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01_IN. Introductory part 
 
1.1. Introduction 
 
Studying the subject of mechanics of deformable bodies (also called mechanics of 
materials or strength of material) we will rely on knowledge obtained during the 
freshman courses of engineering, namely mathematics (vector, matrix and tensor 
analyses, and differential and integral calculus), mechanics of rigid bodies (statics, 
kinematics, dynamics) and the basic principles of mechanical engineering. 
 
1.1.1. A few words about modeling 
 
Since time immemorial people are trying to find out, analyze, explain and predict the 
phenomena occurring in Nature. At first sight, these phenomena are not evident, they are 
complicated – it is difficult to understand and analyze them. The motivation for this 
activity is to understand and thus to gain the ability to predict.  
 
He who knows and can predict is then able to make correct decisions. Throughout ages, 
such a person is always highly respected in society. Recall tribe shamans, Egyptians 
priests, managers and last but not least engineers. They know how to treat local maladies 
and ailments, they know how the rise of the brightest star in the Northern hemisphere – 
Sirius – is related to the flood of the Nile river and to the consequent harvest, how to send 
a man to the Moon and back, and how to design an bridge being able to withstand the 
predictable load.  
 
To find out at least the partial explanations solutions of phenomena Nature, we try to 
simplify them, neglect seemingly marginal facts, with a pious hope that the neglected 
parts do not substantially influence the properties of the studied subject. This way, we get 
a simplified solution, which does not fully describe the original phenomenon. Such a 
process is called modeling and the result of such a mental process is called the model. So, 
each model inherently contains certain assumptions and simplifications and its validity is 
thus limited. A model can be expected to be reliable if it is used within the scope of its 
accepted assumptions. And of course, the model reliability has to be thoroughly tested.  
 
In this text, we will limit interests to the solid continuum mechanics and to its subset, i.e. 
to the engineering strength of material, also called the mechanics of materials.  
 
1.1.2. Continuum mechanics 
 
Continuum mechanics is a model dealing with the response of solid or fluid media to 
external influences.  
 
Continuum mechanics analyses the response of solid and fluid media to external effects. 
By the term response, we understand the spatial and temporal distributions of 
displacements, velocities, accelerations, forces, stresses, and strains, etc., associated with 
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individual particles of the medium. The external effects could represent the force 
loadings, the thermal loadings, the prescribed deformations, etc. 
 
The continuum is considered one of the possible macroscopic models of the matter. The 
continuity itself is a property closely dependent on the magnification scale being used for 
the observation of analyzed specimens. We have to realize that the matter in Nature is 
actually corpuscular and thus not continuous.  
 
Accepting the continuum model, we intentionally neglect the corpuscular nature of 
matter; we assume that the matter is continuously distributed within the body. We claim 
that all the material properties of an infinitesimal element are identical with those of a 
specimen of the finite size. The quantities describing the response of the body are 
assumed to be continuous functions of space and time. 

 
In fluids, the molecules are allowed to move relatively freely, being constrained by weak 
intermolecular forces, while in gases the intermolecular forces are still weaker and the 
particle motions are rather unlimited.  

 
So, the solid continuum mechanics – which is the subject treated in this text – is a model 
of Nature being characterized by the fact that within the examined solid bodies the 
relative motions of material particles are limited by strong inter-atomic forces. 
 
The equations describing the behaviour of the solid continuum model are based on 
kinematics and on the basic physical laws related to the conservation of energy, 
momentum, and energy. 

 
Due to the accepted assumptions mentioned above, the continuum model has a limited 
scope of validity. What are those limits cannot be mathematically derived and expressed 
– it is always the properly conceived experiment which certifies the theory. 
 
Within the scope of solid continuum mechanics, we will deal with deformable solids for 
which there are strong inter-atomic forces allowing solid particles limited displacements 
only. The solid continuum model is considered reliable if the size of the critical analyzed 
element of the matter is at least 410  times greater then the inter-atomic distance of the 
material the body is made of. This empirical wisdom comes from [19]. For metals the 
inter-atomic distance is about 1010 m, so the critical element size should not be less than 
that of 610 m.  
 
This critical size also limits the maximum frequency that can be safely transferred by the 
solid continuum model. Imagine a harmonic wave whose wavelength 610 m is equal 
to the critical element size mentioned above. It is known that a stress wave in steel 
materials propagates with the velocity of about 5000c  m/s. From it follows that the 
maximum frequency that could be reliably modeled by continuum is 

GHz5/max  cf . 
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This value is sufficiently high above the frequencies currently occurring in mechanical 
engineering practice and justifies the safe usage of the continuum model even for stress 
wave propagation phenomena. 
 
See [18], [23]. 
 
1.1.3. Strength of material 
 
The subject of the strength of material, as it is taught in engineering curricula, is a subset 
of solid continuum mechanics. It deals with ascertaining deformation, strains, and 
stresses in deformable bodies (design elements of machines, structures) due to external 
loadings. Also, a prediction – related to the ability to withstand the prescribed loading – 
is studied. The subject of the strength of material is also related to dynamical problems 
allowing to analyze the impact problems with stress propagation phenomena. Then, the 
loadings and consequent deformations, strains and stresses are not only functions of 
space but also functions of time. 
 
See [21], [40]. 
 
1.1.4. Linear vs. non-linear 
 
The linear solid continuum mechanics is based on the following assumptions. 
 
Infinitesimal strains 
For linear cases, it is characteristic that the strain is expressed as the first derivative of 
displacements with respect to un-deformed coordinates of the examined body. 
Derivatives of the higher order are neglected. 
 
Small displacements  
It is assumed that maximum displacements of the deformed body are small with respect 
to the overall dimensions of the considered body. It is tacitly assumed that under the term 
of small displacements we understand both displacements and rotations. 
 
Equilibrium equations are written with respect to the initial, un-deformed configuration. 
It means that deformations and strains due to the prescribed loadings are properly 
evaluated, but resulting forces and stresses are computed from the geometry of the initial, 
un-deformed configuration of the body. It comes from the previously stated assumptions 
of the small overall deformations. 
 
Linear constitutive relation 
The validity of Hooke’s law, supposing that there is a linear relation between stress and 
strain quantities, is assumed. Theoretically, there is no limit of this linear behaviour, thus 
the processes of plasticity, hysteresis, and permanent material damage are not considered.  
 
Boundary conditions do not change due to the loading. It is assumed that the boundary 
conditions do not change during the loading process.  
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1.1.5. Sources of non-linearity 
 
Generally, the world is non-linear. To simplify the modeling process, it is worthwhile to 
classify the individual sources of non-linearity and to use only those that are pertinent to 
the particular engineering case being analyzed. 
 
Material non-linearity only 
Non-linear material models, as plasticity, viscoelasticity, creep, etc., are usually 
combined with assumptions of small strains and small displacements.  
 
Large displacements, small strains 
This type of material non-linearity is relatively common in engineering practice. As an 
example, the behaviour of flexible truss and shell structures can be mentioned. In this 
case, the large displacements of structures are combined with the local linear behaviour 
of the material. So, the Hooke’s law is locally valid. What happens to a material element 
during its deformation is depicted in Fig. IN_1. 
 
 
 
 
 
 
 
 
Fig. IN_1 … Large disp small strains 
 
Large displacements, large strains, non-linear material behaviour 
This is the generic case, which is most difficult to solve. Often, the boundary conditions 
might be changed during the loading process. Examples: contact problems, post-buckling 
behaviour of structures, technological processes with material forming, etc. See Fig. 
IN_2. 
 
 
 
 
 
 
 
Fig. IN_2 … Large disp large strains 
 
See  [4], [7]. 
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Differences between rigid and deformable mechanics 
 
 

 
Fig. IN_3 … Rigid body    Fig. IN_4 …Deformable body 
 
In rigid body mechanics, see Fig. IN_3, the state of equilibrium of applied loads with 
reactions forces can be analytically found only for the statically determinate cases. The 
applied force is freely movable along its line of action having thus no effects on 
reactions. 
 
In mechanics of deformable bodies, see Fig. IN_4, the cases with statically indetermined 
conditions could be solved as well, but the equilibrium conditions have to be 
accompanied by a suitable number of deformable conditions. Furthermore, the acting 
force cannot be freely moved along its line of action and thus the force 1P , in Fig. IN_4, 

causes a different stress and strain distributions in the loaded body than the force 2P .  
 
1.1.6. System of units 
 
In this text, we will systematically use quantities expressed in units defined in The 
International System of Units, universally abbreviated SI (from the French Le Système 
International d’Unite´s). See [37]. 
 
Seven base SI quantities and their units are  
 
Base quantity                name         symbol 
 
length    meter   m 
mass    kilogram  kg 
time    second   s 
electric current  amper   A 
thermodynamic temperature  kelvin   K 
amount of substance  mole   mol 
luminous intensity  candela  cd 
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Some of SI derived units used in mechanics 
 
Derived quantity  special name   special symbol  in base units 
 

area    square meter      
2m  

volume   cubic meter      
3m  

speed, velocity  meter per second     m/s 

acceleration   meter per second squared    
2m/s  

wave number   reciprocal meter     
1m
 

density   kilogram per cubic meter    
3kg/m  

frequency   hertz     Hz   
1s  

force    newton    N   
2smkg 

 

pressure, stress  pascal     Pa   
212 smkgNm    

energy, work  joule    J  
22smkgmN   

power   watt    W  
321 smkgsJ    

 
A note to weight and mass 
 
In science and technology, the weight of a body is defined as the force that gives the body 
the acceleration equal to the local gravitational acceleration, while the mass is a measure 
of matter determining the aversion of a body to move with acceleration. Thus, the SI unit 
of the quantity called weight, defined in this way, is newton [N]. However, in everyday 
use, and among the laic community, the term weight is frequently but wrongly, used as a 
synonym for mass. So, highly questionable are the common vocabulary entries claiming 
that the mass of a body is determined by weighing. This is not true – one kilogram of 
gold is heavier on the Pole than on the Equator of the Earth. Nevertheless, the above 
heretic statements would never be used in this text. 
 
Old fashioned and ‘unacceptable’ units 
 
Technical system of units 
 
There are many units that are outside the SI system that are not formally accepted but are 
still often used. The so-called technical system of units takes as the base quantities the 
length, the force and the time – they are measured in meters [m], kiloponds, denoted  [kp] 
or [kg*], and seconds [s], respectively. One kilopond [kp] is defined as the weight of a 
body having the mass of one kilogram [kg]. The mass unit in this system is [ m/skp1 2 ].  
 
Since the weight G  of a body, having the mass m , is the force induced by the local 
gravitational acceleration g , then using Newton’s law we get the relation between weight 
and mass in the form mgG  . For the standard gravitational acceleration, we get  

N8061.9kp1  . 
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In certain respects, this system of units is more ‘human-oriented’ than the SI system. For 
example, a body having the mass of 1 kg weighs just 1 kp, the pressure in the depth of 10 
meters of water is 1 atmosphere or 1 2kp/m , etc. From the point of view of the plain 
common sense, this approach was very convenient and was easily grasped, but the fact 
that the weight depends on the local value of gravitational acceleration made this system 
physically unacceptable. 
 
Imperial system of units 
 
In the United States, they are still using a version of the technical system of units, 
expressed, however, in imperial units, i.e. pound_force, foot, second. The term 
pound_force, [lb_force], is used as a unit of weight, while for the mass they have 
pound_mass denoted [lb_mass] or [poundal] or slug. Its unit is ft]/s lb_force 1[ 2 . 
 
1.2. History of mechanics of rigid and deformable bodies 
 
History of mechanics of rigid and deformable bodies goes back 
to Galileo (1564 – 1642) who analyzed the deformations and 
mechanical failures of rods, beams and hollow cylinders due to 
external loadings. See Fig. IN_5 and [16]. 

 
 
 
Fig. IN_5 …Galileo beam 

 
Robert Hook (1635 – 1702) is the founder of the modern concept of the theory of 
elasticity. In his contribution De potenziâ restitutiva, published in 1678, he claims that he 
invented the theory of springs. The term spring in his interpretation is to be understood 
not only as the spiral or leaf spring but also as the ‘springing body’. His famous 
statement, which in Latin is Ut tensio sic vis, is translated into English as The power of 
any spring is in the same proportion with the tension thereof. This might be reformulated 
as the elongation of the spring is proportional to the force. Today’s formulation of 
Hooke’s law is – the stress   is proportional to the strain  .  
 
Thomas Young (1773 – 1829) was the person with a wide range of interests covering 
medicine, languages, and mechanics. The coefficient of proportionality E , appearing in 
Hook’s law, i.e.  E , is named after him. 
 
Claude-Louis Navier (1785 – 1836) was a French engineer and physicist who also 
specialized in mechanics. For the first time, he formulated equations of motion for a 
generic particle of a loaded body.  
Augustin-Louis Cauchy (1789 – 1857) made substantial contributions to the analysis of 
solid continuum mechanics. He accepted the stress definition established by Saint-
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Venant1 (1797 – 1886), defined the stress ellipsoid, the principal stress, derived the 
equations describing the equilibrium of forces acting on an infinitesimal element and 
published, what we might today call, the generalized Hooke’s law – expressing thus the 
linear relations between stress and strain components of a loaded body in 3D space. He is 
responsible for the fact that the stress tensor is considered symmetric2. 

 
An excellent source of information concerning the history of elasticity, the history of the 
strength of material is provided in [38]. See also [40].  
 
It reveals, that the analysis of the response of deformable bodies to external loadings 
evolved historically by two independent ways – an engineering and mathematical. 
The engineering approach was based on consequent and rather independent analyses of 
bodies of specific forms as rods, strings, beams, shells, vessels, etc. being subjected to 
different types of external loads as the force, moment, pressure, etc. 

 
The mathematical attitude started by a generic formulation of equilibrium conditions, or 
equations of motion, for an infinitesimal element of a particular body with the intention 
to determine the distribution of displacements, velocities, accelerations, strains, stresses 
in space and time. This process leads to partial differential equations, which are to be 
solved for the prescribed boundary and initial conditions – not an easy task. 
 
So, side by side there are two approaches leading to two different educational styles that 
are supported by historical evolution. Namely, the subject of the engineering strength of 
material, and the mathematically oriented theory of elasticity – more generally the 
continuum mechanics theory. 

 
The former, represents the bottom-to-top approach, starting with the analyses of simple 
cases of geometry for different kinds of loadings and gradually proceeding to the 
complicated ones. It represents the substance of engineering approach to the problem 
solving – always trying to find out a simplified, but within accepted assumptions ‘correct’ 
solutions, minimizing the required effort to do so, and using for this purpose the available 
computational tools. Our forefathers did not have computers at their disposals.  

 
The latter, top-to-bottom approach went the opposite way. Until recently, the 
mathematical theory of elasticity was considered to be a purely academic matter, since 
the resulting partial differential equations, describing the time and space distributions of 
kinematical and stress quantities of loaded bodies, applied to generic initial and boundary 
conditions, did not as a rule have close analytical solutions. Thus, the direct application 
of the mathematical theory of elasticity to engineering problems was initially almost 
negligible. However, the rise of computers in the middle of the last century, accompanied 
by efficient implementations of numerical methods, led to the renaissance of the 

                                                 
1  His full name is Adhémar Jean Claude Barré de Saint-Venant. 
2 Cosserat brothers (François and Eugéne), in Théorie des corps déformables (Theory of deformable 
bodies) (1909), established an alternative theory of elasticity in which the stress tensor is not symmetric.  
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mathematical theory of elasticity and allowed the sudden rise of effective tools as the 
finite element method, the boundary element method, etc.  

  
Both approaches will be presented in this text – the comprehension of the mathematical 
theory of elasticity allows better understanding of the theoretical backgrounds of modern 
computational tools while the knowledge of principles of the engineering strength of 
material permits to solve simple cases off-hand, to have a proper feelings for the ability 
of basic design parts to withstand the applied loading, and last but not least to have a 
computing etalons and benchmarks for checking the first approximations of solutions of 
complicated cases in engineering practice.   

 
There are two relatively distinct mathematical tools that are suited to the above-
mentioned approaches. The mathematically oriented continuum mechanics theory is 
efficiently described and analyzed by tensors, while for the engineering approach and for 
the consequent programming efforts it is the matrix description which is preferable. We 
will show that after all both the tools are closely related and interwoven. Both approaches 
are useful for the proper understanding of modern engineering tools, as the finite element 
method, boundary element method, etc., that are primarily used for analyzing the state of 
stress in machine parts and the ability of those parts to withstand the applied loading.  
 
1.3. Mathematical and computational tools – background 
 
1.3.1. Scalars, vectors, tensors and matrices   
 
The quantities we are dealing with in the continuum mechanics (as displacements, forces, 
stresses, etc.) are as rule independent of the coordinate system in which they are 
expressed.  The quantities of that type are suitably represented by vectors and tensors, for 
their elegance, shorthand brevity and contextual richness.  

 
What is the meaning of the independence of vector and tensor quantities with respect to a 
particular coordinate system?  
 
Take for example the vector, which in 
mechanics could represent the 
displacement, velocity, acceleration, 
force, etc. We are frequently visualizing 
it as an arrow, being defined by its 
orientation and length. Often, we are 
working with its components that are 
actually the projections of that vector 
into three mutually perpendicular axes – 
the Cartesian coordinate axes.  
 
 
Fig. IN_6 … Vector cartesian 
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Thus, a vector in 3D space has generally three independent projections – components. 
See Fig. IN_6.  
 
We could, however, define infinitely many independent coordinate systems. While the 
considered vector is still the same, its components – the vector components – are 
different, depending on that former choice. We say that the vector is invariant with 
respect to a particular choice of the coordinate system. We will show that there is a 
unique procedure, allowing expressing the vector components of the same vector from 
one coordinate system to another. 
 
1.3.2. Tensors 
 
Similarly, in continuum mechanics, an entity called tensor could suitably represent the 
state of stress in a particular particle of a body. The state of stress is a quantity of tensor 
nature – in 3D space, it has 9 components and in 2D space, there are four components. As 
before, while the stress tensor is independent of the choice of the coordinate system, its 
components – the stress components – differ, depending on the choice of the particular 
coordinate system. The different stress components (simply called stresses) of the same 
tensor could be easily expressed in different coordinate systems but the stress tensor, 
signifying the state of stress, is still the same. Similarly, for the strain quantities. 
 
Here, we briefly explain the working tools and operators suitable allowing an efficient 
treatment of quantities appearing in continuum mechanics. 
 
The tensor is a mathematical entity uniquely defined by the relations prescribing 
transformation of its components from one coordinate system to another. In continuum 
mechanics, the tensors will be mainly used for the representation of stress and strain 
quantities. In this paragraph, we will concentrate on their mathematical properties.  

 
References to textbooks related to tensor and matrix analyses are numerous. See for 
example [33], [28], [14], [15], [24], [25], [35], [36]. 
  
1.3.3. Transformation of tensors 
 
Generally, the tensors are quantities uniquely defined by the prescription of their 
transformation properties. 
 
In this text we will limit our attention to tensors living in Cartesian coordinate systems3 – 
we call them the Cartesian tensors. Tensors are classified by their order, sometimes 
called rank. The number of their components depends on their ‘spatiality’. For example, 
in a 3D space, i.e. for 3n , the tensor of the thN order has Nn components. In this 
text, the quantity n , denoting the ‘spatiality’ will be examined for values 1, 2 or 3, while 
the quantity N , determining the order of tensor, will reach values from 0 to 4 only. 
 
                                                 
3 The Cartesian coordinate system is represented by mutually perpendicular axes. Any 3D vector can be 
expressed as a linear combination of three non-coplanar vectors – called the base vectors. 
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1.3.3.1. Tensors of the zeroth order – scalars, 0N  
 
The scalars are quantities uniquely determined by their magnitudes. They will be denoted 
by Latin or Greek letters and printed in italics. Examples are the temperature, say T , the 
mechanical work W , the density  , etc. Scalars do not change their values when 
expressed in different coordinate systems.  
 
1.3.3.2. Tensors of the first order – vectors, 1N  
 
The vectors, in this context, are subsets of tensors – the tensors of the first order. They are 
characterized by a single free index and uniquely determined by their orientation and 
magnitude. Examples are displacement, velocity, acceleration, force, etc. They will be 
denoted either by the bold straight fonts or by the italics font accompanied by an 
overhead arrow. As an example, take the velocity vector, which might be denoted as v or 
v


or iv . 

 
The vector components are usually collected in braces – . For example, for a radius 

vector of a particle with coordinates 321 xxx  we might write 

















3

2

1

x

x

x

x x


. In this case, 

the column vector was used, sometimes we work with row vectors, as  321 xxx . In tensor 

analysis, it is convenient to name the components as 321 ,, xxx  instead of zyx ,, , since it 

allows an efficient dealing with quantities appearing in formulas. 
 

For example, the length of the radius vector x , i.e. the scalar quantity r , could be 
expressed by means of the Pythagoras theorem as 

332211
2
3

2
2

2
1 xxxxxxxxxxr 


. Then, square of that length is 




3

1

2

i
ii xxr . 

This expression could be even more simplified, by using the so-called Einstein 
summation convention, by writing ii xxr 2 . The rule states that in case of repeated 

indices the summation sign might be omitted.  
 

Primarily, the vector in this text is formally considered as the column quantity4. To save 
the printing space, we might express the column vector as a row one, using the transpose 
operator known from the matrix analysis. For example, the velocity vector might be 

expressed as  T
321

3

2

1

vvv

v

v

v

v 















 v


. Again, instead of zyx vvv ,, , it is preferable to 

write 321 ,, vvv . 

 

                                                 
4 In Matlab, by default, the vector quantities are considered as row arrays. 
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Transformation of a tensor of the first order – i.e. the vector 
 
To simplify the explanation, let’s start 
with a 2D space example where there are 
two Cartesian coordinate systems, 
having the same origin but a different 
angular orientation – the primed and 
unprimed coordinate systems. In that 
Cartesian space lives a vector a


. See 

Fig. IN_7 where its projections into axes 
of both coordinate systems are depicted. 
The relation (also called the 
transformation) between components of 
the same vector in two different 
coordinate systems, is obtained by mere 
inspection  
 
 
Fig. IN_7 … Vector components in two coordinate systems  
 

.cossin

,sincos





yxy

yxx

aaa

aaa








        (IN_1) 

 
This relation, written in the matrix form, gives 
 

aRa 














 













;

cossin

sincos

y

x

y

x

a

a

a

a




.      (IN_2) 

 
In this case, the transformation matrix R  represents the rotation process and is said to be 
orthogonal. Such a transformation conserves the lengths of vectors; geometrically it 
represents the rotation or the mirroring. For an orthogonal matrix, its determinant 

1det R . The inverse of such a matrix is obtained by a mere transposition, i.e. 
T1 RR  . So, in this case, the inverse transformation is defined by 

 

aRa T;
cossin

sincos
































y

x

y

x

a

a

a

a




.      (IN_3) 

 
Denoting the indices by integers 1,2 instead of letters yx,  allows using a simple and 
elegant notation in the form  
 

jjii aRa  .          (IN_4) 

  

xa

x

x

sinya 

cosxa 

xa 

ya

ya 

sinxa 

cosya 





y

y a

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Notice, that the index j , appearing twice on the right-hand side, is thus the summation 
index. The index  i  , called the free index, is understood to take all the possible values 
from 1 to n , which in this 2D example is 2. The summation index is called the dummy 
index, since the letter j  could be replaced by any imaginable letter (say .etc,,, mlk ), not 
being in ‘conflict of interests’ with the free index – that is i  in this case. So, the previous 
formula actually represents two equations, both containing the summation. They have the 
form  
 

2,1for
2

1

 


iaRa
j

jjii .        (IN_5) 

 
This relation, however, represents the algorithm for obtaining the result of the matrix by 
column vector multiplication known from the matrix algebra. Explicitly, written in full, 
we have two equations 
 










cossin

sincos
or

cossin
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sincos
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21

21

2

1

2

1

aaa

aaa
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a

a

a

a












































. 

