play with, the only available choice is the polynomial
of the first degree which has two unknown constants, ie. ¢,,c, .

In the local coordinate system we can write

c
Uppprox =U =€+ X = [1 x]{ 1} =Uec. (FE 47)
¢

Denoting the nodal displacements
ul_,=qand u| _ =g, (FE _48)

and realizing that the assumed approximation should holds for the nodes as well

q=Sc, (FE_49)

9 10 ¢
b3 )
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Eliminating out of our considerations the negative or the zero length of the element (this way we
exclude geometrically deteriorated element) then the S matrix is regular and could be inverted.
From Eq. (FE_49) we can express ¢ and substituting it into Eq. (FE_47) we get

u=Uc=US""q=Aq. (FE_51)

Then, carrying out the above multiplication, we get the shape matrix in the form

A=|1 x]{_:/l I?Z}:[l—x/l x/1]=[a,(x) a,(x)]. (FE_52)

When deriving the strain-displacement matrix B from &= Bqone has to take into account the

proper kinematic relations. In the case of one-dimensional deformations, applicable for this
element, we can write

s=%=%(Aq)=%[1—x/z x/1)=[-1/1 1/1]q. (FE_53)

Thus, the strain-displacement matrix (operator) is
B=[-1/1 1/1]. (FE_54)

Notice that the B operator does not depend on x variable — it this case it is constant. It is not
generally so. This is due to the fact that the linear approximation of displacements was assumed.
And the derivative of a linear function is constant, of course. From this follows that using this
approximation we obtained the element which has the constant distribution of strains along its
length. That’s why it is sometimes called constant strain element. Now, we have all the
ingredients necessary to derive the mass and stiffness matrices. Using Eq. (FE 20) we can
express the mass matrix

/
Al 2 1

= o[ATAGV =pA[ ATA dx = P24 . FE 55

m pl p! x 6[1 2} (FE_55)

This is so-called the consistent mass matrix, being derived consistently in agreement with so far
presented rules.

There is another approach to the derivation of the mass matrix, which is based on its
diagonalization. It this case there is a nice physical interpretation stemming from the idea of

concentrating the continuously distributed mass into nodes.

What we get is so-call lumped or diagonal mass matrix

30
m=%[0 3] (FE_56)
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Using Eq. (FE_21) we get the stiffness matrix

(=1/1 1 -1
k=[B'CBdV =] E11 1/i]ade=E4 : (FE_57)
) 11 I|-1 1

We have taken for granted that there is a linear relation between the stress and strain, expressed
by Eq. (FE_3), and the fact that in 1D case the matrix of elastic moduli simplifies to a scalar, i.e.
to Young’s modulus, so C = E.

According to the generally accepted terminology, we say that an element having » independent
nodal displacements has n degrees of freedom.

11.14. Planar beam element
. o AELp
Let’s consider a planar beam element of prismatic ) 4
cross-sectional area, with the shearing forces and q\ \
the bending moments, depicted in Fig. FE 3. ] ' ‘\

In the first approach, we are neglecting axial
forces. The element is characterized by the cross- 1 3
sectional area 4, bending stiffness E/, density p
and the length /, [

Fig. FE 3 ... Planar beam element with 4 dof’s

Neglecting the axial forces, there are two displacements and two rotations at each node —
altogether four degrees of freedom.

For more details see . Let’s approximate the vertical displacements by

u= {uy (x)}z {c1 +o,x+e,x0 + c4x3}= Uc, (FE_58)

where the x-coordinate goes along the longitudinal beam axial axis. Again, this approximation
has to be valid at nodes as well, so

du (0) du (1)

u,(0)=gq, ?T:%v u,(ly) =4qs, (yixo =4y (FE_59)
So,

q, 1 0 0 O

q, 01 0 O
q=1%1_ 0 s (FE_60)

q; |

q,] |0 1 2 30
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After inverting the S matrix

1 0 0 0
Lo 1 0 0
_ 2 2 (FE_61)
“3/2 =2/, 3/ —1/1,

2/ U =2/ UL
we get

A=US" =[1-3C /R +25° 11} x=2 /1, + X112 32/ =21 =%/, +x 1],
.. (FE_62)

In this case, the role of generalized strain is played by the beam curvature & = d’u N dx* and also
u, =Aq, and then & = (d’A/dx’)q . Finally,