      … (IN_6) 
In this case, the inverse transformation is defined simply by 
 

aRa T

2

1

2

1 ;
cossin

sincos






























a

a

a

a




     or  jjii aRa  .   (IN_7) 

 
This way, we have shown the convenience of representing the component counters by 
numbers instead of letters and also the close connection of tensor and matrix 
representations.  
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Vector transformation in 3D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. IN_8 … 3D coor transf 
 
In Fig. IN_8 there is a generic vector x .  Let the axes 321 ,, xxxO and 321 xxxO   represent 

two right-handed Cartesian coordinate systems with a common origin at an arbitrary 
point OO  .  For simplicity, a 2D sketch is plotted only.  
 
If a symbol ijR  represents the cosine of an angle between i-th primed and j-th unprimed 

coordinate axes i.e.    jijiij xxxxR  cosbetween anglecos , then all the nine 

components can be arranged into a 33  matrix ][ ijRR , that is called the rotation 

matrix or the transformation matrix, or the matrix of direction cosines. Then, the 
transformation of components of a generic vector x  from the non-primed to the primed 
coordinate system is provided by the formally same formula as before, i.e. by xRx  or 

jiji xRx  . In 3D, this formula is understood as 

 

3,2,1for
3

1

 


ixRx
j

jiji .        (IN_8) 

 
The formula represents three equations – in each of them, there is a triple summation. Try 
to write the above formula in full.  
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Similarly, for the inverse transformation 
 

xRx T  or  jjii xRx  .        (IN_9) 

 
In n-dimensional space, the tensors of the first order (i.e. the vectors) have n components. 
 
True vectors versus one-dimensional arrays having m components 
 
It should be emphasized that we have to distinguish the true vectors5, being defined as 
oriented arrows with prescribed magnitudes that are  living in 1D, 2D or 3D spaces, for 
which the above-mentioned transformation property holds, and one-dimensional arrays, 
defined in programming languages, that could generally contain m  components where 
m  could be any (finite and positive) integer. In texts dedicated to programming, these 
arrays are often called vectors as well. This might cause a sort of confusion because both 
mentioned ‘vectors’ have to be treated differently when being transferred from one 
coordinate system to another. 
 
1.3.3.3. Tensors of the second order, 2N  
 
The tensor of the second order, characterized by two free indices, is defined as a dyadic 

product of two column vectors, say, 


































3

2

1

3

2

1

,

b

b

b

a

a

a

ba  and can be formally written, 

denoted and expressed by different ways as 
 

 



















































333231

232221

131211

332313

322212

312111

321

3

2

1
T,,

TTT

TTT

TTT

bababa

bababa

bababa

bbb

a

a

a

baT jiij abTbaT

   
… (IN_10) 

 
In this text, these tensors are denoted by bold straight capital letters as T , while their 
components by italics accompanied by two lower right indices, as ijT . The notation ijT  

might be understood by two distinct but complementary meanings. Either as the tensor 
component for particular values of i  and j , or as the ‘whole’ tensor defined for all the 
range of applicable indices.  
 
The detailed derivation of these relations is in [28]. 
 
Orthogonal transformation of the second order tensor between two Cartesian coordinate 
systems having the same origin but a mutually different angular orientation can be 
expressed by 

                                                 
5 Generally, the attribute ‘true’ is not accentuated. 



IN 16

Tor RTRT  jlklikij RTRT ,      (IN_11) 

 
where  jiij xxR  between anglecos . The matrix R  is often called the matrix of direction 

cosines. 
 
The inverse transformation is  
 

RTRT  Torljklkiij RTRT .      (IN_12) 

 
1.3.3.4. Tensors of the fourth order, 4N  
 
The forward and inverse transformation laws for tensors of the fourth order can be 
expressed as 
 

rstnnltksjriijklrstnnlktjsirijkl CAAAACCAAAAC  and .   (IN_13) 

 
We have stated that the tensor expressions are compact tools allowing effective 
description of quantities characterizing the response of solid bodies to external loadings. 
These simply appearing expressions actually require a lot of work to do if there is a 
necessity to dirty our hands with its evaluation. 
 
In 3D space this kind of tensor has 8134 Nn elements and in continuum mechanics is 
suitable for expressing the components of coefficients of Young modulus appearing in 
the generalized Hooke’s law which has the form 
 

klijklij ECΣ  .         (IN_14)  

 
In matrix algebra, there is no direct equivalent for tensor quantities of the fourth order. 
 
Evaluation of the first formula shown above requires implementing four cycles to address 
the indices lkji ,,,  and an additional four cycles for quadruple summation indicated by 
indices ntsr ,,, . We could simply proceed as shown in Matlab program 3. 
 
% Matlab program 3 
% fourth_order_tensor_transformation for n = 3 
for i = 1:n 
  for j = 1:n 
    for k = 1:n 
      for l = 1:n 
        C_prime(i,j,k,l) = 0; 
        for r = 1:n 
          for s = 1:n 
            for t = 1:n 
              for u = 1:n 

C_prime(i,j,k,l) = C_prime(i,j,k,l) + A(i,r)*A(j,s)*A(k,t)*A(l,u)*C(r,s,t,u); 
              end 
            end 
          end 
        end 
      end 
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    end 
  end 
end 

 
Instead of Cwe write C_prime in the program. 
 
1.3.4. Stress tensor 
 
The stress tensor, say Σ , is a symmetric tensor of the second order. In 3D space it has 9 
components – say 3to1,3to1,  jiij  – they can be assembled into a 33 matrix6 as 

follows 
 























333231

232221

131211

Σ .        (IN_16) 

 
The physical meanings of the stress tensor components (sometimes simply called 
stresses) are presented in the paragraph devoted to stress, i.e. 03_ST. Stress.  

 
This is the way, how the stress components are expressed in the mathematical theory of 
elasticity. The symmetry of the stress tensor means that 322331132112 ,,  , so 

there are actually only six independent stress components out of nine.  
 
1.3.5. Voigt’s representation of stress 
 
This fact historically led to the engineering notation of stress that works only with six 
independent components – they are usually assembled into a column array as follows 
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σ .       (IN_17) 

 
This way of assembling the stress components, efficiently employing the tensor 
symmetry, typical for the engineering concept of the strength of material, is known as the 
Voigt’s7 notation. 
 

                                                 
6 In 2D space, the corresponding matrix is 22 . In 1D space, there is one stress component only, so the 
corresponding 11  matrix degenerates into a scalar quantity. 
7 Woldemar Voigt (1850 – 1919), a German physicist. He dealt with crystal physics, thermodynamics, 
electro optics, mechanics, etc. He was the first who used the term tensor in its today’s meaning. 
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The notation shown in the first column is suitable for programming purposes – it is just a 
one-dimensional array containing six naturally counted terms, the second column 
contains unrepeated components of the stress tensor, and the third column contains the 
same quantities but uses the notation currently used in engineering. Notice, that the first 
three positions belong to so-called normal stress components, the remaining positions 
serve for the allocation of shear stress components. Their order is prescribed by the 
cyclic combination of indices. 

 
It should be emphasized again that we are dealing with the same physical phenomenon, 
i.e. the same stress of state, which is, however, expressed by differently assembled and 
denoted stress components.  
 
The Voigt’s stress array (sometimes incorrectly called the stress vector) is not a vector in 
the proper tensor sense of the word. The transformation, shown above for tensors, in the 
form 

 
Tor RΣRΣ  jlklikij RΣRΣ ,      (IN_18)  

 
does not apply to the transformation of the Voigt’s stress array σ . Instead, we have to use 
a different formula, namely 
 

Bσσ  orjiji B         (IN_19)  

 
where 
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… (IN_20) 
 
The elements of the B matrix, composed of functions of elements of the matrix of 
direction cosines, i.e. R , were obtained by evaluating individual components ijΣ of the 

tensor formula Eq. (IN_18) . Then, they are assigned to the Voight’s stresses iσ  

appearing in Eq. (IN_19).  
 
It is a lengthy and rather tiresome procedure, but the Matlab symbolic toolbox program 
can help and to explains how it might be done.  
 
% derive_B_matrix 
syms A11 A12 A13 A21 A22 A23 A31 A32 A33 ... 
S11 S12 S13 S21 S22 S23 S31 S32 S33 s1 s2 s3 s4 s5 s6 B 
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A =  [A11 A12 A13; A21 A22 A23; A31 A32 A33];  % transformation matrix 
AT = [A11 A21 A31; A12 A22 A32; A13 A23 A33];  % its transpose 
SS = [S11 S12 S13; S21 S22 S23; S31 S32 S33];  % stress tensor in initial config. 
SSP = A*SS*AT;      % stress tensor in primed config. 
SSP = expand(SSP); 
 
% use the Voigt’s notation and 
% substitute s1 to s6 in tensor notation 
SSP1 = subs(SSP,S11,s1);  SSP1 = subs(SSP1,S22,s2); SSP1 = subs(SSP1,S33,s3); 
SSP1 = subs(SSP1,S12,s4); SSP1 = subs(SSP1,S23,s5); SSP1 = subs(SSP1,S31,s6); 
SSP1 = subs(SSP1,S21,s4); SSP1 = subs(SSP1,S32,s5); SSP1 = subs(SSP1,S13,s6); 
 
% extract Voigt’s terms from the tensor formulation 
ssp1 = SSP1(1,1); ssp2 = SSP1(2,2);   % the first and second terms 
ssp3 = SSP1(3,3); ssp4 = SSP1(1,2);   % the third and fourth terms 
ssp5 = SSP1(2,3); ssp6 = SSP1(3,1);   % the fifth and sixth terms 
 
% collect terms by s1 to s6 
B11 = subs(ssp1,{s1,s2,s3,s4,s5,s6},{1,0,0,0,0,0}); 
B12 = subs(ssp1,{s1,s2,s3,s4,s5,s6},{0,1,0,0,0,0}); 
B13 = subs(ssp1,{s1,s2,s3,s4,s5,s6},{0,0,1,0,0,0}); 
B14 = subs(ssp1,{s1,s2,s3,s4,s5,s6},{0,0,0,1,0,0}); 
B15 = subs(ssp1,{s1,s2,s3,s4,s5,s6},{0,0,0,0,1,0}); 
B16 = subs(ssp1,{s1,s2,s3,s4,s5,s6},{0,0,0,0,0,1}); 
 
% ...... an obvious part of the program is omitted here 
 
B61 = subs(ssp6,{s1,s2,s3,s4,s5,s6},{1,0,0,0,0,0}); 
B62 = subs(ssp6,{s1,s2,s3,s4,s5,s6},{0,1,0,0,0,0}); 
B63 = subs(ssp6,{s1,s2,s3,s4,s5,s6},{0,0,1,0,0,0}); 
B64 = subs(ssp6,{s1,s2,s3,s4,s5,s6},{0,0,0,1,0,0}); 
B65 = subs(ssp6,{s1,s2,s3,s4,s5,s6},{0,0,0,0,1,0}); 
B66 = subs(ssp6,{s1,s2,s3,s4,s5,s6},{0,0,0,0,0,1}); 
 
% print the result 
B = [B11 B12 B13 B14 B15 B16; ... 
B21 B22 B23 B24 B25 B26;  ... 
B31 B32 B33 B34 B35 B36;  ... 
B41 B42 B43 B44 B45 B46;  ... 
B51 B52 B53 B54 B55 B56;  ... 
B61 B62 B63 B64 B65 B66 ] 
 
% end of derive_B_matrix 
 
 

1.3.6.  Strain tensor 
 
In 3D space, the strain quantity might be represented by the symmetric tensor E of the 
second order with nine components, 3,1,3,1,  jiEij , that might be collected into a 

33 matrix as follows 
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E .        (IN_21) 

 
Due to the tensor symmetry, i.e. 322331132112 ,, EEEEEE  , the Voigt’s notation is 

often used. The geometrical and physical meanings of the strain tensor components 
(sometimes simply called strains) are derived, explained and presented in the Paragraph 
03_ST. Stress. 
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Notice that in the case of strains, there is no one-to-one correspondence between 
mathematical and engineering components, as it was shown before for the stress 
components. The ‘strange’ appearance of factor 2 is due energy considerations and will 
be explained later. 
 
1.3.7. Principal axes and invariants of the second order tensor 
  
The components ijT of the second order tensor T in the coordinate system 321 ,, xxxx  
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could be expressed in another, say primed, 
coordinate system 321 ,, xxx x  whose position 

with respect to the original one is given by the 
rotation around the common origin as depicted in 
Fig. IN_9. 
 
 
 
Fig. IN_9 …  Rotated  axes 
 
Such a rotation is described by the rotation matrix, say A , of direction cosines 

)cos( jiij xxa  . The argument ji xx represents the angle between the thxi   axis of the 

rotated (i.e. primed) system with respect to thx j  axis of the original system. 

 
Obviously, the components of the tensor in the rotated system  
 























333231
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131211

TTT

TTT

TTT

T         (IN_24) 
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are obtained by the transformation relation in the form  
 

TTAAT  .         (IN_25) 
 
Now, we are looking for such a rotation – that as the result of the transformation Eq. 
(IN_25)  – produces the diagonal form of the tensor. Meaning, that the all of the out-of 
diagonal components vanish. And, the orientation of a new coordinate system – in which 
the original tensor becomes diagonal – is determined by angles 3:1,3:1  jixx ji . 

 
Mathematically, this task leads to a so-called standard eigenvalue problem which is 
defined by 
 

0aIT  )(  .         (IN_26)  
 
The scalar   contains the eigenvalues, while the vector a contains the eigenvectors. The 
eigenvalues of the tensor are also called the principal values. The eigenvector contains 
the corresponding direction cosines of the angles 3:1,3:1  jixx ji . It appears that 

the solution is not unique – there are as many eigenvalues as is the rank of the tensor, also 
there are as many eigenvectors. In this case, for the tensors of the second order, we have 
three eigenvalues and three eigenvectors. If the tensor is symmetric8, all the eigenvalues 
are real and all the eigenvectors are orthogonal.  
 
The Eq. (IN_26) represents the system of homogeneous equations, which has a unique 
solution only if the determinant of the system matrix is equal to zero, i.e.   
 

0)det(  IT  .        (IN_27) 
  
Evaluating the determinant we get a cubic equation  
 

032
2

1
3  III  ,       (IN_28) 

 
whose roots 3:1ii . For symmetric tensors, we are mainly dealing with, the roots are 

always real.  Historically, the Cardan’s formula was used for the solution of cubic 
equations. In Matlab, the built-in function root might be used for this task. To find the 
eigenvalues and eigenvectors of the matrix representing the tensor, the built-in function 
eig is used. 
 
The coefficients appearing by the individual powers of   are called the tensor invariants 
 

3322111 TTTI  ,        (IN_29) 

                                                 
8 And the stress and strain tensors have this property. 
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3332
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3331

1311
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I  ,      (IN_30) 

333231

232221

131211

3

TTT

TTT

TTT

I  .        (IN_31) 

 
Do you remember how a determinant is evaluated by hand? 
 

cbad
dc

ba
 ,        (IN_32) 

)()()( egdhcdifgbhfeia

ihg

fed

cba

 .    (IN_33) 

 
To summarize. In continuum mechanics, we deal with the second order strain and stress 
tensors.  

 

 The eigenvalues of the strain tensor 










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






333231

232221

131211

EEE

EEE

EEE

E  are called the 

principal strains and might be denoted 321 ,, EEE . 

 
 The strain invariants are 

o  3322111 EEEI  ,     (IN_34) 

o 
3332

2322

3331

1311

2221

1211
2 EE

EE

EE

EE

EE

EE
I  ,  (IN_35) 

o 

333231

232221

131211

3

EEE

EEE

EEE

I  .     (IN_36) 

 The eigenvalues of the stress tensor 























333231

232221

131211

Σ  are called the 

principal stresses and might be denoted 321 ,, ΣΣΣ . 

 
 The stress invariants are  

o 3322111  ΣΣΣJ  ,     (IN_37) 
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o 
3332

2322

3331

1311

2221

1211
2 ΣΣ

ΣΣ

ΣΣ

ΣΣ

ΣΣ

ΣΣ
J  ,  (IN_38) 

o 

333231

232221

131211

3

ΣΣΣ

ΣΣΣ

ΣΣΣ

J  .     (IN_39) 

 
Remark: Sometimes it is convenient to decompose the stress tensor into the volumetric 
and deviatoric parts as follows 
 

    
deviatoric

m333231

23m2221

1312m11

volumetric

m

m

m

333231

232221

131211
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



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











ΣΣΣΣ

ΣΣΣΣ

ΣΣΣΣ

Σ

Σ

Σ

ΣΣΣ

ΣΣΣ

ΣΣΣ

, (IN_40) 

where the mean stress is  332211m 3

1
ΣΣΣΣ  .    (IN_41) 

   
The volumetric part of stress is responsible for changes of volume only. The deviatoric 
part of stress causes the change of shape only. 
 
Example – principal stresses and strains 
 
Given:  The Young modulus and Poisson ratio are 3.0,Pa101.2 11  E . The stress  
 

components are 







































601510
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ΣΣΣ

ΣΣΣ

ΣΣΣ

Σ .  (IN_42) 

 
Determine: Principal stresses and strains in Matlab. 
 
The stress matrix is 
 
sig = [40  20 -10; 
       20 -35 -15; 
      -10 -15  60]; 

 
The eigenvalues Lambda and the eigenvectors  V  are obtained by the statement 
   
[V,Lambda] = eig(sig); 
 
The eigenvalues obtained by the Matlab procedure are sorted by magnitude. To sort them 
in descending order, to get the principal stresses 321 ,, ΣΣΣ , we might write 
 
Lsort = sort(Lambda,'descend'); % sort in descending order   

SIG = Lsort';   % principal stresses 321 ,, ΣΣΣ  
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The principal strains could be obtained as follows 
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.     (IN_43) 

 
Define D matrix in Matlab 
 
Dmatrix = [1 -mi  -mi; 
         -mi   1  -mi; 
         -mi -mi    1]/E; 
 

Evaluating the product EPS = Dmatrix*SIG you will get the principal strains 
 
EPS = 
  1.0e-009 * 
 
    0.3332 0.1403 -0.3496 

 
In the mathematical theory of elasticity, the strain energy is defined as the double dot 

product of the stress and strain tensors,  i.e. ijij EΣs
2

1
 . Of course, the physical quantity, 

i.e. the strain energy, should not depend on the notation being used. So, to get the same 
result and to take into account that in engineering style the symmetric components of 
strain are only taken once, we have to express it as a dot product of arrays in the form 

εσT

2

1
s . 

 
1.3.8. Examples  
 
Example – Kronecker delta, a unit matrix 
 
The orthogonality of the matrix of direction cosines can be expressed by means of so-
called the Kronecker delta, alternatively by means of the unit matrix9 as follows 
 

jkikij RR δ  or  IRR T ,      (IN_44) 

 
where 
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I .   (IN_45) 

 

                                                 
9 Also called the identity matrix. 
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The Kronecker delta is often used as the substitution operator allowing to express  
 

xIx  orxx ikikδ ,       (IN_46) 

 
since it has the effect of renaming indices.  
 
Example – tensor of the third order – Levi-Civita permutation operator, 3N  
 
It is convenient to introduce the Levi-Civita tensor which is defined by  
 










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1,3,22,1,33,2,1  :indices ofn permutatio oddfor 1

                            etc 1,1,2  :as indices repeatedfor 0

 3,1,22,3,11,2,3  :indices ofn permutatioeven for 1

ijk .  (IN_47) 

 
This tensor serves mainly for expressing the cross product operation (that actually does 
not belong to the menagerie of the tensor calculus, but is frequently used in mechanics) as 
follows 
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c

c
   or kjijki bac  . 

          … (IN_48) 
 
1.3.9. Implementations of basic matrix and tensor operations 
 
Tensor addition and subtraction 
 
This operation is defined for tensors of the same order only. It is provided element by 
element as 
 

ijijij BAT  . 

 
Tensor contraction 
 
is a process in which two initially differently named dummy indices, say ji, , are 
replaced by one of the previously used letters – say i  or j .  By the contraction operation, 
the order of the tensor order is decreased by two. 
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Example – tensor contractions 
 

.

,

,

ilijjlijkl

iijjijk

iiij

SUU

vRR

sTT







 

 
The programming equivalent of the second presented item is shown in Matlab program 4. 
 
% Matlab program 4 
% tensor contraction for n = 3 
 
for i = 1:n 
  v(i) = 0; 
  for j = 1:n 

    v(i) = v(i) + R(i,j,j); % compare with index notation, i.e. iijjijk vRR   

  end 
end 

 
Three cases of multiplication of tensors of the first order – vectors 
 
1. Dot product of vectors – sometimes called the scalar product 
 

 Index notation     iibas  . 

 Symbolic notation    bas

 . 

 Matrix notation (for column vectors)  

















3

2

1

321
T

b

b

b

aaas ba .  

 Matlab command    s = dot(a,b). 
 
In Matlab, we could proceed as shown in Matlab program 5. 
 
% Matlab program 5 
% vector dot product for n = 3 
 
sum = 0; 
  for i = 1:n 

    sum = sum + a(i) * b(i); % % compare with index notation, i.e. iibas   

  end;  
s = sum; 

 
2. Dyadic product of vectors 
 

 Index notation     jiij baC  . 

 Symbolic notation    baC  ba


. 
 Matrix notation (for column vectors10) 

                                                 
10 In this, and in the following examples, it is assumed that the vectors are of column nature. 



IN 27

      
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a

a

abC . 

 Matlab command (for column vectors) C = a*b’. 
 
 
In Matlab, we could proceed as follows 
 
% Matlab program 6 
% vector dyadic product for n = 3 
 
for i = 1:n 
  for j = 1:n 

    C(i,j) = a(i) * b(j); % compare with index notation, i.e. jiij baC   

  end 
end 
 
3. Cross product, sometimes called the vector product, valid for 3n  only 
 

 Index notation     kjijki bac   

 Symbolic notation    ba bac


 
 Matrix notation (Sarus rule evaluation)     
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c


c  

 Matlab command    c = cross(a,b) 
 
Three cases of multiplication of tensors of the second order 
 
1. Tensor double dot product 
 

 Index notation     ijij BAs   

 Symbolic notation    BA :s  
 Matrix notation    )(tr TBAs   
 Matlab command    s = trace(A’*B) 

 
The matrix operator tr signifies the trace of a matrix. The algorithm is in the Matlab 
program 7. 
% Matlab program 7 
% double dot product of the second-order tensors for n = 3 
 
s = 0; 
for i = 1:n 
  for j = 1:n 

    s = s + A(i,j)*B(i,j); % … compare with index notation, i.e. ijij BAs   

  end 
end 
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2. Tensor and matrix multiplication 
 

 Index notation     kjikij BAC   

 Symbolic notation    BAC   
 Matrix notation    ABC    
 Matlab command     C = A*B 

 
For tensors of the second order and for 33  matrices we could express this operation as 
indicated in Matlab program 8.  
 
% Matlab program 8 
% matrix multiplication for n = 3 
 
for i = 1:n 
  for j = 1:n 
    C(i,j) = 0; 
    for k = 1:n 

      C(i,j) = C(i,j) + A(i,k)*B(k,j); % … compare with index notation, i.e. kjikij BAC   

    end 
  end 
end 
 

 
3. Dyadic product of second-order tensors 
 

 Index notation     klijijkl BAC   

 Symbolic notation    BAC   
 Matrix notation      --  
 Matlab command     -- 

 
The algorithm is in the Matlab program 9.  
 