2
B=Z}?=—6/l§+12x/lg —4/l+6x/2 6/12-12x/I} —2/1,+6x/I2]. (FE_63)

Using Eqs (FE_20), (FE_21) we get the mass and stiffness matrices

156 221, 54 —13I,

4l; 131, =3I,
m PAIL, 0 0 o (FE_64)
420 156 —22i, -
sym 412

6 3, -6 3l

21 =31, I
k= 211;‘] 0 R (FE_65)
I 6 -3l -
sym 212
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11.15. Planar triangular element with 6 dof’s

Let’s consider a planar triangular
element depicted in Fig. FE 4. In
each node there is one
displacement which can be
decomposed into two
components in directions of
coordinate axes. Altogether the
element has three displacement
components in each direction —

so six degrees of freedom. The
triangular element was one the X
first element derived in history. X
A natural polynomial choice for X
such an element would be two

linear functions of coordinates x

and y, for each direction.

A

Fig. FE 4 ... Triangular element with 6 dof’s

G
u_(x, 1 0 0 O
I LR O “l_ye. (FE_66)
uy(x,y) 0 0 0 1 x ylf:

Cs

Six unknown constants ¢, of the approximation polynomial are found from the condition that Eq.
(FE_66) must hold for all three nodes as well. Denoting the nodal coordinates by x,,y,,i=1,2,3,
then for all nodes we can write

I x, » 0 0
q I x, », 00 G
1 0 0 S
q=1Pl= 5 lo|S 9 (FE_67)
: 0 I x 0 S
9 0 L ox, » |l
_0 I x Vs |

The S matrix contains the coordinates of nodes. Unless the triangle degenerates into a line or into
a single point then det(S) # 0 — matrix is regular — and one can write

c=S"q. (FE_68)
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Substituting into Eq. (FE_66) we get u = US™'q. The analytical evaluation of S™' is easy and

gives
ST 0
S = <~ | (FE_69)
0 S
where
st=—L [ @ (o] (FE_70)
detS -
X3 =X, X3V — X3 X Vo — XN
s = W=Vs s? = Vsi= W s = N =0
X, — X, X, — X, X, — X,
detgle(yz—y3)+x2(y3—y1)+x3(y1—y2). (FE_71)

Denoting @' = {1 X y} then the A matrix is

T 0 O (2 3) 0 0 0
A=US" = ? T i i i 1 2 3 : S
0 o' 0 0 0 sV s® §%|detS
... (FE_72)
_ 1 jaxy) axy) axy) 0 0 0
detS| 0 0 0 a(xy) axy) alxny)|
where a,(x,y)=¢'s"”,i=1,2,3 are linear functions of

Ux

x,y . Expressing the displacements in one direction, say
u,(x,y), then we can write

u,(x, ) = (1/ det(S)(a,q, + a,q, + a,q;)

Geometrical interpretation of this relation is depicted in
Fig. FE 5. The plane p is defined by three nodal

displacements ¢, ,q,,q, (in one direction).

Fig. FE 5 ... Continuity of displacements

So far, one element, say A, was considered. For a neighbor element B we will get a similar plane,
say v, that must share with p plane two displacements — so the approximation of displacements

has a common intersection line, which means that the approximation of displacements is
continuous. The fact that both planes (approximations) have the same intersection line means that
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the approximated displacements are continuous, satisfying thus the so-called compatibility
conditions. This cannot, however, be said of approximations of strains defined as derivatives of
displacements. Since the approximations of displacements are defined by linear functions, their
derivatives (approximations of strains) are constant within the element. This means that we have
to live with fact that that approximation of strains (and stresses of course) will — for this kind of
element — be discontinuous. There are strain jumps at element boundaries.

The strain displacement operator B depends on the type of stress state assumed. For the plane
stress or the plane strain conditions, we start with Eqs. (FE_3) and (FE_66) obtaining

16} 16}
aa”x =G %:Cm aa”x ’ a”y =G TG, (FE_T73)
x % y o ox

which, written in the matrix form, gives

du_/ ox 01000 0]°
C
E=16, 1= du,, /oy =00 0 0 0 1} ¢=Fe. (FE_74)
Ey ou, /0y +0u, /ox 001 010
| ' e,
We thus get £ =Fc, ¢=S"qand finally
e=Bq, (FE_75)

where B =FS ™' so,

010000 s s @ 0 0 01
B=FS"=(0 0 0 0 0 1 b ==
00101 oLt® © 0 s s® 9| detS
...(FE_76)
W=Vs Vs=N =0 0 0 0
1
:detg 0 0 0 X;—X, X, —X; X,—X |

Xy=Xy X=X X=X Vo= Vs Vs=V N~

In this case, the strain displacement matrix B contains nodal coordinates only — not functions.
Alternatively, the B matrix could be obtained from A by evaluating the partial derivatives.
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Oa  Oa, Oy

0 0 0
ox Ox Ox
B=|o o o % 0n O

o oy oy

Oay 0Oa, Oa, Oay Oay 0Oay

Oy Oy Oy Ox Ox Ox

(FE_77)

The mass and stiffness matrices of this element could then be obtained by integrating relations
(FE_20) and (FE 21), usingdV = hdxdy, where & is the element thickness, being considered

constant.
11.16. Quadrilateral element with 8 dof’s

The dimensions and node numbering
are in Fig. FE 6.

g3
The element lives in the plane, its q,

thickness is 4. The displacement —» a

4,
3 %

approximation  requires such a
polynomial which has the same
number of free polynomial constants
as there is the numbers of nodal
displacements in each direction. In this 4 |

Y

case, an incomplete polynomial of the X
second degree, having the form of a s

,
|I\J
B

(3% ]

-

(]6

bilinear function — satisfying the
spatial isotropy requirements, could be
used. See

Fig. FE 6 ... Quadrilateral element with 8 dof’s.

The displacement approximation could be expressed by

T
u= {ux,uy} = Ue,

FE

(FE_78)

(FE_79)
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Substituting the nodal coordinates into Eq. (FE_78) we get

100 0
S ~ |1 0 0
q=sc=| Y s ¢ , (FE_80)
0 S 1 a b ab
105 0

where 0 is 4x4 matrix full of zeros and q" = {q1 ...qg} is a column vector of nodal displacements

arranged with agreement of numbering shown in Fig. FE 6.

The analytical derivation of mass and stiffness matrices is provided by Matlab Symbolic
Toolbox. See the program

% mass and stiffness matrices of a rectangular elements
% for the plane stress

% a,b dimensions

% h thickness

% ro density

% mi Poisson ration

% E Young modulus

clear; format compact

% declaration of symbolic variables

syms fi x ysabuhroFBCM Bt Epgq;

fi = [1 x y x*y]; % approximation polynomial

zero = [0 O O O];

u = [fi zero; zero fi]; % matrix of approx. functions

RS

S

S [1000000O0O0; ... % matrix S
1a000000; ..
laba*h00O0O0;
10b00O0O0O; ..

0000100 O0;
00001a00; ...
000O01ab a*b;
000O010bO0];

sinv = inv(S); % inversion of S matrix

aa = u*sinv; % shape function matrix A

aat aa.’; % transpose of A

ata = aat*aa; % integrand without constants

ml=int(ata,’y”); % integration with respect to y
mu=subs(ml,’y”,’b”); ml=subs(ml,’y”,”0%); % substitute limits
m2 = mu-ml; % subtract

m3=int(m2,”x”); % integration with respect x
mu=subs(m3,’x”,”a”); ml=subs(m3,’x”,70%); % substitute limits
m4 = mu - ml; % subtract

m4 = ro*h*m4; % multiply by constants

const = 36/(a*b*h*ro); %

disp("mass matrix - multiplication by a*b*h*ro/36 is omitted’)
m4 = const*m4

% stiffness matrix

% derivatives of approx. functions

dfix = diff(fi,x); dfiy = diff(fi,y);

% create F matrix

F = [dfix zero;

zero dfiy; .

dfiy dfix];

% B matrix

B = F*sinv;

% transpose of B

Bt = B.”;
% matrix of elastic constants for the plane stress
% with omitted constant ... constk
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constk = E*h/(1-mi*mi);

C=1[1mi O;

mi 1 0; ..