% Matlab program 9 
% dyadic products of second-order tensors for n = 3 
 
for i = 1:n 
  for j = 1:n 
    for k = 1:n 
      for l = 1:n 

        C(i,j,k,l) = A(i,j)*B(k,l); % … compare with index notation, i.e. klijijkl BAC   

      end 
    end 
  end 
end 
 
Notice, that index notation represents a direct hint for the evaluation of above formulas, 
while the symbolic and matrix representations are really symbolic – we have to 
remember and understand the assumed meanings of operations, operators and 
accompanying symbols.  
 
For more details see [14], [15], [24], [25], [32], [36]. 
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02_KI. Kinematics          
 
2.1. Deformation and strain 
 
Kinematics studies the motion of bodies without being interested in the causes inducing that 
motion. We will limit our attention to the analysis of individual material points (particles) of 
solid bodies that are being deformed. The bodies thus change their positions in space, their 
volumes and, consequently, individual material particles change their positions. This process 
is called deformation. The motion of an individual particle is quantified by two distinct ways.  
First, by measuring the change of the position of each material particle with respect to a fixed 
coordinate system – this quantity is called displacement and is measured in [m]. Second, by 
that displacement normalized with respect to a suitably chosen reference distance. This 
quantity is called strain and is dimensionless. 
 
The analysis of the particle motion requires distinguishing two types of coordinates. Namely, 
the material coordinates labeling the material particle, and the spatial coordinates indicating 
the current position of that particle.   
 
2.2. Material and spatial coordinates – configuration 

 
Consider a solid body occupying at 
a given time a finite spatial region. 
Assume that the region is 
completely filled up by a 
continuously distributed matter. 
See Fig. KI_1. 
 
The position of each 
infinitesimally small material 
particle, say P, is uniquely 
determined by the instantaneous 
spatial coordinates of that particle.  
 
Fig. KI_1 ... Kinematics configuration  
 
The initial configuration of the body at the time 0t  is denoted C0  and is called the initial 
or reference configuration.  

 
Later, at a generic time t , the body is moved and deformed at the same time. After the 
deformation process, the body occupies a new configuration, say Ct . The coordinates of the 
considered particle P in the configuration C0  are ix0  and might be denoted by an identifier 

P0 . The position of the same particle, i.e. P, in the deformed or current configuration Ct , i.e. 
at the time t , is defined by coordinates i

t x  and might be denoted by an identifier Pt .  

 
Often, the term material point is used as the synonym for the material particle. 
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Notation and terminology used in Fig. KI_1 is as follows 
 

ix0   material or Lagrangian coordinate, position of material particle at time 0t , 

i
t x   spatial or Eulerian coordinate, position of material particle at time t , 

ii
t

i
t xxu 0  displacement of material particle at time t . 

 
The vector xxu tt  0  – or written alternatively as ii

t
i

t xxu 0  or xxu 0 tt  – is the 

measure of the difference of positions of the material particle P before and after the 
deformation process. This vector is called the displacement.  
 
There is an alternative notation used in literature: 
 

ii Xx ,0   as components of   Xx,0  or    Xx


,   for Lagrangian coordinates, 

ii
t xx ,   as components of    xx,t  or    xxt 

,   for Eulerian coordinates. 

 
See [14], [18], [19], [23], [32], [36]. 
 
2.3. Lagrangian and Eulerian formulations of deformation 
 
The function prescribing the motion of a material particle between the reference (initial), 
i.e. C0 , and the current, i.e. Ct , configurations can be expressed by a function 
 

   txxtxfx ji
t

jii
t ,, 00  .        (KI_1) 

 
For brevity, instead of a generic functional operator f , we are using the variable name1.  
 
This relation, called the Lagrangian formulation of deformation or the Lagrangian 
transformation, prescribes the positions of a particular material particle, as a function of its 
initial position and time. Generally, this function is different for each material particle. This 
relation prescribes the history of individual material particles in time and space. 
 
The inverse function to that prescribed by Eq. (KI_1) is 
 

 txxx j
t

ii ,00           (KI_2) 

 
and is called the Eulerian formulation of deformation or the Eulerian transformation. It 
prescribes the sequence of displacements of different material points (particles) as they pass 
through the particular point in space. 
 
While the Lagrangian formulation is currently used in solid mechanics, the Eulerian 
formulation, prescribed by  Eq. (KI_2), is preferred in fluid mechanics. 
 

                                                 
1 Recall that we often write )(xyy   instead of )(xfy  . 
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Both formulations, being applied to the same physical phenomenon, should give identical 
results. This condition is satisfied if and only if the functions Eq. (KI_1) and Eq. (KI_2) are 
mutually invertible.  

 
Mathematically, this condition requires that the Jacobian of the transformation, given by Eq. 
(KI_1), is non-zero, thus 
 

0)det(0  ij
tFJ ,         (KI_3) 

 
where 
 

j

i
t

ij
t

x

x
F

00 


 .          (KI_4) 

 
The quantity ij

t F0  is called the deformation gradient, sometimes material deformation 

gradient. In 3D it is composed of nine elements. Generally, it is unsymmetrical.  The upper 
left and the lower left indices indicate that the deformation gradient is defined in the current 
configuration  Ct  and is related to the reference configuration C0 . Later, we will prove that 
the Jacobian for a physically attainable deformation is not only non-zero but is furthermore 
positive and finite, i.e.  J0 . This condition physically, or rather geometrically, means 
that the volume of the body being deformed will not become zero or infinite, that there are no 
gaps within the considered volume. Furthermore, this condition guarantees that two initially 
distinct material particles will not end up in a single spatial point – this way it is secured that 
no material penetration can occur. 
 
2.4. Deformation and strain 
 
The term deformation semantically means the change of shape. In engineering, the 
deformation of a solid body is analyzed by measuring the displacements of material particles. 
This measure, considered in meters, says nothing about the magnitude of displacements – 
weather they are infinitesimal, small, or finite. Defining small displacements is crucial since 
the linear theory of elasticity is based on it. That’s why there are defined additional measures 
of deformation. They are called strains and are obtained by normalizing the analyzed 
displacements with respect to suitable distances, somehow related to the size of the body. 
Thus, the strain is a dimensionless quantity that is independent of the size of the examined 
body.  
 
The proper definition of strain quantities requires that they are independent of the orientation 
of the coordinate system and independent of the rigid body motions. We will show that not all 
the strain measures used in engineering are endowed by this quality. 
 
There are infinitely many ways how to define a ‘good’ strain measure that satisfies the 
condition of its independence on the coordinate system and at the same its invariance to the 
rigid body motion. One of them, being invented by our forefathers, is based on the fact that it 
is the length of a line segment which is independent of the choice of the coordinate system.  
 
To derive a suitable strain measure, observe positions of two material line segments depicted 
in Fig. KI_2. For simplicity, the situation is depicted in 2D space, but the corresponding 
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geometrical and mathematical reasoning is considered in 3D. The elementary line segment 
connects two material particles, say QP  and . In the reference configuration C0  they are 

located at spatial points denoted by QP 00 and  . This material line segment is represented by 

the vector x0d  whose length is s00 dd x . Due to the deformation, this material line segment 

is elongated and moved into a new position, which is denoted as the configuration Ct . The 
material particles QP  and  are now located at spatial points QPt tand   and the vector 

representing the material line segment is xtd  and its length is stt dd x . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. KI_2 ... Material line segments 
 
The displacement of the material point P is 
 

ii
t

i
t xxu 0 . 

 
Differentiating the previous relation with respect to the material coordinate we get the relation 
suitable for the future reasoning, i.e. 
 

ij
j

i

j

i

x

x
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where the term 
j
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, denoted as ij
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To summarize. The coordinates of material particles QP  and  in the configuration C0  are  
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The coordinates of the same material particles QP  and  in the configuration Ct  are  
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We have used the fact that the deformed line segment can be expressed as the first order 

differential j
j

i
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t x
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x 0
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d
d

d
d   and that 
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 . This way we came to an important 

conclusion, namely that knowing the transformation  txxx j
t

ii ,00   and being able to 

evaluate the deformation gradient ij
t F0 , that satisfies the condition 0det 0 ij

tF , we have at our 

disposal the formula determining the deformed segment line, i.e. jij
t

i
t xFx 0

0 dd  . In other 

words: the deformation gradient is an operator that being applied to the material segment line 
in the reference configuration C0  gives its description in the current configuration Ct .  

 
Thus, the formula describing the deformation of the elementary material line segment from 
the configuration C0  to Ct   is 

 

jij
t

i
t xFx 0

0 dd   or xFx 0
0 dd tt  .      (KI_6) 

 
Similarly, using the material displacement gradient, we define the material displacement 
increment. It is depicted in Fig. KI_2. 
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The lengths of the considered material line segments before and after the deformation are 
expressed by means of the Pythagorean Theorem. 
 

 2
1

0000 ddd: ii xxsC  , 

 2
1

ttt ddd: ii
t xxsC  . 

 
The length of a segment line is invariant with respect to a choice of the coordinate system; the 
same applies to squares of lengths and to their differences as well. So, the difference of 
squares of lengths of the same material line segment, before and after the deformation is 
 

    iiii xxxxss 00tt202t dddddd   = xxxx 0T0tTt dddd  .    (KI_8) 
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Working with squares is advantageous since it relieves us of dealing with square roots.  
 
2.5. Green-Lagrange strain tensor  
 
Eq. (KI_1) represents a strain measure that is invariant with respect to the choice of the 
coordinate system. This could be further elaborated. Expressing that difference means of the 
reference coordinates we get 
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We have obtained the difference of squares of lengths of the material line segment as a scalar 

quantity having the form of the quadratic form of variables. The trick with 
2

1
and 2 factors 

will be explained later. The middle part of this difference, i.e. GL
0Et , is a quantity called the 

Green-Lagrange strain tensor2. It is obvious that the difference of lengths could only be zero 
(if the rigid body motion) or positive. The tensor for which the quadratic form of variables – 
for any nonzero vectors – is positive is said to be positive definite.  

 
The Green-Lagrange strain tensor is related to configuration Ct  and expressed by coordinates 
of the configuration C0 . It can be presented in various forms. 
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One could notice that the Green-Lagrange strain tensor is composed of two parts. The former 
contains the derivatives of the first order, while in the latter there are derivatives of the second 
order and the products of derivatives of the first order.  

 
If the higher order terms could be neglected then the Green-Lagrange strain tensor becomes 
the infinitesimal Cauchy strain tensor. More about it later. 
 

                                                 
2 It was derived in 1841 by George Green and independently by Saint Venant in 1844. Sometimes, it is called 
simply the Green strain tensor. 
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The Green-Lagrange strain tensor is symmetric and has nine components in 3D space. 
Expressing them in full we get 
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The Green-Lagrange strain components in the Voigt’s notation are 
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2.6. Almansi strain tensor 
 
The Green-Lagrange strain tensor was derived by excluding the i

t x  coordinate from the 

expression given by Eq. (KI_8) describing the difference of squares of lengths of a material 
line segment. A different strain measure, called the Almansi strain tensor, can be obtained by 
excluding the coordinate  ix0  from Eq. (KI_8) instead.  

 
Using the inverse relation to that expressed by Eq. (KI_6) that describes the 
transformation CCt 0 , namely 
 

xFx t1
0

0 dd  t .         (KI_13) 

 
The quantity 1

0
Ft  represents the inverse of the material deformation gradient. Formally we 

write 
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j
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0 FF .         (KI_14) 

   
The inverse of the material deformation gradient 1

0
Ft is denoted F0

t  and called the spatial 

deformation gradient. Of course, the condition for its existence is the non-zero value of the 
Jacobian of the transformation, i.e.  
 

0det 0  FtJ .         (KI_15) 

 
As before, we differentiate the relation for displacements ii

t
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t xxu 0 , this time with respect 

to spatial coordinates  
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We have defined a new variable, i.e. 
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and call it the spatial displacement gradient.  Using the same sequence of steps as before, 
when deriving the Green-Lagrange strain tensor, we rearrange the relation describing the 
difference of squares of lengths. Without dwelling on details we get 
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The notation T
0

Ft means the inverse of the transpose operation, i.e.   T1
0

Ft . If there were no 

round-off errors then this operation would be equal to   1T
0

Ft .  

 
The Almansi strain tensor can be expressed in different forms as well 
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The Green-Lagrange and Almansi strain tensors describe the same geometrical phenomenon. 
The former is expressed in coordinates of the reference configuration, i.e. ix0 , the latter uses 

the coordinates of the current configuration, i.e. i
t x .  Both tensors are independent of the 

choice of the coordinate system and are invariant with respect to rigid body motions. Their 
application in solid continuum mechanics is crucial for cases with rigid body displacements 
and rotations accompanied by finite (not infinitesimal) deformations. 
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2.7. Cauchy strain tensor – infinitesimal displacements and strains 
 

If the assumptions of small displacements (and rotations), as well as infinitesimal strains, can 
safely be accepted then the second order terms appearing in Green-Lagrange and Almansi 
strain tensors expressions can be neglected then both the strain tensors are simplified, are 
numerically indistinguishable and become to what we call the Cauchy strain tensor. Its 
component contains the derivatives of the first order only, thus the strain is a linear function 
of displacement increment. On those assumptions, the linear theory of elasticity is based. 

 
To show it, let’s differentiate the relation for displacement, i.e. ii

t
i

t xxu 0 , twice. With 

respect to the Eulerian (spatial) and then with respect to the Lagrangian (material) 
coordinates. As before, we get 

 
1 FIZ  and  IFZ  .       (KI_19) 

 
The spatial displacement gradient can be rearranged as follows 
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Applying the Taylor series expansion for the right-hand side we get 
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and can thus state that both displacement gradients are approximately equal if we can neglect 
the higher order terms. Thus, 
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Neglecting the higher order increments (derivatives) in Eqs. (KI_10) and (KI_18), we can 
write 
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So, within the realms of the linear theory of elasticity, based on assumptions of infinitesimal 
displacements and strains, the derivatives of displacements with respect to the reference or to 
the current coordinates are practically indistinguishable. Then, the Cauchy (infinitesimal) 
strain tensor is written 
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In the linear theory of elasticity, there is no need to distinguish the reference and current 
coordinates. It practically means that the displacements of a new configuration are calculated, 
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but since they are small, all the consequent analysis is carried out using the initial or reference 
coordinates, so in the linear theory of elasticity and in the engineering strength of material we 
as a rule take ii

t
i xxx 0 . Also, the upper left index appearing by the displacement quantity 

is not usually emphasized. Writing the Cauchy infinitesimal strain tensor in full we get 
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The Cauchy strain tensor components in the Voigt’s notation are 
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2.8. Comparison of strain tensors 
 

Example – compare Green-
Lagrange, Almansi and Cauchy 
strain tensors for the 
longitudinal deformation of a 
thin rod.  

 
 

 
 
Fig. KI_3 ... Strain rod elongation 
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A thin prismatic rod of a circular cross-sectional area is clamped at its left end as depicted in 
Fig. KI_3. In the beginning, in the reference configuration C0 , the length of the rod is l0  and 
its cross section is A0 . Due to the deformation, the rod is elongated and narrowed. After the 
deformation, that is in the current configuration Ct , the corresponding quantities are lt  and 
At , respectively. The overall increase of the rod’s length is lll t 0 . Similarly, the change 

of the radius is rrr t 0 . The material particle P, initially positioned at the spatial 

point P0 ,  moves to a new position indicated by Pt . We assume that the axial displacements 
of the rod particles are null at the clamping area, and are linearly increasing alongside its 
length.  

 
Denoting temporally the axial axis of the rod by the lower right index “ ax ”, the corresponding 

current axial coordinate can be expressed as a function of the reference coordinate by 
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The displacements of all material particles in the axial direction are linearly increasing 
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where we have defined  
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This quantity is called the linear axial strain. In the linear theory of elasticity, the adjective 
linear is not emphasized. For the radial dimension – assuming that it follows the same pattern 
as the axial one, and using the lower right index  “ r ” –  we can write 

rrrt  0  and define the linear radial strain as 
r

r
r 0
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Similarly, for radial coordinates 
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Due to the circular cross section of the rod, the ratio of current and reference cross sections is 
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For this case of deformation, the generic the transformation relation, i.e.  txxx ji

t
i

t ,0 , has 

the form 
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         … (KI_31) 

 
We have assigned the index 1 to the axial direction and indices 2 and 3 to any of radial 
directions. The material deformation gradient and the Jacobian of the transformation are 
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Then, the Green-Lagrange strain tensor is 
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The strain component GL

110 Et , corresponding to the axial deformation, could be expressed as  
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where we have introduced a new dimensionless variable, namely llt 0/ , which is called the 
stretch. Notice, that for the state of no deformation, the stretch is equal to 1.  
 
Similar reasoning, applied to the Almansi strain tensor, allows expressing the axial 
component in terms of the stretch as follows 
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The axial component of the Cauchy strain is obtained by neglecting the second order term in 
the Green-Lagrange expression, thus 
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The often used logarithmic strain component could also be considered 
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Note: Generally, the logarithmic strain (also called natural, true or Hencky) is defined as  
 

 FFE tt
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See  [18].  
 
The axial components with 
indices “11 ” for all the 
considered strain tensors, as 
functions of the stretch 
variable, are plotted in Fig. 
KI_4. 
 
 
 
 
 
 
 
 
 
 
Fig. KI_4 ... Strain components 
 
The limiting values for compressing the rod to the zero length, for 0 , or extending it to 
the infinite length, for  , are  
 
Type of strain for  0     
 
Green-Lagrange 2/1     
Almansi     2/1  
Cauchy  1     
Logarithmic       
 
Observing Fig. KI_4, and the data in the above table, one might be wondering why such a 
unique geometrical phenomenon, i.e. the rod elongation, is described by so significantly 
different values of axial strain components.  
 
The different distributions of strain measures should not frighten us. This is the consequence 
of rather ad hoc definitions of strain measures. Generally, there are infinitely many ways how 
the strain measures could be defined. Later, we will show that the problem is made unique by 
a suitable coupling the strain measures with stress measures in such a way that their tensor 
double dot product gives the mechanical work or energy.  
  
In the vicinity of 1 , indicating small or infinitesimal strains, all the considered strain 
measures are indistinguishable, showing thus that the second order strain measures, as Green-
Lagrange and Almansi, need not be worked with. Their applications are, however, imminent 
for cases with finite deformations and/or for cases with rigid body motions. So, for small 
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displacements and strains (linear theory of elasticity) it is the Cauchy strain tensor that is 
primarily employed. So, 
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Example – the influence of rigid body motion on the Green-Lagrange and Cauchy strain 
tensors. 
 
A good example of the rigid body motion is the rotation of a rigid body around a fixed point. 
In such a case any line segment of that body represents the rotation of the whole body. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. KI_5 ... Rigid body rotation 
 

In Fig. KI_5 there is shown a 2D case with the material line segment represented by the 
vector x0  belonging to the configuration C0 . This vector rotates with the body to a new 
configuration Ct  and it is denoted xt . Since we are dealing with the rigid body rotation, the 

lengths of all the material lines do not change and thus rt  xx 0 . The vector xxu 0 tt  

represents the displacement of the material point being determined by these vectors.  
 

The displacements components are 
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In this case, the material displacement gradient is  
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Then, the Cauchy and Green-Lagrange strain tensors are 
 

  












1)cos(0

01)cos(

2

1 T
00

Cauchy




ZZE tt ,     (KI_43) 

 

  ZZZZE ttttt
0

T
0

T
00

GL
0 2

1
 

 



































00

00

)cos(220

0)cos(22

2

1

1)cos(0

01)cos(







.  (KI_44) 

 
This way, we have shown that The Green-Lagrange strain tensor is really independent of the 
rigid body rotation, while the Cauchy strain tensor depends on it. Also, we can state that the 
Cauchy strain tensor might be safely used for infinitesimal values of the angle   since 
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03_ST. Stress           
 
3.1. What is stress? 
 
The term stress in current communication is understood differently from the way it is used in 
mechanical engineering practice. The Cambridge International Dictionary offers for the item 
stress the following:  Great worry caused by a difficult situation or a force that acts in a way, 
which tends to change the shape of an object1. Among many examples from the same source 
let's quote the one, which might be considered amusing in our engineering community, i.e. 
Yoga is a very effective technique for combating stress. Often the stress is being considered to 
be almost equivalent to the strain as in: Many joggers are plagued by knee stress and foot 
strain caused by unsuitable footwear. Other sources offer similar explanations. Another 
example is taken from Wikipedia: We generally use the word 'stress' when we feel that 
everything seems to have become too much - we are overloaded and wonder whether we 
really can cope with the pressures placed upon us. Anything that poses a challenge or a 
threat to our well-being is a stress. Some stresses get you going and they are good for you - 
without any stress at all many say our lives would be boring and would probably feel 
pointless. However, when the stresses undermine both our mental and physical health they 
are bad. In this text, we shall be focusing on stress that is bad for you.  In our texts, in 
contradistinction to the previous example, that might invoke a gloomy mood in reader’s mind, 
we will concentrate on meanings that are good to you, i.e. on the mechanical stress 
(Spannung in German, contrainte in French, napětí in Czech). The IFToMM (International 
Federation for the Promotion of Mechanism and Machine Science) online dictionary gives a 
more acceptable explanation for the stress, i.e.: Limits of the ratio of force to the area it acts, 
as the area tends to zero. The definition of stress, being presented this way, however, says 
almost nothing about the distribution of the force 'above' the mentioned area. Furthermore, the 
mentioned dictionary defines the stress by introducing a new term, namely the force that is, in 
turn, specified as an action, i.e.: Action of its surroundings on a body tending to change its 
state of rest or motion. Evidently, a definition from the pen of a rigid body person. Other 
force definitions appearing in solid mechanics textbooks are not more comprehensive either 
and describe force rather circularly by its effects.  

 
A few examples are presented here. In  Encyclopedia of Physics – Vol. III/1, on page 532 one 
finds an alleged d’Alembert's quotation, i.e.: Force is only a name for the product of 
acceleration by mass.  
 
Similarly, in [18] one finds: Forces are vector quantities, which are best described by 
intuitive concepts as push or pull. 
 
In terms of proper and clear definitions, the mechanical variables force and stress can be 
compared to the definition of time. St. Augustine in his Book 11 of Confessions ruminates on 
the nature of time, asking: What then is time? If no one asks me, I know: if I wish to explain it 
to one that asketh, I know not2. 
 
So both time and stress (and force and other terms in mechanics, not mentioned here) are 
consensually defined variables. We understand them rather intuitively; we might have a 

                                                 
1 The second part of the definition might be agreed with. 
2 Quid est ergo tempus? Si nemo ex me quaerat, scio; si quaerenti explicare velim, nescio.  
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problem to measure them directly, which – however – does not prevent us to purposefully use 
them in engineering practice. No one would ever have a tendency to challenge them.  

 
A nice definition of stress, from en.wikipedia.org/wiki /Stress_(mechanics), is as follows. 
 
In continuum mechanics, stress is a measure of the internal forces acting within a deformable 
body. Quantitatively, it is a measure of the average force per unit area of a surface within the 
body on which internal forces act. These internal forces are produced between the particles in 
the body as a reaction to external forces applied on the body. Because the loaded deformable 
body is assumed to behave as a continuum, these internal forces are distributed continuously 
within the volume of the material body, and result in deformation of the body's shape. 
 
It should, however, be emphasized that the forces in mechanics are of different origins and the 
loaded area could be related either to the reference or to the current configuration. Generally, 
we distinguish the body forces and the traction forces. When the forces are related to the 
reference configuration then we define so-called engineering stress, while the forces related to 
the current configuration lead to the definition of the true stress or the Cauchy stress. For 
small displacements and infinitesimal strains, these two types of stress are numerically 
indistinguishable. The linear theory of elasticity works with the engineering stress only. 
 
3.2. Body and traction forces 
 
The forces acting on the body from outside 
are called the external or loading forces. 
The forces preventing the body from being 
torn apart are called the internal forces. 
From outside the internal forces are 
invisible; to visualize them, we use the 
technique called the free body diagram – 
we mentally remove a part of the body and 
replace it by an equivalent system of 
forces. This way, the internal forces 
become accessible to the consequent 
equilibrium analysis. In detail, the 
principle was thoroughly explained in the 
text devoted to rigid body mechanics See 
Fig. ST_1. 
 