00 (1- m|)/2]

% integrand of the stiffness matrix

btcb = Bt*C*B;

% integration with respect to x and y variables within a,b

% thickness h is constant

k1 int(btcbh,’y”); % integrace podle y

ku = subs(kl,’y”,?’b?); kl = subs(kl,’y”,”0%); % substitute limits
k2 = ku - kI; % subtract

k3 int(k2,’x”); % integration with respect x

ku subs(k3,’x”,%a”); kl = subs(k3,’x”,707); % substitute limits
ku - kI; % subtract

constk*k;

subs(k, {’asb’, *bs/a’}, {’p a’P:;

subs(k, {°1/3/b*a’, ’1/6/a*b } {’p/3*, ’9/6°});

subs(k, {’1/6/b*a’, *1/6/a*b’}, {’p/6°, *q/6°});

constk = (1- m|A2)/(E*h) k = constk*k; S|mpllfy(k)

k = -24*k; k = simplify(k);

disp(’ 7)

disp(’stiffness matrix”)

dispCmultiplication constant E*h/(24*(mi”2 - 1)) is omitted 7)
disp(’the first part k(1:8,1:4)7); disp(k(1:8,1:4))

disp(’the second part k(1:8,5:8)7); disp(k(1:8,5:8))

% end of symb_qg4_mk

XXXXX
o nn

The program gives
mass matrix - multiplication by a*b*h*ro/36 is omitted

m4 =

o
e

OOOOFRLNDBIN

OOOONANPF

OOOOA~NEN

NFEFNRMOOOO

PNRANOOOO

OOOONEFENA
NANRFRPOOOO

o L Lo Fo Lo Lo T T

N
el

stiffness matrix
multiplication constant E*h/(24*(mi™2 - 1)) is omitted

the first part k(1:8,1:4)

[ -8*g-4*p+4*p*mi, 8*q-2*p+2*p*mi, 4*q+2*p-2*p*mi, -4*q+4*p-4*p*mi]

[ 8*g-2*p+2*p*mi, -8*q-4*p+4*p*mi, -4*q+4*p-4*p*mi, 4*q+2*p-2*p*mi]
4*qQ+2*p-2*p*mi, -4*q+4*p-4*p*mi, -8*q-4*p+4*p*mi, 8*q-2*p+2*p*mi]

-4*q+4*p-4*p*mi, 4*q+2*p-2*p*mi, 8*q-2*p+2*p*mi, -8*q-4*p+4*p*mi]

-3*mi-3, 9*mi-3, 3*mi+3, -9*mi+3]

-9*mi+3, 3*mi+3, 9*mi-3, -3*mi-3]

3*mi+3, -9*mi+3, -3*mi-3, 9*mi-3]

[ 9*mi-3, -3*mi-3, -9*mi+3, 3*mi+3]

L s e W | |

the second part k(1:8,5:8)

[ -3*mi-3, -9*mi+3, 3*mi+3, 9*mi-3]

[ 9*mi-3, 3*mi+3, -9*mi+3, -3*mi-3]

3*mi+3, 9*mi-3, -3*mi-3, -9*mi+3]

[ -9*mi+3, -3*mi-3, 9*mi-3, 3*mi+3]

[ -8*p-4*g+4*g*mi, -4*p+4*q-4*q*mi, 4*p+2*g-2*q*mi, 8*p-2*q+2*g*mi]
[ -4*p+4*g-4*g*mi, -8*p-4*q+4*gq*mi, 8*p-2*g+2*q*mi, 4*p+2*q-2*g*mi]
L
L

[

4*p+2*q-2*q*mi, 8*p-2*q+2*q*mi, -8*p-4*q+4*q*mi, -4*p+4*q-4*q*mi]
8*p-2*qg+2*g*mi, 4*p+2*q-2*q*mi, -4*p+4*q-4*q*mi, -8*p-4*g+4*q*mi]

Four basic finite elements were derived — just to feel the flavor of the method. There are hundreds
of elements available in technical practice. For more information see
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11.17. Coordinate transformation

11.17.1. Rod element (2 dof’s) in plane %>

41 5(*)
depicted in Fig. FE_ 7, was derived in the local —*|__ f R —
coordinate system. Let’s denote it by x, while the “4 )2 %

global coordinate system will denoted by x, y.

Fig. FE 7 ... Local displacements of the rod element

Fig. FE 8 ... Global displacements of the rod element
Both coordinate systems are shown in Fig. FE 8. The angle « is measured from the global to
the local system. The relations between nodal displacements in local and global coordinate

systems are

g, =q,cosa +gq,sina, (FE 8l1a)
g, =q,cosa+q,sinc. (FE 81b)

Written in matrix form, we have

9
?1 _| cosa sina 0 .0 9, , (FE 82)
9, 0 0 cosa sina||q, -
q,4
or q=Tq, (FE_83)

where the transformation matrix is
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cosa sina 0 0
= . . (FE_84)
0 0 cosa sna -
Forces are vector quantities of the same kind, so
P=TP. (FE_85)

The inverse relation to (FE_85) could be obtained by means of the following reasoning. The
work done by external forces on virtual displacements should be independent of the coordinate
system in which the displacements and forces are expressed, so

&ITP — é‘qTF’ where q — Tq, 5q — T5q ; é‘qT — &ITTT , (FE_86)
and
q"P=5"TP =& (P-T'P)=0.

This relation must hold for any virtual displacement — this requires that the contents of the
bracket must be identically equal to zero. So the inverse relation to (FE_85) is

P=T'P. (FE_87)

Forces in the local coordinate system are proportional to displacements expressed in the same
system. Briefly, we call them local forces and local displacements. They are related by the local
stiffness matrix K . So, in the local system, we have

P Kq. (FE_88)

This relation must be valid in the global coordinate system, as well. So,

P=Kkq. (FE_89)

Starting with Eq. (FE_87)

P = T'P and substituting for P = kq we get P = T'Kq . Substituting then q = Tq we finally get
P=T'kTq, (FE_90)

which might be rewritten into

P=Kkq, (FE_91)

where we have defined the stiffness matrix of rod element in global coordinates by
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k = T'kT. (FE_92)

Let’s recall

_ 1 -1
k=55 : (FE_93)
I -1 1

where E is Young’s modulus, S is the cross-sectional area and / is the element length. In
practice the stiffness matrices and their transformations are routinely are evaluated and the FE
user is not burdened with processing details. Here, just for pleasure and for pedagogical reasons,
we will explicitly do it step by step. See the following short program using the Matlab symbolic
features

% mpp_stiffness_matrix_tranf_rod
clear

syms k k_bar T sin cos

k_bar = [1 -1; -1 1];

T = [cos sin 0 0 ; 0 O cos sin];
k = T."*k_bar*T;

pretty(k)

The output is

L cos™2, cos*sin, -cos™2, -cos*sin]
[ cos*sin, sin®2, -cos*sin, -sin™2]
L -cos”™2, -cos*sin, cos™2, cos*sin]
[ -cos*sin, -sin™2, cos*sin, sin™2]

Notice that the multiplicative constant Twas intentionally omitted. So the stiffness matrix of

the rod element, expressed in the global coordinate system, written in full, is

cos’a cosasina —cos’a  —cosasina
. ) . .2
ES| cosasina sin’ a —cosasina  —sin‘a
k=" , . s . (FE_94)
[ | —cos’a —cosasina cos’ a cosasina
—cosasina  —sin‘a cosasina sin’ a
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11.17.2. The planar beam element with 6 dof’s

Degrees of freedom of a planar beam with 6

degrees of freedom are schematically depicted in axial displacements TVemca|di5P|acem9nt5
Fig. FE O. —rO - —5

rotations _}

Fig. Fig. FE 9 ... Local dof’s (displacements and rotations) of the beam element

The transformation of generalized displacements from the local to the global coordinate system is
depicted in Fig. FE 10. The local coordinate system is X,y . The global coordinate system is

X, ).

Fig. FE 10 ... Local and global dof’s of the beam element
The angle « is measured from the global to local axes.

Observing Fig. FE 10 one can conclude that the relations between the generalized coordinates in
global and local system are

q,| [cosa —sina 0 0 0 01lqg
q, sina cosa 0 O 0 01|q,
0 0 1 0 0 01|gq
| _ ' i (FE_95)
q, 0 0 0 cosa -sma 0]|q,
qs 0 0 0 sina cosa 0]|g;s
9] | O 0 0 0 0 1|19
In matrix form
q=Rq, (FE 96)

where
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[cosa —sinae 0 0 0 0
sinag cosa O 0 0 0
0 0 1 0 0 0
R= - . (FE_97)
0 0 0 cosa -—-sina 0 -
0 0 0 sinag cosa O
| 0 0 0 0 0 1

The R matrix is orthogonal (which means that inverse is equal to its transposition), so

q=R'q=Tq.
(FE_98)
Analogically for generalized forces
P=TP. (FE_99)
We formally introduced
[ cosa sina 0 0 0 O]
—sina cosa O 0 0 0
T 0 0 1 0 0 0
T=R = , : (FE_100)
0 0 0 cosa sina 0 -
0 0 0 —sina cosa 0
0 0 0 0 0 1]
In the local coordinate system, we have
P=Kkq. (FE_101)
Substituting for P and q we get
TP =kTq (FE_102)
and after multiplication by T' from the left, we obtain
P=T'kTq=Kkq, (FE_103)

where the stiffness matrix of the beam element in the global coordinate system is
k =T'kTq. (FE_105)