 
Fig. ST_1 ... Free body diagram 
  
The external forces might be classified either as the body forces or the traction forces.  

 
The body forces provide a sort of the action at a distance – they are represented by gravity 
forces, magnetic forces or by inertia forces. When analyzed, the body forces are related either 
to a unit of volume – then their dimension is  3N/m  and they are sometimes called the 

volumetric forces – or to a unit of mass, then they are measured in  N/kg . 
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The notion of body forces emanates from a limit approach of the resultant of elementary 
forces br  acting on the elementary volume V . The vector of body forces is  

 

VV d
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0 
r
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 .         (ST_1) 

 
The traction forces act on the surface of the considered body. Their dimension is  2N/m . A 

typical example is a contact force. If the resultant of elementary forces tr  is acting on the 

elementary area A , then the vector of traction forces, often called the stress vector3 is  
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The traction forces could also be imagined as acting on the elementary area of the inner part 
of the body being uncovered due to the process of free-body-diagram reasoning. Then, there 
is a known relation between the components of the stress vector it  and the components of the 

stress tensor ijT . It has the form 

 

jjii nTt  .          (ST_3) 

 
This relation, known as the Cauchy relation, is based on expressing the equivalence of forces 
acting on elementary material element depicted in Fig. ST_2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. ST_2 ... Equilibrium forces element 
 
To simplify the derivation of the Cauchy relation, consider a 2D situation, where the 
equivalence of forces is expressed by two equations. 
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3 This is a real vector quantity; as such it should be clearly distinguished both from the strain tensor and from the 
Voigt’s stress array.  



ST 4

Since the length of a normal vector 1n , its components thus are 

 
 coscos,sinsin 21  nn nn .      (ST_5) 

 
Then, 
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         (ST_6) 

 
Generally, in 3D, it holds  
 

jjii nTt    or  jiji nTt       (ST_7) 

 
since the stress tensor is considered symmetric. The presented analysis was provided in the 
current configuration and the upper left and upper right indices were temporally omitted.  
 
3.3. True stress and engineering stress 
 
Generally, the stress tensor is considered in the deformed configuration, i.e. Ct . This tensor is 
called the true stress tensor, or the Cauchy stress tensor or simply the true stress. It is defined 
as the ratio of the current forces trt  to the geometry of the current configuration, i.e. At . In 

the linear theory of elasticity, the changes of deformation are negligible and are thus 
neglected. Then, the engineering stress tensor, or simply the engineering stress, is defined as 
the ratio of the current forces trt , as before, but related to the geometry of the reference 

configuration. i.e. A0 .   
 

The true (Cauchy) and engineering stress vectors are thus defined as follows 
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The relations between the stress vector components, i.e. i

t
i

t
t tt 0and , and the stress tensor 

components, i.e. ji
t

ji
t
t TandT 0 , for true and engineering quantities, are defined by means of the 

Cauchy relation, as follows 
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In the following text, the symbol  ji

t
tT , or in a shortened form jiT , will be used for the true or 

the Cauchy stress tensor, while the symbol ji
tT0 , or in an alternative form ijij

t ΣΣ 0 , will serve 

for denoting the engineering stress tensor. 
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The stress tensor components could be depicted as shown in Fig. ST_3a and Fig. ST_3b. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. ST_3a and Fig. ST_3b  ... Different notations of 3D stress components 
 
Evidently, the true stress is the correct representation of the state of stress, and the engineering 
stress is just its approximation. Even if the true stress tensor definition is obvious, its 
evaluation is from the definition is impossible since the deformed configuration, due to the 
applied load, is a priory unknown.  
 
In the linear theory of elasticity the displacements are considered small and the strains 
infinitesimal. Under these conditions, the deformed (current) configuration is negligibly close 
to the non-deformed (reference) configuration and thus when stresses are evaluated, the initial 
geometry dimensions A0  are used instead of the current dimensions, i.e. At . If the above 
conditions are accepted, then the true stress becomes numerically indistinguishable from the 
engineering stress. And since the geometry of the reference configuration is known, the 
evaluation of the engineering stress is much simpler.  

 
The Cauchy stress is the true measure of the state of stress, while the engineering stress is an 
acceptable suitable approximation if the above assumptions are satisfied. Care must, however, 
be taken when non-linear tasks (large deformations and finite strains) are treated – in those 
cases one has to work with the true stress tensor.  
 
3.4. Motivation for inventing additional stress measures 

 
Inventing so-called fictive stress tensors (i.e. the first and the second Piola-Kirchhoff tensors) 
allows circumnavigating the problem of the impossibility of the direct true stress evaluation. 
It should be emphasized that these fictive stress tensors do not have any physical meanings; 
they represent, however, useful tools for the evaluation of the true stress – the only measure of 
the state of stress, which is of engineer’s interest.  
 
When deriving a ‘proper’ stress measure we require its independence of rigid body motion 
and of the choice of the coordinate system. 

 
We will show that both the engineering and true stress tensors do not possess this property. 
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We will also prove that both Piola-Kirchhoff stress tensors are independent of the rigid body 
motions and of the choice of the coordinate system, and furthermore that they are 
energetically conjugate with a suitable choice of the strain measures. By this, it is understood 
that their tensor double dot product produces the mechanical work or the mechanical energy. 
 
3.5. The first Piola-Kirchhoff stress tensor 
 
Let the elementary force rtd  be responsible for the deformation of the elementary tetrahedron 
from the reference configuration C0  to the current configuration Ct  is depicted in Fig. ST_4.  
 
 

 
 

 
  
 
 
 
 
 
 
 
 
Fig. ST_4 ... Elementary forces tetrahedron 
 
As before, in the current configuration Ct  the situation is described by the relation between 
the elementary force and the true stress vector, and by the Cauchy relation, so   
 

Attt dd tr   and  nTt tt
t

t T .       (ST_10) 

 
Eliminating the stress vector from above equations we get 
 

Attt
t

t dd tTr  .         (ST_11) 

 
Now, in the configuration C0  we ‘invent’ a fictive force r0d and assume that it is equal to the 
real force acting in the configuration Ct 4. So we suppose that 
 

rr tdd0  .          (ST_12) 
 
The corresponding fictive stress vector t0 is thus defined by 
 

A000 dd tr  .          (ST_13) 
 

To this fictive stress vector t0  there is related a newly defined stress tensor – it is denoted Pt
0  

and called the first Piola-Kirchhoff stress tensor. Again, we use the Cauchy relation 
 

                                                 
4 This mental process is a work of fiction, but it safely ends up on the real ground.  
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nPt 0T
0

0 t .          (ST_14) 

 
Substituting Eq. (ST_14) into Eq. (ST_13) we get 
 

At 00T
0

0 dd nPr  .         (ST_15) 

 
Comparing Eq. (ST_15) with Eq. (ST_11) and taking into account Eq. (ST_12) we get the 
relation between the true stress tensor Tt

t  and the newly defined fictive first Piola-Kirchhoff 

tensor Pt
0  in the form 

 
AA ttt
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tT dd nPnT  .        (ST_16) 

 
This is a useful relation, but there are too many unknowns in it so far. To minimize their 
number we have to determine the relation between the elementary surfaces Atd  and A0d . As 
before, we rely on the assumption of the mass conservation during the deformation process 
between configurations C0  and Ct . So, 
 

VV tt dd00   .         (ST_17) 
 
The initial volume of the un-deformed tetrahedron element in the configuration C0  is 
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and can be rearranged into the form 
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where we have introduced a new ‘vector’ variable containing the projections of the 
elementary area A0d into the coordinate plates in  the form 
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So, the relation between the area A0d and its projections could be expressed by means of the 
normal vectors, as 
 

na 000 dd A   or anna 0T00T00 ddd A .    (ST_21) 
 
Analogically, the volume of the elementary tetrahedron in the configuration Ct  is 
 

xa ttttt xxxV dd
9

1
ddd

6

1
d T

321
t  .       (ST_22) 
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Substituting Eqs. (ST_22), (ST_19) into Eq. (ST_17) we get  
 

xddxdd tTt0T00 aa  t .        (ST_23) 
 
Expressing the current coordinates xtd  as functions of the reference coordinates x0d  by 
means of the deformation gradient we get 
 

xFx 0
0 dd tt  .          (ST_24) 

 
Thus, 
 

xddxdd 00Tt0T00 Faa t
t  . 

 
The previous expression has to be independent of the choice of the coordinate system, so it 
simplifies to  
 

Faa 0TT00 dd t
tt  .        (ST_25) 

 
Using Eq. (ST_21), the Eq. (ST_25) can be rearranged into 
 

Fnn t
t

AA 0
Tt

0
T00 dd




 .        (ST_26) 

 
Substituting Eq. (ST_26) into Eq. (ST_16) we get 
 

nFPnT ttt
t

ttt
t AA tT

0
T

00
TT dd




 .       (ST_27) 

 
The result has to be independent of the choice of the elementary area defined by its normal, so 
the relation between the true stress tensor and the first Piola-Kirchhoff stress tensor is 
 

PFT tt
t

t
t 000


 .         (ST_28) 

 
The inverse relation, expressing the Piola-Kirchhoff stress tensor as a function of the true 
stress tensor, is obvious 
 

TFP t
t

t
t

t 1
0

0

0





.         (ST_29) 

 
We have shown that the ratio of densities before and after the deformation could be expressed 
as the Jacobian of the transformation  ttt ,0 xxx   defined between configurations C0  and 

Ct , i.e. 
 

 Ft
tJ 0

0

det



,         (ST_30) 
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so Eq. (ST_29) could be rewritten into the form 
 

TFP t
t

tt J 1
00

 .         (ST_31) 

 
It is obvious that the product of the non-symmetric deformation gradient and the symmetric 
true stress gives a non-symmetric result. So, the first Piola-Kirchhoff stress tensor is non-
symmetric. 
  
3.5. The second Piola-Kirchhoff stress tensor 
 
The non-symmetry of the first Piola-Kirchhoff stress tensor is an unpleasant feature and leads 
to further considerations. To derive a new – this time symmetric stress tensor – let’s ‘invent’ 
an alternative fictive force acting in the configuration C0 . Instead of  accepting rr tdd0  , as 
before, we define 
 

rFr tt dd 1
0

0  .          (ST_32) 

 
This relation for forces is based on the analogy of the previous relation for coordinates that 
was derived in the form xFx tt dd 1

0
0  .  

 
Following the same sequence of steps as before, when deriving the first Piola-Kirchhoff stress 
tensor, we arrive at the expression relating the true stress Tt

t and the second Piola-Kirchhoff, 

say St
0 , in the form 

 

ΤSFT ttt
t

t
t 0000


 .         (ST_33) 

 
The inverse relation is 
 

TFTFS  tt
t

t
t

t
0

1
0

0

0 


.        (ST_34) 

 
On the right-hand side of Eq. (ST_34) one can see the quadratic form of variables, so the 
second Piola-Kirchhoff is really symmetric.  
 
3.6. Piola-Kirchhoff stress tensors in the linear theory of elasticity 

 
It should be emphasized that both the first and the second Piola-Kirchhoff stress tensors have 
little physical meaning. They represent, however, useful tools for the treatment geometrically 
non-linear tasks.  

 
In the linear theory of elasticity the change of volume and thus the change of density due to 

the deformation is neglected, so the Jacobian of the transformation 1
0





tJ . Furthermore, 

the deformation gradient IF  , since the current coordinates are approximately considered to 
be identical with the reference coordinates and thus the first Piola-Kirchhoff and the second 
Piola-Kirchhoff and the true stress tensors are approximately equal to engineering stress 
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tensor. And as said before, the true stress tensor under conditions of small deformations and 
infinitesimal strains becomes the engineering stress tensor.  
 
So, in the linear theory of elasticity, we approximately take that 

 

ij
t

ij
t
tij

t
ij

t ΣTSP 000  .        (ST_35) 

 
The Green-Lagrange strain tensor, multiplied by the second Piola-Kirchhoff stress tensor – by 

means of the double dot product, i.e. ij
t

ij
t SE 002

1
– gives the scalar quantity which represents 

the mechanical energy or the mechanical work. 
 

For more details [7], [12a], [14], [18], [19], [23], [25], [28], [36].    
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04_CR. Constitutive models 
 
4.1. Material models 
 
After explaining and defining the geometry of deformation – gauged by strain measures – 
occurring due to loading – quantified by stress measures – it is time to pose the question of 
the relation between the strain and stress measures. Such a relation is often called the 
constitutive relation. Having it at our disposal allows determining the ‘amount’ of the 
deformation due to the prescribed loading. And together with the theory of the strength of 
material and the failure theories to determine the ability of a machine part, made of a 
particular material, to withstand the particular loading. 
 
There are thousands of engineering materials and they deform differently when being loaded. 
To ascertain their geometric response to the prescribed loading, a properly prepared 
experiment is needed. The experimental results, in the form of stress-strain relation, have to 
be generalized and presented in a suitable mathematical form to be used in engineering 
computations.  
 
In this text, we will concentrate on the mathematical models describing the stress-stress 
behaviour in bodies made of different materials. These models are of phenomenological 
nature, they disregard the actual corpuscular structure of materials – they describe the material 
as being continuous, homogeneous, with no gaps. It should be emphasized that each model 
has the clear limits of its validity but does not contain embedded warnings about its misuse.  It 
is always the analyst who is fully responsible for the application of the model within proper 
limits of its applicability.  

 
The material models can roughly be classified as follows 
 

• Linear elastic 
• Nonlinear elastic 
• Hyperelastic 
• Hypoelastic 
• Elastoplastic 
• Creep 
• Viscoplastics 

 
For more details see  [6], [7], [15], [17], [18], [21], [39]. 
 
4.2. Linear elastic material 
 
In this text, we will primarily limit our attention to the linear elastic model. For the detailed 
study of other material models, listed above, the book [6] is recommended.  

 
The linear elastic model is based on the validity of Hooke’s law klijklij C    or Cεσ  , 

which means that the infinitesimal (Cauchy) strain is linearly proportional to the engineering 
stress. The tensor ijklC and the matrix 66C  represent the proportionality ‘constant’.  

 
The Hooke’s law is an acceptable approximation of the material behaviour under the 
following assumptions.  
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 There is a unique relationship between stress and strain.  
 Material properties are independent of the specimen size. 
 Strains are said to be reversible, it means that no hysteresis occurs. 
 The material is the rate-of-loading independent.  
 No thermodynamic effects are considered. 
 The material is homogeneous, which means that mΔlim VV ΔlimΔlim   .  

 Corpuscular structure of the matter is disregarded. 
 Generally, it is valid for the fully anisotropic material behaviour.  

 
In mechanical engineering, the linear elastic material model is the most frequently used model 
for the material behaviour. It is applicable for cases with small displacements and 
infinitesimal strains. This model assumes that the material deformation (expressed in 
infinitesimal strains) linearly depends on the applied loading (expressed in engineering stress) 
– it is known as the generalized Hooke’s law. Its tensor and Voigt’s forms are  
 

klijklij ECΣ    and  jiji C    or εCσ  .  (CR_1) 

 
The tensor ijklC  and the corresponding matrix 66C represent the proportionality ‘constant’. 

Sometimes, the matrix 66C  is called the matrix of elastic moduli. 

 
The stress tensor and the Voigt’s stress array are presented here in various forms appearing in 
textbooks. 
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The Cauchy infinitesimal strain tensor and the Voigt’s strain array could be written as 
 


















333231

232221

131211

EEE

EEE

EEE

E   …  

































































































zx

yz

xy

zz

yy

xx

E

E

E

E

E

E















31

23

12

33

22

11

6

5

4

3

2

1

2

2

2
ε .   (CR_3) 

 
The tensor ijklC , appearing in the tensor form of the generalized Hooke’s law, is symmetric 

and has 81 components. Generally, there are 21 independent material constants for the linear, 
homogeneous and fully un-isotropic material. See [18]. The equivalent matrix 66C , 

appearing in the Voigt’s notation,  has 36 components. It is symmetric as well.  
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In the case of the linear isotropic material, there are only 2 independent material constants, 
i.e. the Young modulus E  and the Poisson ratio  . 

 
The simplest un-isotropic material behaviour is known as the orthotropic – it is characterized 
by different material properties in two mutually perpendicular directions and in this case there 
are 9 independent material constants. This behaviour is typical for materials with warp-and-
weft structures, for rolled sheet steel plates, for wood, etc. The survey of more complicated 
un-isotropic materials can be found in [6].  

 
The simplest material model is described by the following attributes – linear, anisotropic and 
homogeneous1. How to find the material constants for this kind of materials is briefly 
sketched in the following paragraphs. 
 
The story of stress and strain measures presented in paragraphs devoted to strain and stress is 
retold here, this time using the engineering style based on treating the individual cases 
sequentially, starting from the simplest and proceeding to more complicated ones. In this part 
of the text, dealing with the linear theory of elasticity, we will exclusively work with 
engineering stresses and infinitesimal (Cauchy) strains, without repeatedly specifying this 
fact. For practical engineering computations, the Voigt’s notation is almost exclusively used.  
 
4.3. Uniaxial stress 
 
This is the simplest loading mode. All the applied loading forces are 
acting within a single line of action. The loading of an elementary 
element, representing this loading mode, is shown in Fig. CR_1. It is 
assumed that the direction of loading is associated with the x  
direction. 
 
Fig. CR_1 ... 1D stress 
 
Example. If a prismatic rod of a constant cross-sectional area A  is loaded by an axial force 

F , then the axial stress is 
A

F
 . 

 
4.3.1. Prelude – Uniaxial state of stress expressed by 
equivalent stress components in an oblique cross 
section 
 
A clamped thin rod, see Fig. CR_2, with the cross-
sectional area 0S  is loaded by an axial force F .  

 
Fig. CR_2 ... Stress components in oblique cross section 
 
The corresponding axial stress is ./ 00 SF  Let’s cut the rod by a fictional plane defined by 

the normal n  forming an angle   with the lateral axis, say x .  
 

                                                 
1 Linear means that the strain is proportional to stress, isotropic means the material properties in different 
directions are identical and homogeneous means that the material properties within the body are the same. The 
last attribute also means that the corpuscular structure of the matter is neglected.  
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Consequently, the cut cross section has the area of cos/0SS  . Using the free-body-

diagram principle, we add an internal force R , representing the removed part of the body, that 
has to be in equilibrium with the loading force F .  So, FR  .  
 
Then, the internal force is decomposed into the normal and tangential components as depicted 
in Fig. CR_2. So, 
 

 sin;cos RTRN  .        (CR_4) 
 
The normal stress (corresponding to the normal force) in the oblique cross-section is  
 



 2

00

2

0

cos
cos

cos/

cos

S

F

S

R

S

R

S

N
 ,      (CR_5) 

 
while the tangential stress (corresponding to the tangential  force)  in the oblique cross-section 
is  
 



 cossin

cos/

sin

00 S

F

S

R

S

T


.    
   ... (CR_6) 
 
It should be emphasized that the 
actual state of stress in the body 
is unique, it does not change. We 
have only expressed it by 
equivalent stress components in 
differently inclined planes 
characterized by the varying 
angle  . 
 
 
Fig. CR_3 ... Stress components in oblique cross section 
 
Using the trigonometric relations for the double angular arguments and reminding 
that 00 / SF , we get 

 

)2cos1(
2

1
0   ,         (CR_7) 

 2sin
2

1
0 .         (CR_8) 

 
 
In the coordinate system ),(  , these relations represent the parametric equations of a circle 

having the radius 02

1 . Both stress components, as functions of the angle  , are computed 

by the program mpp_005e_oblique_section_c1 and are depicted in Fig. CR_3.  
 

-0.5 0 0.5 1 1.5 2 2.5 3 3.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Stress in oblique section

sigma

ta
u



CR 5

% mpp_005e_oblique_section_c1 
clear 
f = 0:1:180; fi = pi*f/180; 
sig0 = 3; 
sig = sig0*0.5*(1 + cos(2*fi)); tau = sig0*0.5*sin(2*fi); 
f22 = 22.5; 
fi22 = pi*f22/180; 
sig22 = sig0*0.5*(1 + cos(2*fi22)); tau22 = sig0*0.5*sin(2*fi22); 
figure(1) 
plot(sig,tau, sig22,tau22,'o','linewidth' ,2.5, 'markersize', 8) 
axis('equal'); % axis('tight') 
axis([-0.5 3.5 -2 2]) 
title('Stress in oblique section', 'fontsize', 16) 
xlabel('sigma', 'fontsize', 16) 
ylabel('tau', 'fontsize', 16) 
grid 

 
4.4. Plane stress and plane strain 
 
This loading mode is characterized by the fact that all the 
loading forces are applied within a single plane. The 
loading of an elementary cube, representing this loading 
mode, is depicted in Fig. CR_4.  
 
Fig. CR_4 ... 2D stress 

 
Depending on how the elementary cube is constrained we 
distinguish two cases.  

 
If the face ABC of the cube is free to deform in the z-axis direction, then we are dealing with 
so-called plane stress state of stress.  

 
If the face ABC of the cube – together with its parallel face – are restrained (no displacements 
in that direction allowed) then we have the case called plane strain state of stress. In detail, 
we will analyze both mentioned cases later. 
 
By the term plane state of stress we 
understand the idealized situation when a 
body is principally loaded in a certain plane 
only, and thus the forces and stresses in the 
direction perpendicular to that plane are 
considered to be equal to zero. See Fig. 
CR_4 and Fig. CR_5. 
 
Fig. CR_5 ... A loaded strip 

 
Beforehand, it should be emphasized that the corresponding deformations and strains in that 
perpendicular directions are non-zero because the specimen is not constrained in that direction 
and is thus allowed to ‘breathe’ freely. 
 
Instead of rods, we have dealt with so far, consider a thin strip, depicted in Fig. CR_5, whose 
transverse dimension, say h , in the direction z , perpendicular to the plane of the drawing 

yx, , is relatively small with respect to the strip dimension in that plane. It is assumed that the 
distribution of the axial stress within the transverse cross-sectional area is uniform. Assume 
that in the direction of x - axis, the strip is loaded by the prescribed stress xσ  defined in the 
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coordinate system yx, . Let’s analyze what are stress components in another coordinate 
system2 defined by axes  , . The   axis forms an angle   with the x  axis. 
 
4.5. Transformation of stress components into another coordinate system 
 
Applying the same reasoning as before and using a slightly different notation, we get the 
relations for the normal and tangential components of stress in the coordinate system  , . 
The newly defined stress components are called the normal stress and the shear stress, 
respectively.  
 

.2sin
2

1

),2cos1(
2

1









x

x




        … (CR_9) 

 
Now, define a new coordinate system, say  , , that is turned counterclockwise with respect 
to the system  ,  by an angle   as depicted in Fig. CR_5. Due to the periodicity of 
trigonometric functions we get  
 

.2sin
2

1
))2(sin(

2

1

),2cos1(
2

1
))2cos(1(

2

1









xx

xx




     … (CR_10) 

 
Notice, that the absolute values of normal and shear stresses differ by a sign only. Analogical 
results can be derived for opposite coordinate systems that were obtained by the rotations of 

2/  and 2/3  respectively with respect to the system  , . 
 
Let’s extend the present analysis by assuming that the strip is 
loaded not only by the stress x  but also by the stress y  in 

the perpendicular direction, defined by the y-coordinate. 
 
Then, the considered element, shown in Fig. CR_6, will have 
the internal normal stresses ( yx  , ) and internal shear 

stresses ( yxxy  , ) components acting at all of its sides. 

 
Fig. CR_6 ... Plane stress 

 
Since the element is infinitesimal – its dimensions are yx dd  – we disregard the changes in 
stress quantities alongside the element dimensions. 

 
From the theory of rigid body mechanics, it is known, that three conditions have to be met to 
satisfy the equilibrium of a body in the plane. Two of them – in directions of x  and y – are 
evidently satisfied identically. The forces acting in x -and y -directions are equal but of 

                                                 
2 It should be emphasized again that the state of stress at a given point is still the same – only its stress 
components differ.  
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opposite signs. The remaining equilibrium condition is of the moment type. The shear stresses 
acting at the element sides are yxxy  , . For the corresponding shear forces (stress   area   

distance), the moment equation, related to the center of the element, has the form 
 

0
2

d
d

2

d
d 

y
xh

x
yh yxxy  .        (CR_11) 

 
From this follows that 
 

.yxxy             (CR_12) 

 
This identity expresses the so-called rule of conjugate shear stresses3.  
 
4.6. Mohr’s circle representation for two-dimensional state of stress 
 
For the given state of stress, characterized by the stress components xzyx  ,,  in the basic 

coordinate system, we have to determine the corresponding stress components, say   ,  , 

in the cross section AC, defined by the normal line inclined by the angle   with respect the 
x - axis. 
 

 
Fig. CR_7 ... Equilibrium of forces acting on ABC element.   

Fig. CR_8 ... Corresponding Mohr’s circle. 
 

Consider the equilibrium of forces acting on the element ABC, depicted in Fig. CR_6 and in 
Fig. CR_7.  The cross-sectional area corresponding to the line AC is Sd , and its projections 
are  cosdandsind SS  respectively.  
  
Taking the material element as the point in a plane, only two scalar equilibrium equations are 
needed.  
 

                                                 
3 This is not a law – it is an accepted rule. All this reasoning is based on assumptions of neglecting infinitesimal 
increments of higher orders. There is a so called Cosserat theory of continuum which takes into account the 
increments of higher orders. See  COSSERAT E., COSSERAT F. Théorie des corps déformables, Hermann, pp. 
iii-xlv, 2009.  In that theory the rule of conjugate shear stresses is not valid. 
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Realizing that  sin/dcos/d xhyhdS   and that yxxy    we get 
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     … (CR_14) 

 
Using the double-argument relations for trigonometric functions, i.e.  
 

1cos2sin1sincos2coscossin22sin 2222   a ,       (CR_15) 
 
and rearranging we get 
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These equations represent a circle in   ,  coordinates.  It is called the Mohr’s circle – it 

depicts a graphical representation of the stress components in different planes, defined by a 
varying angle  . It should be emphasized again, that the same state of stress at a point of a 
loaded body could be expressed by different stress components belonging to particular cross-
sectional directions defined by the angle  . The situation is depicted in Fig. CR_8. Due to the 
rearrangement of the above formulas by the double-argument relations, we use the angle 2  
in the Mohr’s circle diagram instead of the actual ‘material’ angle  . 
 
4.7. Drawing the Mohr’s circle with rule and compasses  
for the stress components xyyx  ,, measured in the coordinate system yx, .  

 
 Draw the Cartesian coordinate system with  , axes. 

 Plot two points A ( xyx  , ) and B( xyy  , ). 

 To do so, we have to accept a sign convention for shear stress components in the 
‘material space’ and in the ‘Mohr’s circle space’.  In literature, there are a few 
approaches. In the text, we will follow the procedure depicted in Fig. CR_9. In the 
material space, the shear stress components could have the appearance shown in 
subplots 1a and 2a respectively. This kind of shear stress (being applied separately) 
would evoke the deformations depicted in subplots 1c and 2c respectively. For the 
purposes of a unique representation in the ‘Mohr’s circle space’, we accept the 
following rule. If the outer normal n


, being turned clockwise by the angle 2/ , 

coincides with the direction of the considered shear stress component, see 2c, then that 
shear stress component is plotted as a positive value in the Mohr’s circle diagram, see 
2d. Otherwise, the counterclockwise rotation of the normal, see 1b, requires plotting 
that component as the negative value in the Mohr’s diagram as indicated in 1e. 
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 Another step. Connecting the points A and B we get the point S from which we can 

draw a circle with the radius SAr  . 
 
4.8. Finding principal stresses by means of the Mohr’s circle 
 
The circle intersects the  - axis at points 1 and 2. At these two points, there are no shear 
stress components. The corresponding stress components 1  and 2  are so-called principal 
stresses. They are important for evaluating the strength of material capabilities. We will deal 
with the subject in more detail later. 
 
Observing the Mohr’s circle we might notice and define: 
 

 the radius   22

2
1

xyyxr   , 

 principal stresses 2
2

2,1 2

)(

2 xy
yxyx 


 





 , 

 average stress )(2
1

avg yx   , 

 
 maximum stress r avg1max  , 

 minimum stress r avg2min  , 

 maximum and minimum shear stress rminmax, , 

 plane orientation for the principal stress 1  is obtained from
yx

xy








2

2tan , while 

the corresponding material angle is  . It is an oriented angle and the corresponding 
orientations are indicated in subplots 1e and 2e. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. CR_9 ... Mohr’s circle and sign convention. 
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4.9. Finding principal stresses by means of the standard eigenvalue problem  
 
Let’s remind how the same vector could be expressed in two Cartesian coordinate systems 

yx,  and  , , having the same origin, and being turned by the angle  . See Fig. CR_10. 
 
The scalar notation of this transformation is 
 

 








cossin

sincos

yx

yx

AAA

AAA




,  … (CR_17) 

 
 
Fig. CR_10 ... Vector in two coordinate systems 
 
while the equivalent matrix expression, using the rotation matrix R , is 
 




































y

x

y

x

A

A

A

A

A

A
R

R
  







cossin

sincos
.      (CR_18),

  
The same expression in an alternative notation, where the letters denoting the axes are 
replaced by numbers such as 2,1  yx , leads to 
 

RaaR 




















;
2

1

2

1

A

A

A

A
.        (CR_19) 

 
Let’s introduce a new entity, namely the stress vector, 
which expresses the force acting in a particular cross-
section determined by a unit normal, as depicted in 
Fig. CR_11. The stress vector, denoted Fd , has 
components yx FF d,d , while the corresponding normal 

can be expressed as  
 
Fig. CR_11 ... Stress vector and stress components 
 






















sin

cos

2

1

n

n
n n


.        (CR_20) 

 
The condition of equivalence of elementary forces in the x - direction requires that  
 

 sindcosdd SSF xyxx  .         

 
Similarly for the y - direction. The stress components are defined as elementary forces related 
to a unit of corresponding areas. So, the stress vector could be written as   
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nΣf

Σ


































































2

1

2221

1211

2

1

sin

cos

cossin

sincos

d/d

d/d

n

n

SF

SF

f

f
f

yyx

xyx

xyy

xyx

y

x

















. 

                ...  (CR_21) 
 
We have already taken into consideration the validity of the rule of conjugate shear stresses, 
i.e. 2112   . Using the tensor notation, we could write 
 

jiji nf  .          (CR_22) 

 
This expression represents two equations for 2D ( 2,1i ) and three equations ( 3,2,1i ) for 
3D space. So, Eq. (CR_21) in a plane could be rewritten into  
  

2,1;
2

1




inf jij
j

i  .        (CR_23) 

 
This is the so-called Cauchy relation which relates the stress vector components if  to the 

stress components ij  by means of the normal components jn . See [29], [32], [35], [36]. 

  
4.10. Principal stress 
 
It should be emphasized that the notion of the principal stress plays an important role in 
continuum mechanics. The principal stress is a scalar quantity, uniquely attached to the stress 
tensor quantity – generally composed of nine components. The principle stress is a tool 
allowing express the “magnitude” of the tensor quantity and permits to determine the safe 
conditions for a material to withstand the applied loading. 
 
Let’s find such a cross-section, defined by an angle  , in which the stress vector f  becomes a 

 -multiple of the normal line n . So, we require that the relation ii nf   holds. In other 

words, we require that the stress vector has the same direction as the normal vector defining 
the cross-sectional area at which the stress vector ‘lives’. This could happen if and only if the 
matrix Σ  becomes diagonal. Under such conditions, the shear stresses vanish. 
Mathematically, this is the matrix eigenvalue problem which leads to the diagonalization of a 
matrix. 
 
Substituting the required condition ii nf   into Eq. (CR_22) we get 

 

.0

,0





jijjij

ijij

nn

nn




.         … (CR_24) 

Here, we have used the Kronecker’s symbol ij , for which 








ji

ji
ij   pro0

  pro1
  .       (CR_25) 

 

This allows expressing the normal components as jiji nn  , or 

























2

1

2

1

10

01

n

n

n

n
. (CR_26) 
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In the matrix form, we have  
 










































0

0

10

01

2

1

2221

1211

n

n





,      (CR_27) 

 
while in a scalar notation we can write  
 

.0)(

,0)(

222112

212111




nn

nn




        (CR_28) 

 
This is a system of homogeneous algebraic equations. They have zero on the right-hand side. 
Such a system has a non-trivial solution only if its determinant is equal to zero. Thus,  
 

 0
2212

1211 






.        (CR_29) 

 
The determinant evaluation leads to the quadratic equations whose roots are  
 

2
12

2
22112211

2,1 22
 






 




 .      (CR_30) 

The roots 1 and 2  are eigenvalues of the matrix 









2212

1211




Σ . Physically, they represent 

the principal stresses. They are denoted by 1  and 2  respectively.  Thus, as before we get 
 

2
2

2,1 2

)(

2 xy
yxyx 


 





 .       (CR_31) 

 
The state of stress at each point of a loaded body is defined by a unique stress tensor formed 
by an array of nine stress components. The set of these components differs, depending on the 
orientation of the coordinate system in which the stress components are expressed. Using 
different but currently used notations we might express the stress tensor ij as 

  





































































zxy

xyz

yzx

zzzyzx

yzyyyx

xzxyxx

zzzyzx

yzyyyx

xzxyxx



















333231

232221

131211

. (CR_32) 

 
This tensor is symmetric since we have accepted the rule of conjugate shear stress 
components, i.e. jiij   . 

 
This is a form frequently used in texts devoted to the mathematical theory of elasticity. In 
engineering, we prefer another notation4 based on the above-mentioned symmetry. From it 
follows that only six stress components – out of nine – are independent. Thus, it suffices to 
                                                 
4 Sometimes called the the Voigt’s notation. 
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express the state of stress as an array of non-repeated stress components. They are usually 
assembled in such a way that the normal stress components are listed first, being followed by 
the shear stress components. 
 

 




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1

Voigt  .        (CR_33) 

 
Example – determine the principal stresses 
graphically and numerically 
Given: The state of stress is given by the stress 
components 40;10;50  xyzyx  . 

All in [MPa]. See Fig. CR_12.  
 
 
Fig. CR_12 ... 2D State of stress. 
 
Determine: The principal stresses and their directions. Use the graphical and the numerical 
approach.  
 
Defining the proper scale of drawing, using the rule and compasses, considering the sign 
convention and applying the procedure described above, we obtain the values of principal 

stresses as Mpa30Mpa,70 21   . Using the formula 
yx

xy








2

2tan , we get 

0326  . 
 
And now, numerically – using the program mpp_008e_principal_stress_c1.  
 
% mpp_008e_principal_stress_c1 
clear 
% stress components 
sx = 50; sy = -10; txy = 40; 
  
% stress matrix 
sig = [sx txy; txy sy]; 
  
% find eigenvectors and eigenvalues 
[v, lambda] = eig(sig); 
  
% components of the first eigenvector are the actual normals 
n1 = v(1,1); n2 = v(2,1); 
  
% the angle between normals in radiand and degrees 
psi = atan(n2/n1); 
psi_deg = 180*psi/pi + 90 
  
% eigenvalues of the stress matrix are the principal stresses 
s1 = lambda(1,1) 
s2 = lambda(2,2) 
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Running the program we get 
 
psi_deg = 26.5651; s1 = -30; s2  = 70; 

 
Since a picture is worth a thousand words, study carefully Fig. CR_13 to understand the plane 
state of stress. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CR_13 ... Understanding the plane state stress 
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4.11. Plane state of strain  
 
If a prismatic rod of a constant cross-sectional area of the length l  is loaded by an axial force, 

then the overall axial deformation is ,Δl  and the corresponding axial strain is 
l

lΔ
 . 

 
Consider the deformation of an initially square 
element shown in Fig. CR_14.  
 
Assume that due to the prescribed deformation a 
material point, initially located in A , moves to 
A . Its displacement, decomposed into directions 
of coordinate axes yx,  are denoted vu  and , 
respectively.  
 
 
 
 
 

Fig. CR_14 ... Plane strain deformation 
 
To express the displacement components of the point B , we utilize the Taylor series and 
neglect the quantities of the second and higher orders. We assume that the functions 
describing the displacement field, together with their derivatives, are smooth. Then, for the 
horizontal and vertical displacement components of the point B, one can write.  
 

x
x

u
ux

x

u
yxuyxxuu

yx

dd),(),d(
,

B 






  ,    (CR_34a) 
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,

B 

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


  .    (CR_34b) 

 
Denoting the length of AB xd , then the length of A'B' is 
 

22 )d()dd(B'A' x
x
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x

x
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The relative change of the considered line in the x - direction is called the strain and is 
expressed as 
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 .    (CR_36) 

 
When simplifying the above formula we have used an approximation for expressing the 

square root function as 2/11 xx  . This approximation is safely applicable only if the x  
value is substantially less than 1. It does not hurt to observe the order of that approximation. 
See the Matlab program square_root_approximation.m.  
 
% square_root_approximation.m 
format long e 
i = 0; 
xrange = [0.1 0.01 0.001 0.0001 0.000001]; 
for x = xrange 
    i = i + 1; 
    a1 = sqrt(1 + x); 
    a2 = 1 + x/2; 
    rel = (a1 - a2)/a1; 
    r(i,:) = [a1 a2 rel]; 
end 
rr = [xrange' r] 
 
The program output is 
 
  x               sqrt(1+x)        1+x/2               rel. error 
  
1e-01     1.048808848170152e+00     1.050000000000000e+00   -1.135718707871894e-03 
1e-02     1.004987562112089e+00     1.005000000000000e+00   -1.237616103905176e-05 
1e-03     1.000499875062461e+00     1.000500000000000e+00   -1.248751170242068e-07 
1e-04     1.000049998750062e+00     1.000050000000000e+00   -1.249875216692911e-09 
1e-06     1.000000499999875e+00     1.000000500000000e+00   -1.250110500672832e-13 

 
Similarly, for the y - direction.  
 
Generally, the longitudinal strains for plane deformation are   
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In the linear theory of elasticity, the quadratic terms are neglected. 
 
And now, the shear deformation. See Fig. CR_14 again. Due to the deformation, the initially 
right angle BAC is changed by  
 

21   ,          (CR_38) 
 
It is known that   
 

212121 sincoscossin)sin(sin   .     (CR_39) 
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Also 
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Substituting Eqs. (CR_40), (CR_41) into Eq. (CR_39) we get  
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For small angles, i.e. 0 , we could approximate   tansin  and 1cos  . 
 
The area of the non-deformed element is yxdd , while that of the deformed one is 


cos)C')(A'B'(A')

2
sin()C')(A'B'(A'  .     (CR_43) 

By common consent, the shear strain is defined as the tangent of the angle   multiplied by 
the ratio of deformed and non-deformed areas.  
 
Generally, the shear strain is  
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while for small deformations the relation is simplified by neglecting the quantities of higher 
orders. Then, it has the form 
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 .         (CR_45) 

 
Concluding, the strain components – for the plane deformation case – are defined by  
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These relations represent so-called kinematic relations expressing the strains as functions of 
displacements.  
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Often, these relations are formulated by means of the differential operators as  
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4.12. Transformation of strain components into another coordinate system 
 

In the previous paragraph, we analyzed how the un-
deformed length of AD diagonal, depicted in Fig. 
CR_14,  changed – due to the applied deformation – into 
the line having the length DA  . Using simple geometric 
considerations, we derived the strain components 

xyyx  ,,  in the coordinate system yx, . 

 
 
 
 
 

Fig. CR_15 ... Transformation of strain components 
 

Now, we are interested in how these strain components change when expressed in a different 
coordinate system  ,  which is rotated, with respect to the original one, by the angle   as 
depicted in Fig. CR_15. It should be emphasized that the strain quantity is still the same – it is 
independent of the chosen coordinate system – its strain components, however, differ. 
 
Projecting the increments of displacements vu d,d of the point D into the   direction we get  
 

 sindcosdd vul  .        (CR_48) 
 
The change of direction of observed lines (for small deformations) could be expressed by  
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Assuming that the displacements ),(),,( yxvvyxuu  are continuous functions of 
coordinates, their increments can be expressed in the form 
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Observing Fig. CR_15 one can write 
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cosdd lx   a sindd ly  .        (CR_51) 
 
Then, the strain in the direction of the   coordinate is  
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So, 


22 sincossincos

y

v

x

v

y

u

x

u























 .     (CR_53) 

 
Similarly for the   direction. From   
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we get  
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and 
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The shear component is given by the difference of angles corresponding to  ,  directions 
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So finally, the strain components are  
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Substituting the Eqs. (CR_53), (CR_57) into the previous one we get the shear strain 
component for the  - direction being turned by the angle   with respect to the original 
coordinate system 
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Using the trigonometric relations for the double argument we get  
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These relations are formally similar to those derived for stress components in Eq. (CR_60).  
So, the similar conclusions could be deduced for the strain components related to various 
directions and a corresponding Mohr’s circle for strain components could be plotted. Fig. 
CR_16 graphically represents relations in Eq. (CR_60). Also, the principal strains are clearly 
defined.  

 
The actual deformation of bodies is always three 
dimensional. To simplify things we have assumed that the 
analyzed body is approximately two dimensional and has the 
shape of a thin strip, whose outer faces are parallel with the 

),( yx  plane and whose transversal dimension is negligible. 
Furthermore, we pretended that in the z direction there is no 
deformation. This is, however, a crude, on the other hand 
often useful, idealization of reality.  
 
Fig. CR_16 ... Mohr’s circle for strains 
 
To describe the state of idealized two-dimensional deformations, we generally proceed by two 
independent ways.  
 
Either we neglect the stress components occurring in directions perpendicular to the z -axis. 
This is a model called the plane stress. The stress components xyyx  ,,   are non-zero and 

other components, i.e. zyzxz  ,, , are neglected.  

 
Or we assume that the strain components 0 zyzxz  . This model is called the plane 

strain or plane deformation.  
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4.13. Tension (tensile) testing 
 

Before presenting and analyzing the constitutive relations for a linear isotropic material, let’s 
briefly dwell into experimental procedures needed to determine the material constants. It is a 
mature and extensive subject of material science requiring usually a full semester course. 
Here, only a brief survey is presented. The thermal effects and the ‘speed’ of loadings are not 
analyzed. 

 
It is the tension test, which is a basic tool 
for finding the fundamental material 
constants that are needed for the strength-
of-material computations. The test is 
unique for each material. A specimen, see 
Fig. CR_17, is subjected to successively 
increasing values of axial forces until the 
failure.  
 
Fig. CR_17 ... Specimen for tensile test 
 
During the test, the axial force as a function of axial elongation is registered. Then, the data 
are recomputed into the axial stress vs. axial strain quantities. The resulting plot is known as 
the stress-strain diagram. Schematically, it is depicted in Fig. CR_18. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. CR_18 ... Stress-strain diagram 
 
The stress-strain diagram, seen in Fig. CR_18, is highly idealized. It describes the axial 
(longitudinal) stress   as a function of the axial strain  .  The function starts at the point O 
corresponding to initial conditions – that is no stress, no strain. Then, due to the gradually 
increasing axial loading, the stress-strain function rises linearly to the point A that is called 
the proportionality limit. In this region, the stress is directly proportional to the strain – we 
say that in this region the material obeys the Hooke’s law – for 1D cases could be expressed 
in the scalar form 

 
 E .           (CR_60) 
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The coefficient of proportionality E  is called Young’s modulus.  The stress corresponding to 
the point A is called the proportional limit, say A . As a rule, it is defined by the occurrence 
of the linearity deviation not-exceeding the value of 0.005 %. 
 
The term linearity should be clearly distinguished from the term elasticity. By elasticity, we 
understand the ability of the loaded body – after it is unloaded – to return to its original state.  
Generally, the elastic material might follow a non-linear stress-strain curve – what is in this 
case important is that the material – when being unloaded – does not show permanent 
deformations – in other words, is not subjected to the plasticity behaviour.  So, the elasticity is 
the ability of a material to return to its previous shape after the loading stress is released – 
regardless of the linear or non-linear loading stress-strain behaviour. The non-linear but still 
elastic behaviour is typical for rubber materials. 
 
If the specimen is subjected to a still increased load, we come to the point B.  From now on, 
the structural bindings of material start to collapse and the permanent deformations occur. 
When the material is unloaded we witness the phenomenon called hysteresis – the body will 
not return to its original geometrical shape. 
 
The stress corresponding to the point B, i.e. Y , is called the yield stress. When the loading 
stress overcomes this value, the internal permanent deformations lead to so-called yielding of 
the material or by other words to almost perfect plasticity. In this loading region, the strain 
increases without a noticeable increase of stress. The yield strength indicates the crucial 
situation where permanent deformations of material occur. So, the yield stress is a value, 
while the term yield strength indicates a material property. 
 
Machine parts should be designed in such a way that the value of the usual working stress W  

has to be always less than the allowable stress AL . And the allowable stress is determined 
from  
 

k/YAL   ,          (CR_61) 
 
where Y  is the yield stress and k  is the factor of safety.  
 
If the loading stress increases above the C  value (point C) the material starts to resist again. 

This part of loading is called the strain hardening. The maximum value of stress at point D is 
called the ultimate stress. It is the maximum stress that a material can withstand before it 
breaks or weakens. During this process the cross-sectional area of the test specimen starts to 
narrow – this process is called necking – and the immediate cross-sectional area, say St , is 
subsequently smaller and smaller being thus different from the original one, i.e. from S0 . 
 
For a still increasing value of the loading force P , the stress in the specimen might be 
computed by two different ways. The former leads to the definition of so-called engineering 
stress, which is related to the original cross-sectional area by 
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P
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The latter, called the true stress (sometimes Cauchy stress), is related to the current cross-
sectional area, and is defined by 
 

S

P
t

true .          (CR_63) 

 
Both stress representations are depicted in Fig. CR_18. The dotted curve belongs to the true 
stress, which actually a more ‘correct’ stress representation. For small strains, however, both 
stress descriptions are numerically undistinguishable.  In the text, we will mostly use the 
concept of the engineering stress since it is typical for the linear theory of elasticity with 
infinitesimal strains.  
 
For the further loading beyond the point D (the ultimate stress) the failure of the specimen 
occurs. This is indicated by points E or E’ respectively.  
 
4.14. Plasticity 
 
If the loading process is stopped above the yield stress value Y  – the current value of the 
strain is just   as indicated in Fig. CR_19 – and then the loading force is gradually removed, 
the specimen starts to shorten again. The unloading stress-strain curve goes from the point A 
to B.  Notice that the unloading curve is linear and parallel to the line representing the virgin 
elastic part of loading. For axial strains, we can write  
 

pe   ,          (CR_64) 

 
where the total strain   is composed of two parts – the elastic (part of) strain e  and the 

plastic (part of) strain p . The actual shortening of the specimen is associated with the elastic 

part of strain e only. If we started the loading process again then the new stress-strain curve 

would approximately follow the direction from B to A and the stress A  becomes a new yield 

stress new
y . This process is known as the material hardening.  