The stiffness matrix of the beam element in the local coordinate system, see , 18
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By o B
12EJ  6EJ 12EJ  6EJ
0 3 2 0 T3 2
I I I I
6EJ  AEJ 6EJ 2EJ

K- ’ r ! T ! (FE_106)
12EJ  6EJ 12EJ  6EJ
0 B T 0 3 T
/ / / I
0 6E]  2E] 6EJ  4EJ
i 12 I P I

The transformation of the relation (FE_1006) is left to the reader.
11.18. Assembling

So far, the mass and stiffness matrices have been derived in the so-called local coordinate system.
We call them the local matrices expressed in the local coordinate system. Usually, the
displacements, forces and the matrices themselves have to be recalculated into another coordinate
system, which is uniquely defined for all the elements. Such a system is called the global
coordinate system and the mass and stiffness matrices are then called the local matrices expressed
in the global coordinate system.

For more details see

After having expressed the mass and stiffness matrices of all the elements in the global
coordinate system, it is necessary to find a systematic way, how to assemble them into so-called
global matrices, which would then represent the inertia and stiffness properties of the whole
system.

The assembling process is based on the topology and compatibility considerations. The topology
means that we know who is the neighbor of whom, while the compatibility means that the
continuity of displacements (in their approximation forms) has to be satisfied. In this paragraph,
the variables with the hat, say q, will denote the local variables in the local coordinate system,

the variables with the tilde, say q, will denote the local variables in the global coordinate
system.

And the variables without any upper accent, say q, will indicate the global variables in the global
coordinate system.
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Let’s show it on an example.

Denoting by the upper right-hand side index the element number, then the equation of motion of
the i-th element in the global coordinate system is

m'q +k'q =P, (FE_107)

For the whole system created by »n elements, we can — simply but rather non-efficiently —
assemble a single equation in the form

mq+kq="P, (FE_108)
where
P=p P o P, =0 § - §. (FE_109)
m' k'
m, = m’ § k= S § . (FE_110)
- -

The vector of local nodal displacements of all elements in the global coordinate system
q depends on the vector of global displacements of the system q by

q=2q, (FE_111)
where Z is the so-called incident matrix. Each row of this matrix contains zeros with the

exception a single ’1° located at a place where the element of the vector  corresponds to the
element of the vector q. The process might be elucidated by the following example
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Example

Let’s assemble the incident matrix Z for a ,truss structure‘, formed by three rod elements,
depicted in Fig. FE 11.

3
/—

Q>
b e
—

o

>
— b
=
(ST
>
—t
—

w2 \z

Fig. FE 11 ... Truss structure
Fig. FE 12 ... Nodal displacements of individual elements in local coordinates

In Fig. FE 12 to Fig. FE 14 we follow the transformation from the nodal displacements of
elements in the local coordinate system ¢, through the nodal displacements of elements in the
global coordinate system q, to the displacements of the structure expressed in the global
coordinate system, i.e. q. In this case, the relation (FE 111) has the form

I

7] 100000

#l o1 0000

@l loooo1o0

7l 100000 1g
g:| |1 0000 ola [,

11.46 6722:010000%:Z2q. (FE_112)
2[00 100 oflaf ] -
7| 10001 0 ollg
#| 100100 ollg
#1 o001 00
#l [ooo0o010
7] 0000 0 1]
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Fig. FE 13 ... Nodal displacements in global coordinates (individual elements)

Q(,T

AY s
X
q,—> >3
qu Tq4

Fig. FE 14 ... Nodal displacements in global coordinates (truss structure)

Out of 12 nodal displacements corresponding to individual elements only 6 displacements are
actually independent. This way the compatibility conditions are satisfied, meaning that the nodal
displacements of neighboring elements are identical, say g =g, .

The principle of virtual work requires that the work done by inertia and internal forces must be

~

equal to the work done external forces P.

o4 'm_q+0q"k g =0q"P. (FE_113)
Using 6q" =Z0q, 0q" =Z&§ and Eq. (FE_111) and substituting into Eq. (FE_113) gives
0q"2Z"m,Zg+0q" 2"k, Zq=0q"Z" P. (FE_114)
The last equation must hold for any virtual displacement 6q which leads to

M{+Kq=F, (FE_115)

where
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M=Z"mZ is the global mass matrix, (FE _116)
K=7Z"k Z is the global stiffness matrix, (FE 117)
F=272"P is the vector of external forces. (FE_118)

The elements of F vector are assembled the same way as those in the vector of displacements q.
Generally, the F vector contains contributions of surface (traction) forces P” acting on surfaces
Q., of initial stresses 6! in volumes V;, and the external forces Q" acting in nodes — generally,

it is a function of time.
F=) [AT"P"dQ +) [B"" 6 dV,+Q". (FE_119)
i=l1 Q; i=1 v,

In statics, the F vector does not depend on time and the inertia forces are neglected. Instead of
Eq. (FE_115) we get

Kq=F. (FE_120)

Example

In Fig. FE 11 the node numbers and element numbers of the considered truss structure are
indicated. The stiffness matrix of the i-th element in local coordinates is

oLk K
k“)z[“ 1?}, i=123. (FE_121)

ko ke
An equivalent matrix in global coordinates has the form

]f}il k112 kll."s kll4
k' = ’izil ’iﬁ? /i{? ]izj , i=123. (FE_122)
li_’)l k32 k33 Ii34
G
Let’s create the table of so-called code numbers for this structure. The code numbers are actually

the indices of global displacements, belonging to individual elements, listed in the same manner,
1.e. from the local node 1 to the local node 2. The code numbers in our case are
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element code

number numbers
1 1256
2 1234 (FE_123)
3 3456

Notice that the code numbers actually express the locations of 1’s in the previously defined

incident matrices Eq. (FE_115).Writing the code numbers around the first element matrix k' we
get

1 2 5 6

ki ko koK

BB B s 2
ko ks ko Ky S

ki ky kiyoky 6

Comparing with Egs. (FE_116), (FE_117) we see that the code numbers have the meaning place-
holders (pointers) indicating where the element of the local matrix is to be located in the global

matrix. For example, the element k), is to be located in the global matrix to the location defined

by indices 5, 6. Graphically, the procedure is depicted in Fig. FE 15. The same way is followed
when a mass matrix is to be assembled.

K]

o —

= - e —
[T@] + + £ + + +
+ + - + + +
- || * 4 T TN+ +1 (K]
+ + + i \+ + /
- - - + + +
- - - ks - -

Fig. FE 15 ... Assembling the global matrix

Let’s recall that the global matrix, assembled this way, corresponds to a mechanical system to
which no boundary conditions have been prescribed yet — it floats freely in the space. Such a
matrix cannot be inverted since it is singular — its determinant detK =0.

11.19. Assembling algorithm
Let’s have a system with imax (generalized) displacements, kmax elements, each element having
Imax local (generalized) displacements, i.e. the local dof’s — degrees of freedom. Furthermore,

there exists a procedure CODE(k,ic), which — when called — gives on its output the vector
ic(Imax) containing the code numbers of the k-th element. The procedures RIG(k,xke) and
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MAS(k,xme) generate the stiffness and mass matrices of the of the £-th element — i.e. the matrices
xke(Imax, Imax) and xme(Imax, Imax).

For simplicity, we assume that all the elements are of the same type and have the same number of
dof’s, i.e. Imax. The global matrices are xk a xm. In the old-fashioned Fortran, not exploiting the
symmetry of matrices we are dealing with, we could write

C Loop over elements
DO 10 k = 1,kmax

C Code numbers of the k-th element
CALL CODE(k, 1ic)

C Local matrices of the k-the element

CALL RIG(k, xke)
CALL MAS(k, xme)
C Loop over elements of local matrices
DO 20 k1 = 1,Imax
DO 20 k2 = 1, lImax

C Locations in global matrices and matrice themselves
il = ic(kl)
J1 = ic(k2)

xk(il,j1) = xke(kl,k2) + xk(il,j1)
xm(il,j1) = xke(kl,k2) + xm(il,j1)
20  CONTINUE
10  CONTINUE

In Matlab, where the vectors of pointers could appear at the index site of variables, the procedure
is more elegant and substantially simpler.