 

 
Fig. CR_19 ... Idealized stress strain diagram Fig. CR_20 ...Stress strain diagram 
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Typical values for steel materials are as follows 
 
Steel    Ultimate stress  [MPa] Yield stress 
lower strength  350 – 500    about 60 % 
medium    700 
high   3000    about 85 % 
 
The stress-strain curve, typical of non-ferrous materials, is shown in Fig. CR_20.  In that case, 
the yield stress point is not clearly pronounced as before and is consensually defined as the 
stress corresponding to the permanent strain value of 0.2 %.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. CR_21 ... Stress strain curve for gray cast iron   
Fig. CR_22 ... Stress strain curve for marble 

 
The stress-strain curve for the gray cast iron is in Fig. CR_21. Notice the different material 
behaviour in tension and compression loadings. Fig. CR_22 shows the stress-strain curve for 
marble materials. 
 
Of course, the real-time experiments are not as smooth as their idealized appearances shown 
above. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CR_23 ... Real life tensile test 

Real life 1D tensile test, cyclic loading

Hysteresis loops move
to the right - racheting

Where is the yield point?

Conventional yield point

Lin. elast. limit
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Mild carbon steel 
before and after heat treatment

Conventional yield point … 0.2%

In Fig. CR_23 there is the record of the actual tensile test for a material not having a 
pronounced yield stress point and shows how it is determined by applying the above-
mentioned rule of 0.2 % strain. Also, it shows what happens when – after a certain above-
yield stress is reached – a repeated loading and unloading occur. One can observe that 
hysteresis loops move step by step to the right – this phenomenon is called the ratcheting.  
 
The material properties are substantially influenced by the applied heat treatment of the 
material. This is shown in Fig. CR_24. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. CR_24 ... Influence of heat treatment on tensile test. 
 
The tensile testing determines the character of uni-axial relations between the axial stress and 
the axial strain quantities. In 1D these measures are pure scalars. The stress-strain relation in 
its first part is linear. The coefficient of proportionality between 1D scalar stress and strain 
quantities is called Young’s modulus and is denoted E . It is measured in ]N/m[ 2 . 
 
The testing specimen is not only elongated due to the loading process but it is narrowed as 
well. So, the pure axial loading produces not only axial deformations but the radial as well.  
 
For more details see [7], [14], [17], [18], [21], [39]. 
 
4.15. Axial (longitudinal) vs. radial (transversal, lateral) deformations 
 
Assume that the tested specimen, being clamped in its 
upper part, has a circular cross-sectional area. In this 
experiment, the weight of the specimen is neglected.  

 
Due to the applied tensile force F , the specimen is 
elongated, and at the same time it is contracted – its 
cross-sectional area is diminished. The overall axial 
elongation is l , while the average radial contraction is 

d . See Fig. CR_25.        
 
Fig. CR_25 ... Hanging rod  
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If the rod were compressed instead, its cross-sectional area would increase. The dependence 
of axial (longitudinal) to radial (transversal) deformations was proved by experiments carried 
out by Siméon Poisson – 1781–1840. The phenomenon is known by the name of Poisson’s 
effect. For small strains, it is quantified by the coefficient   called the Poisson’s ratio. It is 
defined as the ratio of the radial strain to the axial strain. For the radial strain, we can write 
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This formula is of phenomenological nature. This means that it cannot be proved 
mathematically. Furthermore, its validity is limited to linear cases.  

 
The minus sign expresses the fact that the positive axial deformation (elongation) is 
accompanied by the negative radial deformation (narrowing). For most engineering materials, 
the value of the Poisson’s ratio is in the range <0 0.5>. A typical value for steels is about 0.3; 
for rubber materials, it approaches the value of 0.5. The Poisson’s ratio for cork materials is 
close to zero. These materials show very little radial expansion when compressed – that’s why 
the cork stoppers are advantageously used for corking the wine bottles.  
 
4.16. Hooke’s law appearances for different types of loading 
 
4.16.1. Hooke’s law for 1D  
 
In this case, Hooke’s law states that there is a linear relationship between the axial stress 
component xx  (sometimes simply x  or  ) and the axial strain component xx  (sometimes 

simply x  or  ). Since there are no other ‘alive’ directions we often omit the direction 

indices, because the notation of a particular direction is meaningless, and write the Hooke’s 
law in the scalar form as 
 

 E ,          (CR_66) 
 
where the coefficient of proportionality E is called the Young’s modulus. 
 
4.16.2. Hooke’s law for the plane stress 
 
The considered stress components, acting on the elementary cube, are depicted in Fig.CR_26. 
 

The corresponding strain component in the x  direction consists of 
the elongation due to the x stress component accompanied by the 

shortening due to the y  stress component.  
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Fig. CR_26 ... Plane stress 
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Analogically, for the y - direction 
 

 xyy Ey
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d
.        (CR_68) 

 
Even if we assume that there is no stress component in the z -direction, the considered 
element – due to applied positive stresses yx  ,  has to shorten in the z  direction. This 

phenomenon was experientially proved by the French mathematician and engineer Siméon 
Denis Poisson (1781 – 1840). Thus, the strain component in the z - direction is  
 

 yxz E
  .         (CR_69) 

 
We have shown that the change of the right angle of the considered element, expressed by the 
shear strain, is proportional to the shear strain. 
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So far, we expressed the strain components as functions of the stress components. The inverse 
relations can be easily derived and have the form 
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Hooke’s law for the plane stress in the matrix form is 
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4.16.3. Hooke’s law for 3D 
 
3D state of stress 
 
For a body being loaded by a 3D system of forces we 
generally have nine stress components. Their action 
on an elementary cube is depicted in Fig. CR_27. The 
triple trio of stress components is called the tensor. 
This is how the stress tensor components might be 
denoted and expressed in various matrix forms 
 
 
 
Fig. CR_27 ... Stress components in 3D. 
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The strain components in 3D – engineering notation  
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Due to symmetry  
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The strain components in 3D – matrix notation 
 


































































































31

23

12

33

22

11

31

23

12

33

22

11

)1(200000

0)1(20000

00)1(2000

0001

0001

0001

1
























E
; σDε   

… (CR_76) 
 
The strain components for plane stress – see Fig. CR_26. 
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The element is contracted in z - direction, so  221133  
E

.  (CR_78) 

Summary for Hooke’s law representations 
 
Hooke’s law in 3D space  
 
 
 
 
 
 
 
 
 
 
 
 

… (CR_79) 
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4.16.4. Plane stress vs. plane strain 
  
Depending on how the elementary cube is constrained we distinguish two cases. See Fig. 
CR_28. 

 
If the face ABC is free, then we are dealing with so-called plane stress state of stress. If the 
face ABC, and its parallel face, are fixed (no displacements allowed) then we have the case 
called plane strain state of stress. In the case of the plane stress the material element is 
allowed to freely deform in the z-direction and thus the displacement zu and the strain zz are 

non-zero, while the corresponding stress zz is equal to zero. In the plane strain case, the 

material element is constrained in its z-direction motion and thus 0zz  and consequently 

0zz .  

Fig. CR_28_ ... Plane stress and strain 
 
Hooke’s law for plane stress ( 0312333   , 03123   ) 
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The element changes its dimensions in z - direction, so 
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CR 31

Hooke’s law for plane strain  0;0 2331333123   . 
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and also )( 221133   .        (CR_84) 

 
4.17. Principal stresses – once more 
 
The stress vector5 f  acting in the plane ABC, 
as depicted in Fig. CR_29, can be decomposed 
into a component in the direction of the normal 
n  i.e. Sd , and into another component, i.e. 

Sd , lying in the plane ABC. The normal n  is 
defined by its direction cosines, i.e. 
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Fig. CR_29 ... Stress vectors 
 
The stress tensor could be expressed in the matrix form6 as  
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The stress vector components if  are related to components of the stress tensor ij  by  
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This expression, called the Cauchy relation, is based on satisfying the force equilibrium 
conditions in directions of coordinate axes.  
 
Now, we are looking for such a position of ABC plane, in which the stress vector f would be 
perpendicular to that plane. In other words, the stress vector would have the same direction as 

                                                 
5 Stress is a tensor. Stress vector is a rarely used in engineering computations, but it is a useful entity allowing to 

express the relations between forces and stress components. The stress vector dimension is in  2N/m . 
6 The indices x,y,z are replaced by 1,2,3. 
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the normal vector n  and its tangential (i.e. shear) components disappear. Under these 
conditions, the stress vector f would become a scalar multiple of the normal n . 
 
So we require that 
 

nf   or expressed in components ii nf  ,     (CR_87) 

 
where the so far unknown scalar multiple is denoted  .   
 
Beforehand, we could claim that the disappearance of shear stress components would lead to 
the diagonal form of the original tensor σ . 

 
Substituting Eq. (CR_87) to Eq. (CR_86) we get 
 

nσn   and consequently   nσnT .      (CR_88) 
 
This is, however, the way how the eigenvalue problem is defined in mathematics. The 
geometrical meaning is: find such an eigenvalue   and such a normal vector n , called 
eigenvector, which causes that the Eq. (CR_88) is satisfied. Generally, there are n  
eigenvalues and n  eigenvectors for a matrix of the order nn . 
 
Using the unit matrix, Eq. (CR_88) could be rewritten into the form 
 
 0nIn   or ( 0nI ) .        (CR_89a) 
 
This is a system of homogeneous algebraic equations which has a non-trivial solution only if 
the determinant of the system is identically equal to zero. Thus 
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We have already stated that the matrix is symmetric, so jiij   . 

 
Evaluating Eq. (CR_89b) leads to the cubic equation 
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Solving Eq. (CR_90) leads to three real roots 321 ,,   – these roots are called the 

eigenvalues of  σ .  The constants iJ , known as the stress invariants, have the form 
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For each eigenvalue, we can write 
 

i
)(T)( )( ii nn  , 3,2,1i .        (CR_92) 

 
Alternatively,   
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Or, in a more compact form  

NN  T , where  )3()2()1( nnnN   and 
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The eigenvalues i  of the matrix   correspond to the principal stress components i . The 

matrix N  is known as the eigenvector matrix. In this case, it has three columns containing the 

vectors )(in . The components of these vectors contain the cosines of direction angles 
determining the vector orientation with respect to coordinate axes.  These angles (we have 
three triples of them) determine the cross section orientations in which the shear stresses 
disappear – the   matrix becomes diagonal and their diagonal entries (eigenvalues) are the 
principal stresses.  
 
It was shown how the principal stresses and their orientations can be determined by means of 
the Mohr’s circle reasoning. The process could be substantially simplified by numerical 
techniques available in Matlab. To find the eigenvectors and eigenvalues of a matrix, say  , 
it suffices to write the command 
 
[N, Lambda] = eig(Sigma);  
 
It is understood that N … N , Lambda …   and Sigma …  . 
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05_SE. Strain energy 
 
5.1 Introduction 
 
In this paragraph, we are dealing with infinitesimal strains and engineering stresses. Also, the 
validity of the Hooke’s law is assumed. 
 
In continuum mechanics, the strain energy is the internal energy accumulated in a body being 
deformed.  
 
5.2. Strain energy for uniaxial stress 
 
An elementary cube being loaded in the x-direction only by a 
force xP  is depicted in Fig. SE_1.  

 
Fig. SE_1 … 1D elem cube loaded in x 
 
Due to the applied loading, the side of the cube xd  is elongated by xΔd . So, the 

corresponding strain in this direction is 
x

x
x d

Δd
 . The acting force could be expressed by 

means of the stress x  and the corresponding cross-sectional area zyS dd , and the 

elementary force zyP xx dd . One-dimensional appearance of the Hooke’s law is xx E   

and could, in this case, be reformulated as x
x

ES
Px Δd

d
 . This formulation states that the 

elongation of the cube side xΔd  is proportional to the 
loading force xP . The coefficient of proportionality, say 

x

ES
k

d
 , is called the stiffness.  

 
During to the loading process, the force xP  linearly increases 

from zero to its maximum value maxP , while the 

corresponding elongation u  increases from zero to the 
maximum value xΔd . Knowing the stiffness, we could plot 
the force-displacement line, i.e. kuPx  ,  as seen in Fig. 

SE_2.  
 

Fig. SE_2 … 1D force displacement line. 
 
It is known that the mechanical work, which is an equivalent of the mechanical energy, can be 
expressed as a scalar product of the force and the displacement. Since the loading force varies, 
the elementary work Ud done by the force xP  during the elongation of the side of the cube by 

xΔd , has to be evaluated in the integral fashion, as 
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Realizing that xx E   the relation for the elementary strain energy could be further 

elaborated as follows 
 

VVE
E

V
E

V
E

EVEU xxx
xxx

x d
2

1
d

2

1
d

2

1
d

2

1
d

2

1
d

2

2

2
2   .  (SE_2) 

 
The strain energy density is the strain energy that is related to a unit of volume, thus 
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5.3. Strain energy for plane state of stress  
 
An elementary cube in the state of the plane stress is depicted in Fig. SE_3.  
 
We have already shown that this type of loading evokes the normal 
strains, i.e. yx  , , and the shear strains, i.e xy .  

 
Fig. SE_3 … Plane stress 
 
In the linear theory of elasticity, the strain energy due normal strains and the strain energy due 
to the shear strains are independent and could be superimposed.   
 
5.3.1. The strain energy due to normal stresses 
 
The total elongation xd  of the cube side xd  is composed of the elongation due the stress x  

and of the shortening due the perpendicularly acting stress y . Thus, 

 

  x
E

xx yxx d
1

dΔd   .       (SE_4) 

 
Similarly, for the y-direction 
 

  y
E

yy xyy d
1

dΔd   .       (SE_5) 

 
The strain energies due to the normal stresses are composed of two parts. 
 

 The work done by the force zyx dd due to the elongation xΔd  is zyxxx ddd . 

 The work done by the force xzy dd due to the elongation yΔd  is zyxyy ddd . 
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Since the stress components and the corresponding strain components are mutually 
perpendicular their scalar products do not influence each other.  
 
Generally, the loading process occurs in time – it is assumed that both stress and the strain 
quantities rise linearly from zero to their maximum values1. Let’s define an auxiliary 
parameter, say )(t  , 10   , which formally describes the loading and deformation 
processes in time. Then, the increments of exerted work (strain energy) for immediate values 
of the forces  zyx dd  and xzy dd  by incremental elongations xx dd   and 

yy dd respectively, are 

 
Vzyxxzy xxxxxx dddddd)dd()dd(   ,   (SE_6a) 

Vzyxyx yyyyyy dddddd)dd()dzd(   .   (SE_6b) 

  
The elementary strain energy due to the normal stresses is a cumulative process that can be 
evaluated by the integration process in “time” 
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Often, we define the strain energy density, which is related to a unit of volume 
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The formula on the right was obtained by substituting the Hooke’s law relations, i.e. 
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 .      (SE_9) 

 
5.3.2. The strain energy due to shear stress 
 
A part of the strain energy attributed to the shear strains can be deduced analogically in the 
form 
 

dVA xyxy 2

1
d  .         (SE_10) 

 
Similarly, the shear strain energy density is 
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The total shear strain energy density for the plane stress is  

                                                 
1 In statics, we normally do not take the time variable into consideration. The applied force is either zero or it has 
its maximum value. The process of the force application is, however, assumed to be so slow that the inertia 
effects could be neglected.  
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5.4. Strain energy for the 3D state of stress 
 
Analogically, the strain energy density for the 3D state of stress, 
depicted in Fig. SE_4, is  
 

   zxzxyzyzxyxyzzyyxxΛ  
2

1

2

1
.    (SE_13) 

 
Fig. SE_4 … 3D stress 
 
Eliminating strains, using the Hooke’s law relations, we get 
 

    222222

2

1
2

2

1
zxyzxyxzzyyxzyx GE

Λ   .  (SE_14) 

 
   

5.5. Strain energy in a beam subjected to pure 
bending 
 
In Fig. SE_5 there is depicted a part of the beam 
subjected to pure bending. We have derived that the axial 
stress due to the bending is   
 

z
J

xM

y
x

)(
 .     (SE_15) 

Fig. SE_5 … Beam defo 1 
 

The pure bending means that the axial stress is of 
uniaxial nature, and that the influence of shear 
forces is non-existent or neglected. So, the strain 
energy of pure bending is analogous to the strain 
energy in tension – compression as explained 
before. See Fig. SE_6. So, the elementary strain 
energy, contained in an element of a beam between 
two infinitesimally close slices, depicted in Fig. 
SE_5, is    

 


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 .   (SE_16) 

 
Fig. SE_6 … 1D strain energy 
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To explain the analogy of bending with the tension it should be reminded that for a bar of the 
length l  we write 
 

l
l

ES
P

l

l
E

S

P
E 


 ;; .       (SE_17) 

 
And similarly for a beam element of the length xd  
 

.
d

;Δd;Δd
d x

ES
kxkPx

x

ES
P         (SE_18) 

 
The strain energy contained in the whole beam is obtained by the integrating Eq. (SE_16). If  

constJ y  , then 


l

y

xxM
EJ

U
0

2 d)(
2

1
.        (SE_19) 

 
5.6. Strain energy expressed in tensor notation 
 
It is of interest that all the strain energy density formulations for the cases examined in this 
paragraph could be simply and uniquely described by the tensor analysis notation. In the form 
of the tensor scalar product, also known as the tensor double product, we have 
 

Cauchygengineerin

2

1
ijij EΣΛ     or     Cauchygengineerin :

2

1
EΣΛ .     

 
Here, it is necessary to use one’s wits and to properly distinguish the tensor and Voigt’s 
(engineering) notations when the tensor and engineering formulas for the strain energy are 
alternatively employed for the strain energy computation. Of course, the result has to be same. 
 
The Green-Lagrange strain tensor, multiplied by the second Piola-Kirchhoff stress tensor – by 

means of the double dot product, i.e. ij
t

ij
t SE 002

1
– gives the scalar quantity which represents 

the mechanical energy or the mechanical work. 
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5.7. Analogy of relations for tension, bending and torsion 
 
1D stress    bending    torsion 
 

 E     E     G  ... Hooke’s law 

l

l
EεE

S

F
σ


   

o

o

W

M
    

k

k

W

M
  … stress 

where oM and kM are bending and torsion moments respectively 

 

S   
max

o z

J
W y    

max

p
k r

J
W    

these relations are valid for circular cross sections only 
area     oW  and kW are section modules in bending and torsion 

     
 
longitudinal strain   curvature   rate of twist  
 

ES

F

l

l



    

yEJ

M o1



   

p

k

d

d

GJ

M

x


  

 
stiffness 




elongation
stiffness longitud.

l
l

ES
F    




curvature
stiffness bending

o

1

yEJM    



twist

stiffness torsional

p
k 

l

GJ
M   

 
strength theories 

Dtmaxmax σεEσ    Dt
o

o
max σ

W

M
σ    D

k

k
max τ

W

M
τ   

where Dt  is the allowable stress in tension and D  is the allowable stress in torsion. 

 
strain energy 

ES

lF
U

2

2

    
l

y

o x
EJ

xM
U

0

2

d
2

)(
  

p

2
k

2GJ

lM
U   

constant force   variable moment  constant moment 
 
 
For more details see [17], [18], [19], [22], [23], [33], [34], [36]. 
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06_FT. Failure theories 
 
6.0. Introduction 
 
It should be reminded again that the term the strength of material is understood in two distinct 
meanings. First, the subject of the university course dedicated to th e engineering continuum 
solid mechanics, also known under the nam e the mechanics of material. Second, the property 
of a particular material to withstand safely the applied loading. 
 
Having learnt how 
 

 the loading modes are classified, 
 a body is strained due to the applied loading,  
 to compute the stress and strain invariants, 
 to assess the strain energies for particular loading modes,  
 to evaluate the principal strains and stresses,  
 the fundamental material constants are experimentally obtained, 

 
we are ready to analyze the conditions under which the examined body could safely withstand 
the applied loading.  
 
The most common m aterial test is the tens ile test, which w as briefly described in P aragraph 
04_CR. This type of test provides the m aterial constants for 1D load ing. The question arises 
how to apply the 1D material data to cases where the 2D and 3D state of stress occur.  
 
The problem is rather complicated since at each m aterial point (particle) of a loaded body the 
state of stress is described by a stress tensor, the quantity generally having nine stress and nine 
strain components. How to decide w hich stress component is crucial for the capability of the  
body to withstand the applied load ing? That’s why the scalar quantities, as the principal 
stresses, stress invariants, etc. are im portant. Based on these scalar quantities, the various 
failure theories and hypotheses were derived. In the following text, a brief survey is presented. 
 
6.1. Rankine’s hypothesis of the maximum stress 
 
The spatial state of stres s is compared with the uniaxial one in such a way that th e maximum 
stresses are com pared. If the pr incipal stresses are ordered as 321   , then th e failure 
occurs if Pt1   , where Pt  is the stress corresponding to the allowable tensile strength. If 

03  , then Pd3   , where Pd  is the stress corresponding to   th e allowable com pressive 
strength. So,  
 
Rankine          (FT_1) 
If 0 321   , then the failure occurs for Pt1   . 
If 321    and at the same time 03  , then the failure occurs for Pd3   . 
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6.2. Saint-Venant’s  hypothesis for the maximum shear 
 
This hypothesis assum es that the f ailure occurs if the m aximum strain reaches the critical 
value crit . Again, the uniaxial and the spatial state of stress are com pared. Assume that the 

critical stress 0  evokes the critical strain 
E

0
max

  . Similarly, if the principal stresses are 

ordered as 321    then the  m aximum stra in will be  321max
1  
E

. 

Comparing them, we get  321
0 1 


EE

. From it follows   

 
  Pt3210   ,        (FT_2) 

 
where Pt is the allowable tensile strength. The value 0  is often called the equivalent stress. 
 
Saint-Venant          (FT_3) 
If 321   , then the failure occurs for Pt0   , where  3210   . 
 
6.3. Guest’s hypothesis of the maximum shear stress 
 
For the uni-axial state of stress we get 2/0max   . For the spatial state of stress, assum ing 
that the p rincipal stres ses are ord ered as  321   , the m aximum shear stress is 

  2/31max   . Comparing we get that the equivalent stress is 310   . 
 
Guest           (FT_4) 
If 321   , then the failure occurs if Pt0   ,  
where 310    and Pt is the allowable tensile strength. 
 
6.4. Beltrami’s hypothesis of the strain energy density 
 

According to this hypothesis, tw o states of stress are equiva lent, if their strain energy 
densities are equal. For the uniaxial and for the spatial state of stress we have derived  
 

E2

2
0

1D
   and     222222

3D 2
12

2
1

zxyzxyxzzyyxzyx GE
  . 

                 … (FT_5) 
 
Comparing them we obtain the equivalent stress in the form 
 

D30 2  E .         (FT_6) 
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Beltrami           (FT_7) 
The failure arises for Pt0   , where D30 2  E ,  

and     222222
3D 2

12
2
1

zxyzxyxzzyyxzyx GE
  , 

and Pt is the allowable tensile strength. 
 
6.5. Mises’s hypothesis of the deviatoric part of the strain energy density  
 
The stress com ponents corresponding to the spatial state of stre ss could be divided into two 
parts.  
  

 One of them  causes th e change of shape of  the element only, w ithout influencing its 
volume.  

 The other causes the change of volum e of the element only, without influencing its 
shape. 

 
Evidently, the stress tensor could be decomposed as follows  
 
























































p

p

p

p

p

p

zzyzx

yzyyx

yzxyx

zzyzx

yzyyx

yzxyx

00
00
00









.    (FT_8) 

 
Terminology  
 
Stress     =    deviatoric stress             +      volumetric stress 
                                 i.e. the change of shape,         i.e. the change of volume, 
            volume is conserved.           shape is conserved. 
 
It should be reminded that for the change of volume we can write 
 

  zyxzyxV zyxzyx ddd)1(d)1(d)1(d   .   (FT_9) 
 
Neglecting the higher-order quantities, the relative change of volume is  
 

 zyxV

V 
 .         (FT_10) 

 
Now, the q uestion is.  W hat value  the qu antity p  has  to attain in o rder that the condition 

0d V  is satisfied? Meaning – no change of volume. Evidently,  
 
  0 zyx  .          (FT_11) 
 
From the Hooke’s law, we get 
 

 zyxx p
E

 
1 ,       (FT_12) 
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 xzyy p
E

 
1 ,       (FT_13a) 

 yxzz p
E

 
1  .         (FT_13b) 

 
And substituting into 0 zyx   we obtain 
 

    0321



 p

E zyxzyx  .      (FT_14) 

 
From the last equation, the p  value could be evaluated as 
 

 zyxp  
3
1 .         (FT_15) 

 
6.5.1. A part of the strain energy density evoked by the volumetric stress  
 
If the body is loaded by pressure only, then all the normal stress component are equal to p . 
The corresponding strain components are also identical. We might write  
 

zyx   .         (FT_16) 
 
The Hooke’s law – for all three directions – is  
 

    211


E

p
ppp

E
.       (FT_17) 

 
For the strain energy density, we have derived   
 

   zxzxyzyzxyxyzzyyxx  
2
1

2
1 .    (FT_18) 

 
In the case of the pressure loading, the shear stress components vanish and we can write 
 

pzyx             (FT_19) 
 
and also 
 

zyx   .         (FT_20) 
 
Then, from Eq. (FT_18) we get 
 

 3
2
1

2
13vol pp  .        (FT_21) 

 
Since all three normal strain components are equal, the relative change of volume is  
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   3 zyxV

V .        (FT_22) 

 
So, 
 

V

V
ppp


2
13

2
1

2
13vol  .       (FT_23) 

 
Comparing with Eq. (FT_17) we get  
 

  2
vol 2

)21(321
2
13

2
13 p

EE

p
pp

 
 .     (FT_24) 

 

But  zyxp  
3
1 , so finally the part of the stra in energy density corresponding to the 

volumetric part of the stress is  
 

   222
vol 6

)21(
9
1

2
)21(3

2
)21(3

zyxzyx EE
p

E
 








 . (FT_25) 

 
We have already shown that the total strain energy density is   
 

    222222

2
12

2
1

zxyzxyxzzyyxzyx GE
  .  (FT_26) 

 
6.5.2. A part of the strain energy density evoked by the deviatoric stress  

 
So, the part of the strain energy density corres ponding to the deviatoric part of the stress is 
given by the difference  
 

voldev   .         (FT_27) 
 
After the rearrangement we get 
 

   222222
dev 2

1
3

1
zxyzxyxzzyyxzyx GE

 


 .  (FT_28) 

 
The strain energy density for the deviatoric part  of uni-axial strain com es from the previous 
relationship in the form  
 

2
0

1D
dev 3

1 
E


 .         (FT_29) 

 
So, from the point of view of the m aterial strength, the uni-axial and sp atial state of stresses 
are equivalent if their deviatoric strain energy densities are equal, i.e. 
 

dev
1D
dev   ,          (FT_30) 
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So, 
 
     222222

2
0

2
1

3
1

3
1

zxyzxyxzzyyxzyx GEE






 , (FT_31) 

 

     2222222
0 2

1
1
3

zxyzxyxzzyyxzyx G

E 


 


 .  (FT_32) 

 

And realizing that   1
2G

E , we finally get 

 
   2222222

0 3 zxyzxyxzzyyxzyx   .   (FT_33) 
 
So, according to the Mises’s hypothesis, the equivalent stress is 
 

   222222
0 3 zxyzxyxzzyyxzyx   .   (FT_34) 

 
Mises           (FT_35)
           
The failure arises for Pt0   , where 

   222222
0 3 zxyzxyxzzyyxzyx   , 

and Pt is the allowable tensile strength. 
 
 
This hypothesis is based on the as sumption that the m aterial failure is due to the deviatoric 
stress com ponent only, or by other words due to the deviatoric stra in energy density. In 
literature, this hypothesis is also known under the abbr eviation HMH – m eaning Huber-
Mises-Henckey hypothesis.  

 
6.6. Plasticity conditions 
 
The subject of plasticity is a topic, requiri ng an extens ive full sem ester cou rse. There are 
many theories available; here – just have a ju st feeling for the subject –  we present the two 
simplest hypotheses only. 
 
Tresca’s condition          (FT_36) 
 
H. Tresca, after extensive experiments, came to the conclusion that the plastic deformation of 
metals occurs if the following condition is met  
 

K0   , where max310 2  . 
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Mises’s condition         (FT_37) 
 
The plastic deformation of metals occurs if the following condition is met  

K0   , kde 133221
2
3

2
2

2
10   , 

or       2
13

2
32

2
210 2

1   . 

 
 
For more details see [7], [14], [17], [18]. 
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07_PS. The principle of superposition 
 
7.1. Introduction 
 
The principle is valid for linear elastic system s only.  The linear systems are characterized by 
the following assumptions: small displacements, infinitesimal strains, the equilibrium of force 
and stress quantities is consider ed in the un-deform ed geometry1, and finally the validity of 
Hooke’s law. Under these assumptions the quantities to be determined are the linear functions 
of the applied loads. 
 
Consider a schematized bridge, depicted in Fig. PS_1, that is subjected to external loading by 
two forces, say 21, FF . Let’s analyze the deflection at the location 3.  
 
In linear cases, the deform ations are proportional to 
the applied forces.  
 
 
 
Fig. PS_1 ... Schematized bridge structure 
 
We could thus state. 
 
The deflection, at the location 3 due to the force 1F  alone, is 13131 Faw  . 
The deflection, at the location 3 due to the force 2F alone, is 23232 Faw  . 
 
The quantities 3231,aa  are the p roportionality constants. The principle of superp osition states 
that the total deflection in the location 3 is  
 

23213132313 FaFawww  .       (PS_1) 
 
It can be shown that the proportionality constants are functions of the structure’s geometry 
only. 
 
7.2. Betti’s theorem2 
 
Whether the acting forces are applied sequentially  o r a ll a t once, the def ormations of  the 
analyzed structure are identical. Again, the theorem is valid for a “slow” application of forces 
and for linear elastic structures. 
 
Imagine that the system  of applied forces an d m oments is arb itrarily partitioned  into two 
groups. Say, I and II. 
 
Due to the loading of forces and m oments belonging to the first group, the strain energy IA  is 
evoked in the system. Due to the consequent loading of forces  and moments belonging to the 
second group, the strain energy IIA  is introduced. Furthermore, there is additional energy III,A  

                                                 
1 This might happen if the large deformations occur. Then, due to the loading the initial geometry is substantially 
changed. This phenomenon is called the geometrical non-linearity.  
2 Enrico Betti Glaoui (1823 – 1892) was an Italian mathematician. 
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– this energy corresponds to the mechanical w ork done by fo rces and mom ents of the first 
group due to deformations evoked by the forces and moments of the second group.  
 
So, the total strain energy is 
 

IIIII,I AAAA  .         (PS_2) 
 
If the order of the loading process is reversed, then  
 

IIII,II AAAA  .         (PS_3) 
 
The total energy cannot depend on he order of the loading process, so 
 

III,III, AA  .          (PS_4) 
 
Summary for Betti’s theorem 
 
If a linear system (for which the superposition principle is valid) is subjected to the forces and 
moments belonging to two groups, then  
 
– the mechanical work done by the first group of forces and mom ents due to the deformations 
evoked by the second group of forces and moments 
 
is identical to 
 
– the m echanical work done by the second  group of forces and m oments due to the 
deformations evoked by the first group of forces and moments. 
 
7.3 Maxwell’s theorem 
 
If the p rinciple of  superposition is valid,  then  the def ormations (deflections and  slopes) a re 
described by linear functions of the loading (forces and moments). 
 
The so called influence coefficients are defined as follows 
 
By the set o f integer v ariables, nk ,2,1 , we define the points of action of single forces 
and moments. By another set of variables , nj ,2,1 , we define the location s where the 
deformations (deflection and slope) are observed.  
 
So the influence coefficient is defin ed as the defor mation at the location j  evoked by a unit 
loading applied at the location k . 
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They might be denoted as follows: 
 

jkα  … deflection at the location j     … evoked by a unit force applied at the location k , 

jkβ … slope at the location j    … evoked by a unit force applied at the location k , 

jkγ  … deflection at the location j  … evoked by a unit moment applied at the location k , 

jkδ  … slope at the location j  … evoked by a unit moment applied at the location k . 
 
Example – influence coefficients 
Given: Cantilever beam subjected to the force and moment loading depicted in Fig. PS_2. 
Determine: The slope and deflection at the location 4.  
 
 
 
 
 
Fig. PS_2 ... Loaded beam 
 
The deflection and the slope at the end of the beam are 
 

4444334224114 γMαFαFγMw  ,       (PS_5) 

4444334224114  MFFM  .       (PS_6) 
 
Let’s sort the loading effects into two groups as follows 
 

21,:I FM ,          (PS_7) 

34 ,:II FM .          (PS_8) 
 
Deflection evoked by the first group at the location 3, where 3F acts, is  322311I αFγMd  , 
Slope evoked by the first group at the location 4 , where 4M acts, is 422411I βFδMs  , 
Deflection evoked by the second group at the location 2, where 2F acts, is 233244II αFγMd  , 
Slope evoked by the second group at the location 1,where 1M acts,  is  133144II βFδMs  . 
  

... (PS_9 to PS_12) 
 
The mechanical work done by the first group due to the defor mations evoked by the second 
group is  
 

II2II1III, dFsMA  .         (PS_13) 
 
The mechanical work done by th e second group due to the defo rmations evoked by the first 
group is  
 

I3I4III, dFsMA  .         (PS_14) 
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According to Betti’s theorem these mechanical works (energies) are equal, so 
 

III,III, AA  .          (PS_15) 
 
Substituting and rearranging we get  
 

        0422442322332411441311331   MFFFMMFM .  (PS_16) 
 
In order that this equation be satisfied, the contents of its brackets have to be zero, so  
 

kjjkkjjkkjjk δδγβαα  ,, .       (PS_17) 
 
These equalities represent the Maxwell’s theorem.   
 
Summary for Maxwell’s theorem 
 
The deflection in the location j  caused by the un it force in the location k  is the s ame as the 
deflection in the location k  caused by the unit force in the location j . 
 
The slope in the location j  caused by a unit force in the location k  is the same as the slope in 
the location k  caused by the unit moment in the location j . 
 
For more details see [6], [7], [18], [19], [39]. 
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08_PV. Principle of virtual work 
 
8.1. Introduction 
 
The virtual work is the mechanical work produced by forces and moments exerted during 
their virtual displacements. By the term virtual displacement we understand any infinitesimal 
displacement and/or rotation that are in agreements with the prescribed constraint conditions. 
For virtual quantities Lagrange introduced the symbol δ , to emphasize the virtual, i.e. 
fictional or apparent, character of these quantities. We assume that while the body is being 
transferred to a new, infinitesimally close position, the acting forces do not change their 
magnitudes and directions and that the time, during that transfer, is frozen.  
 
8.2. Virtual work 
 
In mechanics of deformable bodies the principle of virtual work states that the virtual work of 
internal forces , say Uδ , is equal to the virtual work of external forces, say Wδ , so 
 

UW δδ  .          (PV_1) 
       
In mechanics of rigid bodies the deformations of loaded bodies are neglected, so the work 
done by internal forces is identically equal to zero, thus  
 

0δ W .          (PV_2) 
 
The rigid body in equilibrium is characterized by the fact that the resultant of all the forces 
and moments is identically equal to zero. If such a body is subjected to a virtual motion that is 
in agreement with constraints, then the resulting mechanical work, called the virtual work, is 
zero, as well. The condition of the zero virtual work is equivalent to the equilibrium 
condition.  
         
At the first sight, the conclusion, that the zero resulting force produces zero work, seems to be 
trivial. But, the resulting zero is a sum of non-zero contributions of works produced by virtual 
displacements of individual forces. We will show that the power of the principle is based on 
the fact that the principle has to be valid for any virtual displacement.  
 
The virtual displacements of deformable bodies are actually the displacements of individual 
particles representing the overall change of the body’s shape – the rigid body motions are not 
considered. If a deformable body is in equilibrium, then the virtual work done by external 
forces is equal to the virtual work done by internal forces. The latter work is actually equal to 
the strain energy. 

 
So, 
 

  0δδδδ UsFUW ii ,       (PV_3) 

 
where isδ  is a component of the virtual displacement of the point of action of the force iF  , 

having the same direction as the force iF . It is assumed that the applied force does not change 

during the virtual displacement. The time is frozen, so the values of acting forces do not 
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increase from zero to its final magnitude – that’s why the factor 
2

1
 does not appear in these 

expressions. 
 
Often, the energy of external forces W , taken with the minus sign, is called the potential, i.e. 

WV  .  So, the energy W is capable to produce mechanical work, while the potential 
V consumes it. The strain energy is also capable to produce the mechanical work. 

 
Introducing the total energy by 

 
UVE            (PV_4) 

  
one can write 
 

  0δδδδδδ  UVUVUAE .      (PV_5) 
 
This is, however, the condition for the minimum of the function W . It can be proved, see 
[22], that the condition of the minimum of the total energy is equivalent to the equilibrium 
condition. 
 
In other words: The equilibrium conditions of a body occur for such a deformation 
configuration in which the minimum total energy is accumulated. 
 
 Example – the strain energy explained again 
 
The linear elastic spring of the stiffness k  is loaded by a force linearly increasing, i.e.  

kuF  , from zero to its maximum value maxF . Due to the loading, the length of the spring 

increases, see Fig. PV_1, and the accumulated strain energy is  
 

CkuukuuF   2

2

1
dd .     (PV_6) 

 
Generally, for a mechanical system 
characterized by displacements u  and 
by the stiffness matrix K , the strain 
energy expressed in the matrix form is  
 

KuuT

2

1
.        (PV_7) 

 
Fig. PV_1 ... Strain energy 
 
We say that the strain energy is a quadratic function of displacements.  
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8.3. Castigliano’s theorems 
 
describe methods for determining the displacements of a linear elastic structure based on the 
partial derivatives of the energy. 
 
Consider a body loaded by forces iFFF ,,, 21   and by moments jMMM ,,, 21  . Let’s analyze 

what happens if one of the forces, say ikFk 1,  is changed by the increment kFd . 

Evidently, the strain energy increment  is k
k

F
F

U
d




. Due 

to the applied force kFd  the loaded body deforms. Its 

point of action is displaced. Let the projection of this 
displacement be ksd . Then, the increment of the 

mechanical work has to be equal to the increase of the 
strain energy. The strain energy increments are depicted 
in Fig. PV_2. Thus, 

F 

k
k

kkkk F
F

U
FsFs dddd

2

1




 .        (PV_8) 

 
Fig. PV_2 ... Strain energy increments 
 
Neglecting the second order increments we obtain the first Castigliano’s theorem in the form 
 

k
k F

U
s




 .          (PV_9)  

 
A similar analysis, carried out for the moment quantities gives the second Castigliano’s 
theorem. 
 

l
l M

U
φ




 .           (PV_10)

   
Example – application of the Castigliano’s theorem  
 
Given: Dimension, cantilever beam loaded by uniform distributed loading. See Fig. PV_3.  
Determine: Deflection and slope as a function of the beam 
length.  
 
A trick. At the free end of the beam a fictive force F and a 
fictive bending moment 0M are added. After the analytical 

part of the solution is carried out, these quantities will be set 
to zero.  
 
Fig. PV_3 ... Application of Castigliano theorem 
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The bending moment is 
 

2
)(

2

0

qx
MFxxM  .        (PV_11) 

 
The strain energy accumulated in the beam is   
 


l

y

x
EJ

xM
U

0

2

d
2

)(
.         (PV_12) 

 
Applying the first Castigliano’s theorem, we get the deflection at the free end of the beam in 
the form 
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In the second line of the previous equation we have substituted zeros both for the fictive force 
and for the fictive moment. 
 
Applying the second Castigliano’s theorem, we get the slope at the end of the beam in the 
form  
 

y

l

y

l

y EJ

ql
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qx

EJ
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φ
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
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  .    (PV_14) 

 
Example 
 
The Castigliano’s theorem could be advantageously 
applied to solutions of statically indeterminate 
cases. See Fig. PV_4. Removing the left support 
and replacing it by the vertical reaction R , and 
realizing that there has to be the zero deflection 
there, we could write the Castigliano’s theorem in 
the form  
 
Fig. PV_4 ... Indeterminate beam 
 

0



R

U
.          (PV_15) 

 
The bending moment as a function of the x-coordinate is  
 

.
2

)(
2qx

RxxM           (PV_16) 
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The corresponding strain energy is 
 

yyy

l

y

l
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  .   (PV_17) 

 
The derivative of the strain energy with respect to R  has to be zero, so  
 

0
86

2 43





yy EJ

ql

EJ

Rl

R

U
,             (PV_18) 

 
which gives the unknown reaction  
 

8

3ql
R  .              (PV_19) 

 

The equation 0



R

U
 could be viewed as the condition for the extreme of the function 

)(RUU  . We know that the condition for the extreme to become minimum requires that the 
second derivative of U with respect to R  has to be positive. Evidently, in our example this 

condition is satisfied. Generally, the condition 0
2

2





R

U
 represents the so-called third 

Castigliano’s theorem.  
 
Expressed in words: Out of all the statically acceptable indeterminate reactions, the 
deformation condition is satisfied only for the reactions minimizing the strain energy. 
 
This theorem is also known as the Menabrea’s theorem.  
 
8.4. Saint-Venant’s principle 
 
states that the difference between the effects of two different but statically equivalent loads is 
very small at a sufficiently large distance from the load. 
 
This principle is used whenever it is necessary to idealize the task to be solved. Of course, the 
precise definitions of attributes very small and sufficiently large require a sound engineering 
insight.  
 
As an example take the standard tensile test where we analyze the state of stress in the middle 
part of the test specimen specified by the uni-axial formula, i.e. SF / , knowing that in 
locations where the specimen is clamped at its ends, there is a full 3D state of stress. 
 
For more details see [17], [18], [19], [22], [39]. 
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09_LM. Typical loading modes 
 
9.1. Introduction to bending, torsion, and buckling 
 
In the strength of material theory, the ability of various engineering machine parts to withstand 
the applied loading is treated by different approximate approaches – consequently, the different 
chapters are devoted to rods, beams, thin plates, thick plates, shells, thin-walled vessels, thick-
walled vessels, etc. This scattered approach is – to certain respect avoided, when modern 
computational approaches – based on discretization (as for example the finite element method) 
are employed in practice. The author feels that knowledge of principles, on which the modern 
numerical methods are based, might be profitable for a student who intends to employ these 
methods efficiently. That’s why the classical approaches for the treatment of bending, torsion, 
and buckling are presented in detail here. 
 
9.2. Bending 
 
9.2.1. Introduction 
 
In engineering terminology the beam is a prismatic body being able to capture the external 
moments, the lateral and the longitudinal forces. Beams and their schematic representations are 
depicted in Fig. LM_1. 
 
 
 
 
 
 
 
 
 
 
 
Fig. LM_1 … Beams and their schematic representations 
 
9.2.1.1. Terminology 
 
To remind the used terminology concerning the terms as the degrees of freedom, static 
determinacy, etc, the following text – already presented in the study of the mechanics of rigid 
bodies – is repeated here. 
 
Different types of constraints – this subject was treated in detail the text devoted to mechanics of 
rigid bodies, so a brief repetition only – beams in the plane are treated here. 
  

joint  … radial – allows rotation, 2 reaction force components 
  … axiradial – allows rotation and displacement, 1 reaction force 
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clamping  … no displacements and rotations allowed, 2 reaction force components  
and 1 reaction moment 

 
9.2.1.2. Explanation of terms: degrees of freedom, static determinacy, etc. 

 
Six cases of a differently constrained body (a truss structure, composed of thin rods, also 

called bars) connected at their ends by frictionless joints, are depicted in Table LM_1.  Due to 
miscellaneous constraints applied to that body, we can analyze six different cases with different 
numbers of degrees of freedom. For simplicity, the bridge structure is assumed to be two 
dimensional and all the constraints are considered frictionless. Two types of constraints are 
considered. First, a radial joint that besides the rotation allows left or right sliding motions. This 
constraint is also called a roller support. Second, a radial joint allowing a free rotation. This 
constraint is also called a pin support.  
 
 
Structure 

 
 
#dof’s    3        2        1       0       -1      -2 

 
 
reactions 
 
 
# reactions comp.   0         1    2            3           4            5 
 
# equilibrium eqs.  3    3          3           3           3            3 
 
structure type   | ......    moving ............. |  properly    | ... constrained ...  | 
                 |                                | constrained  |       too much       | 
        
type of problem  | ....... statically ........... |  statically  | ... statically ...   | 
                 |      underdeterminate          |  determinate |  interdeterminate    | 
 
to be solved in  | ......   dynamics   .......... |   statics    | strength of material | 

 
Table LM_1 ... Degrees of freedom and free body diagrams 
 
The first column corresponds to a free, unconstraint or unsupported body that has 3 dof’s in the 
plane. There are no reaction forces to be associated with the case. 
 
The second column. The body is attached to the frame by a radial joint that besides the rotation 
allows left or right sliding motions. By mutual consent, the vertical motion in the up direction is 
prohibited. The body could freely rotate around the joint and also could freely move in left or 
right directions as well, it thus has two dof’s. In the FBD this joint could be replaced by one 
unknown reaction component on the left, which would act vertically.  
 
The third column. The body is attached to the frame by a radial joint allowing a free rotation 
around this joint only, it thus has one dof. In the FBD, this joint could be replaced by two 
unknown components of the reaction force in that joint. 
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The constraint bodies, depicted in the first three columns, have one common property, – they can 
move. Generally, the moving structures are characterized by the fact that their number of dof’s is 
greater than zero. Mechanical systems composed of more rigid elements, having a positive 
number of dof’s, are often called mechanisms. More about the subject is in the chapter devoted to 
kinematics. 

 
Any structure able to move will start to change its position in space and cannot be treated by 
statics tools of mechanics. Their motions, due to the applied forces and moments, are described 
not by equations of equilibrium, but by equations of motions having the form of ordinary 
differential equations. In the following text, we will show how these problems are analyzed by 
tools of dynamics. 

 
The fourth column. The body is attached to the frame at two places. On the left, there is a radial 
joint, which when considered alone, allows a free rotation. On the right, there is a sliding radial 
joint allowing both the rotation and the horizontal motions. The left joint removes one dof, and 
represents two unknown reaction components, the right one two dof’s and requires to add one 
unknown reaction component in the FBD. Altogether, the body cannot move and has, in this case, 
zero degrees of freedom. Reaction forces represent three unknowns, two on the left and one on 
the right, and for a body in a plane, we have three scalar equations of equilibrium at our disposal. 
This case is thus easily solvable. We say that such a system is statically determinate.  

 
Generally, we can state that the actual number of dof’s of a body, say i , plus the number 

of unknown reaction components due to prescribed constraints, say m , is equal to the number of 
dof’s of that body “freely” flying in the space (rigid body motions). In plane, we could write 

3 mi , in space 6 mi . 
 
The fifth and sixth columns correspond to structures that from the statics point of view are 
‘constrained too much’. They have a negative number of degrees of freedom. We say that these 
cases are statically interdetermine. In these cases, the number of unknown reaction components is 
greater than the number of available equilibrium equations. Consequently, the conditions of 
equilibrium do not suffice to find unknown reactions. Cases of this kind will be explained, 
analyzed and treated in chapters devoted to the mechanics of deformable bodies. We will show 
that adding an adequate number of so-called deformation conditions, the tasks of this type can be 
solved. 
 
The treated tasks could be classified according to the number of degrees of freedom.  
 
If # dof’s = 0, then the mechanical system is said to be statically determinate and for given forces 
and moments, the corresponding reactions are readily obtained from properly formulated 
equilibrium conditions. In this case, the system is stationary and the number of unknowns is equal 
to the number of available equilibrium conditions.  
 