% loop over elements

for k = 1:kmax
ic = code(k); % code numbers of the k-th element
xke = rig(k); xme = mas(k); % local matrices of the k-th element

% assembly
xm(ic,ic)
xk(ic,ic)

xm(ic,ic) + xme;
xk(ic,ic) + xke;

end

11.20. Respecting boundary conditions

We have shown that the external (generalized) forces are related to (generalized) displacements
by Kq =F . We already know how to assemble the global stiffness matrix, which, however, as it

comes from the assembly process, is singular. It is due to the fact that so far the matrix knows
nothing of boundary conditions and being singular cannot be inverted, not allowing to get

displacements from q =K 'F. Evidently, a part of force components in F is due to reaction

forces due to the way the body is constrained — attached to the fixed frame. Also, a part of
displacements is already known, being dependent on the prescribed boundary conditions. To take
these facts into account let’s rearrange the ‘equilibrium equation’ in such a way that the known
and unknown quantities are put apart. We can proceed as follows

F=Kq, (FE_125)
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(FL[ %] R
F, K, Ky]lq, ’ -

where

F, known external forces,

F, unknown reactions,

q, unknown displacements,

q, prescribed displacements, representing boundary conditions.

Due to the symmetry of the stiffness matrix K it holds that K,, =K, .

From Eq. (FE_126) we get two matrix equations. From the first, solving the system of algebraic
equations, we get

Kq,=F-K.,, = gq,. (FE_127)
Knowing q,, the second matrix equation leads to the evaluation of unknown reaction forces from
F, =K, q, +K,q,. (FE_128)

If the system being solved is fixed to the frame in such a way that no mutual displacements
between the body and the frame, are allowed, then we have q, =0 and the previous equations

simplify to
K9, =F =gq, (FE_129)
F,=K,q,. (FE_130)

We could alternatively proceed by deleting the rows and columns from the Eq. (FE_126) which
correspond to those dof’s that represents the prescribed zero displacements, from the global
‘unconstrained” K matrix.

Example

The boundary conditions could be prescribed in many ways. One of them is based on the idea of
eliminating those degrees of freedom, which are a priory known that is to eliminate the
generalized displacements which are, at the chosen supports, identically equal to zero. In other
words, it requires deleting those rows and columns which correspond to the prescribed zero

displacements. Formally, K« K, M« M. This process is sometimes called the static

condensation. The loading vector has to be submitted to this process as well, i.e. F«F.
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How it 1s done in Matlab.

% boundary conditions

% prescribe dof"s where displacements,

% pointed to by elements of bc vector, are prescribed zero
bc = [1 2 16 17];

% static condensation - delete corresponding rows and collumns

k_glob(bc,:) = [1:

k_glob(:,bc) = [1;

m_glob(bc,:) = [1;

m_glob(:,bc) = [];

% delete corresponding items in the loading vector as well
F(bc) = [1;

In Matlab, the system of algebraic equations is solved by the backslash ,\” operator. The
unknown displacements are

displ = k_glob\F;

There is another way, how the stiffness matrix could be treated to recognize the boundary
conditions and be thus regularized. Instead of rearranging the rows and columns, which is a
computationally unpleasant operation, we could proceed in a following, approximate, way.

Imagine that in our stiffness matrix K we want to prescribe just one boundary condition, say
g, =0. Let’s replace the current diagonal element k,, by a ‘big’ number, say m, which is at

least 10®times larger than other element values appearing in the matrix. Now, the approximate

inverse matrix of K could be obtained from the equation KK™' =1. Decomposing the matrix
and writing the partial products in full we have

{A b}[x y} {I 0}
T T | at . (FE_131)
¢ milu v 0 1

Notice the different fonts used for the scalar values m,v,1, the matrix values A,X,1,0, and for

the vector values b, ¢,y . It should be reminded that b represents the column vector, while b" , its
transpose, is the row vector.

From the previous equation, the following four equations could be written

AX+bu' =1, (FE_132)
¢ X+mu' =0", (FE_133)
Ay +v'b=0, (FE_134)
c'y+mv=1. (FE_135)

From Eq. (FE_135)

v=Ll-ely), (FE_136)
m
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can be substituted into Eq. (FE_134)

-1
y:i(ibcT—Aj b.
m\m

From Eq. (FE_133)
u' =——c'X.

m

Finally,

1 -1
X:[A——bch .
m

Since m is very large, then 1 is very small and thus
m

y—=>0, v—>0, X>A"' and u' ->0".

So, the approximation of the inverse stiffness matrix is

A0
-1
K'=["_ |

0" 0

Which is what we wanted to show.

FE

(FE_137)

(FE_138)

(FE_139)

(FE_140)

(FE_141)
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