If # dof’s > 0, then the system is statically underderterminate and generally cannot be solved by 
statics tools. For given forces and moments, the system would start to move with accelerations 
and could only be treated by dynamics tools. Still, the tasks of this kind could be analyzed in 
statics if the problem is reformulated.  
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There are two possibilities. 
 
First, for a given position determine such forces and moments that allow the system to stay in its 
current configuration. 

 
Second, determine such a configuration in which the system – for a sufficient number of 
prescribed loads – will be in the state of equilibrium. 
 
If # dof’s < 0, then the system is said statically indeterminate and cannot be solved by statics 
tools since the number of unknown reactions is greater than the number of available equilibrium 
equations. The tasks of this kind could be treated by tools of mechanics of deformable bodies, 
where a suitable number of so-called deformation conditions are added, which together with 
equilibrium equations will suffice to find all the unknown reactions. 
 
Internal actions (i.e. the shear force a nd the bending moment) in a cross section – again this 
was treated in detail in the text devoted to mechanics of rigid bodies 

 
 
 
A cross section m-n divides the beam into two parts. See Fig. 
LM_2. 
 
 
 
 
The left part. In this cross section, the indicated shear force V  
and the bending moment M replace the effects of the removed 
part. In this case, there are no forces in the lateral direction of 
the beam.  
 
 
The right part. According to the principle of action and 
reaction, the forces and the moments acting on the right part 
are of the same magnitude but of opposite directions.  

 
Fig. LM_2 … Free body diagram 
 
To determine the type of reactions the free-body-diagram reasoning is used. To evaluate the 
magnitudes of reactions, the equilibrium conditions have to be applied and solved for reactions. 
Then, the internal forces and moments are determined from the condition of the equivalence of 
internal and external forces with reactions. For planar cases, two force components equations and 
one moment equation are required. Each component equation could be replaced by a moment 
equation. But not vice versa.  
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9.2.3. Sign conventions 
 
The shear forces are considered positive if the material element 
turns clockwise. See Fig. LM_3. 
 
The bending moment is considered positive if the upper part of the 
element is shortened, while the lower one is elongated.  
 
 
We also accept the statement that the positive shear force and the 
positive bending moment deform the beam in a ‘downward’ 
fashion.  
 
Fig. LM_3 … Sign convention 
 
Example – simply supported beam loaded by two concentrated forces 
 
Given: dimensions, forces. See Fig. LM_4.  
Determine: the distributions of shear forces and the 
bending moments.  
 
 
 
Fig. LM_4 … Simply supported beam forces 
 
The considered beam is simply supported and thus statically determinate. Reactions are found 
from the equilibrium conditions. In plane, two component force and one moment equations are 
required. Since there are no axial forces applied, just two moment equilibrium equations are 
sufficient for the task. Solving them we get 
 

      2211B2211A

1
,

1
aFaF

l
RalFalF

l
R  .    (LM_1) 

 
How do we proceed? At first, we cut the beam in a chosen cross section and apply the internal 
forces and moments in such a way that the overall equilibrium is assured. Then, the free-body 
diagram for internal, external and reaction forces and moments in the chosen cross section is 
constructed and finally, the equilibrium conditions for unknown internal forces and moments are 
solved. The equilibrium equations are considered for each part of the beam. Regardless of the 
chosen part of the beam, i.e. the left or right one, the considered equilibrium conditions should 
lead to the same results in terms of internal effects. 
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Now, back to our example.  
 

The internal forces for the first part of the beam, i.e. for 10 ax  .  
 

The removed part of the beam is replaced by forces and 
moments satisfying the overall equilibrium. See Fig. 
LM_4. Notice, that the principle of action and reaction 
is observed.  To satisfy the equilibrium conditions, we 
added a vertical force T  and a moment M . In this 
case, there is no internal horizontal force since no 
external forces are acting in that direction. The force T  
is called the shear force, while the moment M  is called 
the bending moment.  

 
Fig. LM_4  … Simply supported beam forces first part 
 
In the first part of the beam, i.e. for 10 ax  , the equilibrium conditions, written for the left-
hand side of the beam, lead to 
 

.

,

A

A

xRM

RT




          (LM_2) 

 
Similarly, for the internal forces in the second part of the beam, i.e. for 21 axa  , see Fig. 
LM_5, we get 
 
 

 .
,

11A

1A

axFxRM

FRT




    (LM_3) 

 
 
 
 
Fig. LM_5 … Simply supported beam forces second part 
 
The internal forces in the third part of the beam, i.e. for lxa 2 . See Fig. LM_5. 
 
Here, we can show that regardless of considering the left or the right part of the beam we get the 
same results. So, for the left-hand part we get 
 

   ,
,

2211A

21A

axFaxFxRM

FFRT




       (LM_4) 

 
 
 



LM 7

while for the right-hand part we have 
 

  .
,

xlRM

RT

B

B




         (LM_5) 

 
When these, seemingly different, expressions are evaluated, they provide the same numerical 
results. In practice, it is recommended to consider that part of the beam, which requires the less 
effort for finding the result. 
 
The distribution of the shear forces and of the bending moments as functions of the longitudinal 
coordinate is graphically depicted in Fig. LM_6. 
 
The shown procedure for finding internal forces was 
already described in the text devoted to the mechanics of 
rigid bodies. Here, it is repeated for the self-consistency 
of the text. This way, we have obtained information 
about the distributions of internal shear forces and 
internal bending moments. So far, we know nothing 
about the deformations and stresses of the beam. This 
will be treated in the next paragraphs.  
 
 
 
 
 
 
 
 
 
Fig. LM_6 … Simply supported beam forces 
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Example – simply supported beam with a uniformly 
distributed load of constant intensity 
 
Given:  dimensions, uniformly distributed loading 
q [N/m]. See Fig. LM_7. 
Determine: Distribution of shear forces and bending 
moments. 
 
This kind of distributed load might represent the 
loading due to the own weight, the layer of sand or 
snow, etc. It is measured in [N/m]. Due to the loading 
symmetry, we get the reactions by inspection 
 

2BA
ql

RR  .    (LM_6) 

 
 
 
 
Fig. LM_7 … Simply supported beam distributed loading 1 
 
 
Considering the equivalence of forces in the left part of the beam at a 
generic distance x , see Fig. LM_8, we get 
 
Fig. LM_8 … Simply supported beam distributed loading 2 
 

).(
2

1

2

),2(
2

1

2

A

A

xlqx
x

qxxRM

xlqqx
ql

qxRT




  ... (LM_7) 

 
The distribution of the shear forces and the bending moment is depicted in Fig. LM_7. 
 
The maximum bending moment occurs in the middle of the beam, i.e. for 2/lx  , and is 
 

.
8

1 2
2/max qlMM

lx



        (LM_8) 

 
Notice that the maximum bending moment corresponds to the zero shear force. Generally, it 
holds  
 

x

xM
xT

d

)(d
)(   .         (LM_9) 

 



LM 9

This relation can be proved in the following way. In Fig. 
LM_9, there is depicted a beam element of the length xd  being 
subjected to a distributed load )(xq . Then for the shear forces, 
neglecting the increments of higher orders, we can write the 
equilibrium condition in the form 
 

0dd  TxqTT      (LM_10) 
 
Fig. LM_9 … Schwedler 
 
from which we get 
 

x

T
q

d

d
 .          (LM_11) 

        
The moment equation of equilibrium, written with respect to the centre of the element, is  
 

    0d
2

d
d

2

d
 MM

x
TTM

x
T .      (LM_12) 

 
From this equation we can deduce that 
 

x

M
T

d

d
 .          (LM_13) 

 
It is worth remembering that the sh ear force is  the firs t derivative o f the bendin g moment 
while the distributed load is the negative derivative of the shear force, thus  
 

x

xM
xT

d

)(d
)(   and 

x

xT
xq

d

)(d
)(  .       (LM_14) 

 
These relations were derived by J.W. Schwedler (1823 – 1894). In European textbooks, devoted 
to the subject of the engineering strength of material theory, they are known under the name of 
the Schwedler’s theorems.  
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9.2.4. Deformations and stresses in beams subjected to pure bending 
 
After determining the internal actions 
(shear forces and bending moments) in 
beams, we can proceed to establish the 
strains and stresses occurring due to the 
applied loading.  
 
We will concentrate on prismatic beams 
living in the plane (xz) as depicted in Fig. 
LM_10.  
 
Fig. LM_10 … Beam_defo 
 
The x-axis is positive in the ‘right’ direction, the positive z-axis is oriented ‘downwards’, while 
the positive y-axis is perpendicular to the plane (xz) and is directed ‘to the viewer’. The beam is 
considered symmetric in the (xz) plane.  

 
All the loads are assumed to act in the (xz) plane. If, futhermore, the cross-sectional area is 
symmetric with respect to (xz) plane, than the beam deflection occurs in the same plane – called 
the plane of bending. The initially straight longitudinal axis of the beam is bent – after the 
deformation it is called the deflection curve and is depicted by the dashed line. The normals to the 
deflection curve at points A and B intersect at the point O which is called the center of curvature. 

The indicated distance r  is the radius of curvature, while its reciprocal value, i.e. 
r

1
, is called the 

curvature.  
 

Assume, that the beam is loaded by a moment M only. The cross-sectional area of the beam is 
hbS  . The prescribed loading of the beam evokes a deformation – its upper fibers are 

shortened, while the lower ones are elongated. Evidently, there must be a part of the beam cross 
section that is not deformed at all, it is called the neutral surface – its section with the (xz) plane 
is called the neutral axis. 

 
Due to the deformation, the internal stress ),( zy  in the cross-sectional area S arises.  The 

elementary force in the element of area Sd is SSzyN x dd),(d   . 

 
Since there are no other forces acting in the x-direction, the condition of equilibrium requires that 
the sum of all the elementary forces has to be equal to zero, thus 
 

 
S

SzyNN .0d),(d           (LM_15) 

The moment of elementary internal forces Nd with respect to the y-axis has to be equal to the 
external bending moment M . This moment is actually the magnitude of the moment vector 

yMM


 , i.e. yy MMM


 , which is perpendicular to the cross-sectional area. Equilibrium 

condition requires that   
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.d),(d  
S

y SzyzNzM          (LM_16) 

Since we consider the in-plane bending only, the moment zM


, whose magnitude is zM , have to 
be zero. Thus, 
 

.0d),(d  
S

z SzyyNyM         (LM_17) 

 
The last three equations, i.e. Eqs. (LM_15), (LM_16) and (LM_17), do not suffice for the unique 
determination of the internal actions in a cross section. Additional assumptions have to be 
accepted.   

 
One of the possibilities is based on the so-called Bernoulli’s1 hypothesis, which assumes that the 
infinitesimally close cross sections – that were planar before the deformation – remain planar 
after the deformation as well. This assumption leads to the approximate theory which is known 
under different names – the theory of slender beams, the Bernoulli hypothesis or Bernoulli-
Navier hypothesis.  

 
Observe Fig. LM_10 again. The length of the part of the fiber between the points A and B, at a 

distance of z  bellow the neutral axis, and measured before the deformation, is dxAB rd  , 
where r  is the radius of curvature. After the deformation, this length changes to 

d)(11 zrBA  . 
 

So, the corresponding strain in the longitudinal direction is  
 

r

z

r

rzr

AB

ABBA
zy x 










d

dd)(
),( 11 .     (LM_18) 

 
It is assumed that there is no interaction between the neighboring fibers. Assuming also the 
validity of Hooke’s law the corresponding stress component in the longitudinal direction is  
 

r

z
EEzy xx   ),( .        (LM_19) 

 
So, the longitudinal strain and stress components, in a beam loaded by pure bending, vary 
linearly with the distance measured from the neutral surface. 

 
It should be reminded that the first moment of area of the cross-sectional area evaluated with 
respect to the y-axis could be expressed by means of the magnitude of area S  and its centroid 

coordinate Tz in the form SzdSz T . 

                                                 
1 Jacob Bernoulli, 1654 – 1705, born in Basel, Swirzerland. He studied theology, mathematics and astronomy. 

Bernoulli discovered the constant  n

n
ne )/11(lim 


, which is the base of natural logarithm. 
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Substituting Eq. (LM_19) into Eq.  (LM_15) we get 
 

0d T  Sz
r

E
Sz

r

E

S

.         (LM_20) 

 
From this condition, we conclude that 0T z . This condition also defines the plane where the 
components of the longitudinal stresses and strains are equal to zero. This way, the neutral 
surface, where the strains and stresses are zero, is defined. Another important conclusion is that 
the neutral axis passes through the centriod of the cross-sectional area.  
 
Substituting Eq. (LM_19) into Eq. (LM_16) we get 
 

yy J
r

E
Sz

r

E
MM   d2 ,         (LM_21) 

 

where the quantity ]m[,d 42 SzJ y  is called the second moment of area with respect to the y-

axis. For the plane bending problems the index y , used for the quantities  yy JM , defined above, 

is often omitted.  
 
Summarizing, the theory for slender beams is based on the Bernoulli’s relation 
 

yEJ

M

r


1
,          (LM_22) 

         
which states that the beam curvature is linearly proportional to the bending moment M  and 
inversely proportional to the product yEJ , which is called the bending stiffness.  

 
From Eq. (LM_17) one can deduce 
 

0d  yzJSyz ,         (LM_23) 

 
where the quantity yzJ  denotes the deviatoric moment of area with respect to axes zy, . 

 
The Eq. (LM_23) is a necessary condition defining the state of the plane bending. It states that 
the plane bending occurs only if the z-axis is the symmetry axis of the beam’s cross-sectional 
area.  
 
From Eqs. (LM_19) and  (LM_22) one can deduce that the longitudinal stress in the beam cross 
section depends on the distance from the neutral axis. For the positive bending moment, the upper 
part of the cross-sectional area shortens while the lower one prolongs.  So, the cross sections of a 
beam in the state of the pure bending are in the state of uniaxial stress 
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z
J

M
zy

y
x  ),( .         (LM_24)   

 
Often, we are interested in the maximum value of the longitudinal stress only. In this case  
 

  maxmaxmax z
J

M

y
x  .        (LM_25) 

 
If the cross-sectional area is symmetric with respect to the y-axis, then maxmax zz  , and we can 

write 
 

0
max W

M
 ,          (LM_26) 

max
0 z

J
W y ,          (LM_27) 

 
where we have introduced a new variable 0W , called the bending section module of the area. The 

moduli for various types of the frequently used beam cross sections are listed in textbooks for the 
engineer’s convenience. See [17], [39]. 
 
9.2.5. The conditions for the safe applicability of the slender beam theory  
 
It should be reminded that the Bernoulli’s beam theory (or by other words the slender beam 
theory) is based on the assumption of the state of pure bending. In engineering practice, such a 
loading is practically impossible to achieve – almost always there is a shear loading component 
present.  

 
It is known that the shear forces produce so-called warping of the cross sections (i.e. their out of 
plane distortions). Thus, the cross sections, being planar before the deformation, are warped after 
the deformation and a more complicated beam theory has to be used. See [18]. It was, however, 
shown that when the slender beam assumptions are observed, the results obtained this way are 
acceptable. 

 
The main assumptions for the safe applicability of the Bernoulli’s theory are  

 
 the cross-section dimension has to be small with respect to length of the beam, 
 the errors are more significant in the vicinity of supports. 
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9.2.6. The second moments of area – see Fig. LM_11. 
 
The second moments of area with respect to axes zy,  are  
 


S

y SzJ d2 ,      (LM_28) 

 


S

z SyJ d2 .      (LM_29) 

 
Fig. LM_11 … Moment of area 1 
 
The deviatoric moment of area with respect to axes zy,  is 
 


S

yz SyzJ d .          (LM_30) 

 
The polar moment of area is 
 

  yz

SS

p JJSzySrJ   dd 222 .      (LM_31) 

 
The dimensions of these area moments are ]m[ 4 . 
 
Example – the second moments of area for a beam with a rectangular cross section hb . See 
Fig. LM_12. 
 

3
2/

2/

2
2/

2/

2

12

1
ddd bhzzySzJ

h

h

b

bS

y  


,  (LM_32) 

hbyyySyJ
b

b

h

hS

z
3

2/

2/

2
2/

2/

2

12

1
ddd  



, (LM_33) 

 222

12

1
d hbbhJJSrJ yz

S

p   , (LM_34) 


S

yz SyzJ d = 0dd
2/

2/

2/

2/

 


h

h

b

b

zzyy .  (LM_35) 

 
Fig. LM_12 … Beam defo 1 
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Example – the second moments for a circular cross section with the diameter d . 
 

4

64
dJJ zy


  and 4

32
dJ p


 .       (LM_36) 

 
Example – the polar moment of area for an annulus with outer and inner diameters 

12 2,2 rdrD   respectively 
 

  







 4

44
4

1
4

2p 1
322 D

dDπ
rr

π
J .       (LM_37) 

 
9.2.7. Parallel axis-theorem - the second moments of area with respect to shifted axes – see 
Fig. LM_11 again. 
 
The second moments of area with respect to axes yx ,  shifted by distances ba,  are 
 

     
S

y

SSSS

y SbSbzJSbSzbSzSbbzzSbzJ 2
T

22222 2dd2dd2d ,   (LM_38) 

 
where Tz  is the area’s centroid coordinate measured with respect to original axes and S  is the 
cross-sectional area. 
 
Similarly  
 

     
S

z

SSSS

z SbSayJSbSyaSySaayySayJ 2
T

22222 2dd2dd2d , 

... (LM_39) 
 
where Ty  is the centroid coordinate measured with respect to original axes. 
 
And finally, the deviatoric moment of area with respect to the shifted axes are 
 

  abSSbyazJSabSybSzaSyzSbzayJ yz

SS SSS

zy    TTddddd))(( . 

... (LM_40) 
 
If the original axes pass through the centroid of the cross-sectional area, i.e. 0TT  zy , then the 
previous formulas simplify to  
 

SbJJ yy
2 , SaJJ zz

2  , abSJJ yzzy  .   (LM_41) 
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9.2.8.The second moments of area with respect to the rotated axes – see Fig. LM_13. 
  
The relations between the original and the rotated coordinates 
are  
 




cossin

sincos

zy

zy




.    (LM_42) 

 
Fig. LM_13 … Turned axes 
 
For the second moment of area with respect to   axis, one can write 
 

 

.coscossin2sin

dcoscossin2sind

22

22222





yyzz

SS

JJJ

SzyzySJ



 
   ... (LM_43) 

 
Similarly for the  axis 
 

 

.sincossin2cos

dsincossin2cosd

22

22222





yyzz

SS

JJJ

SxyzySJ



 
   ... (LM_44) 

 
The deviatoric moment of area is  
 

   cossinsincoscossind 22
yyzz

S

JJJSJ   . 

 
The above relations could be derived more efficiently in a matrix manner. Defining 
 

J



















2221

1211

JJ

JJ

JJ

JJ



  ;    J

















2221

1211

JJ

JJ

JJ

JJ

zyz

yzy ;   













cossin

sincos
R . 

... (LM_45) 
 
we could simply write 
 

RJRJ T .                (LM_46) 
 
In the beam theory there is often used another geometric quantity, i.e. the bending section module 
of the area, defined as  
 

max
o z

J
W y .               (LM_47) 
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For the annulus with outer and inner diameters D  and d  respectively, we get 
 

44

6464
dDJJ zy


           (LM_48) 

 
and then the bending section module of the area is 
 











4

4

max
0 1

322/ D

d

D

J

z

J
W yy 

.        (LM_49) 

 
9.2.9. The influence of the shear force on the deformation of the beam 
 
So far, only the influence of the pure bending moment was treated. Now, we will add analysis of 
the influence of the shear force. Let’s consider a beam of the rectangular cross section hb  
depicted in Fig. Fig. LM_14. As before, the bending moment is applied within the (xz) plane. The 
applied shear force is directed in the z-axis coordinate. The corresponding state of stress of an 
elementary prism is described by stress components shown in Fig. LM_15a.  
 
 

 
 
Fig. LM_14 …  Beam_shear_1       Fig. LM_15a … Beam_shear_2 
 
If the width of the cross-sectional area is sufficiently small, i.e. hb  , we might assume that the 
shear stress xz , due to the shear force,  is uniformly distributed along the beam’s width, by other 

words it does not depend on the y-coordinate. 
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The equilibrium conditions written for zx,  directions are 
 

,0dddd 





















 xbxb
z

zbzb
x zx

zx
zxx

x
x      (LM_50) 

.0dddd 





















 ybzb
x

xbxb
z xz

xz
xzz

z
z      (LM_51) 

 
Simplifying, we get 
 

,0







zx
zxx 

         (LM_52) 

.0







xz
xzz 

         (LM_53) 

 
Substituting the relations derived for the pure bending, i.e.  
 

z
J

xM

y
x

)(
  and 0z         (LM_54) 

 
and using the relation between the shear force and the bending moment 
 

 
x

xM
xT

d

)(d
)(           (LM_55) 

 
we get  
 

,
)(

)d

)(d

yy

zx

J

zxT

x

xM

J

z

z





       (LM_56) 

.0



x
xz

 

 
Integrating Eq. (LM_56) we obtain 
 

C
z

J

T

y
zx 

2

2

 ,         (LM_57) 

 
The unknown integration constant can be obtained form the condition of the free (unloaded) 
surface, i.e. 
 
 0

2/


 hzzx .          (LM_58) 
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So, 
yJ

Th
C

8

2

 ,           (LM_59) 

 
and finally  
 

 22 4
8

zh
J

T

y
zx  .         (LM_60) 

For the rectangular area, where 2

12

1
bhJ y  , we get the shear stress as a quadratic function of the 

z-coordinate in the form  
 









 2

24
1

2

3

h

z

bh

T
zx .         (LM_61) 

 
The maximum shear stress value is for 0z . So, 
 

 
bh

T
zx 2

3
max  .         (LM_62) 

 

 
Fig. LM_15b … Beam_shear_3      Fig. LM_15c … Beam_shear_4 
 
The shear stresses have the parabolic appearance which is depicted in Fig. LM_15b. Due to the 
existence of shear stresses the initially planar surface AB is warped into the  BA   shape. See Fig. 
LM_15c, where the influence of shear stresses is schematically indicated. This result, however, 
contradicts one of assumptions, which was accepted for the theory of beams being subjected to 
the state of pure bending.  
 
So, the Bernoulli’s pure bending theory presented above is approximate. But, still, it is useful in 
engineering computations. What are the limits of its validity is shown in the following example. 
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Example – validity of the pure bending theory  
 
Given: Consider a cantilever beam, of the rectangular cross section hb , of the lenght l , loaded 
by a force F on its free end, i.e.  constFT  . 
Determine: the relative errors due to neglecting the influence of shear forces. 
 
In this case, the bending moment is a linear function of the beam’s length and its maximum value 
is 
 
 FlM max .            (LM_63) 

 
According to Eq. (LM_62) we have 
 

 
bh

T
zx 2

3
max  .          (LM_64) 

 

Also, we have derived that 
max

0
0

max ,
z

J
W

W

M y  and that for the rectangular area hb  

3

12

1
bhJ y  and 2/max hz  .  

 
Putting it together we get 
 

   max2max 4
6

zxx h

l

bh

Fl   .         (LM_65) 
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The ratio    maxmax / xzx   for the varying ratio hl /  is in Fig. LM_17.   

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. LM_17 … Shear to bending stress 
 
For a particular beam considered in this example, the figure shows that the shear stress is less 
than two percents of the longitudinal one, provided that the beam’s length is more than twelve 
times longer than the height of its cross-sectional area. 

 
This conclusion might help to intuitive understanding what is the slender beam and under what 
conditions the influence of shear forces could be neglected.  
 
The figure was created by the program mpp_010e_beam_stress_ratio  
 
% mpp_010e_beam_stress_ratio 
clear 
lkuh = 2:0.1:50; 
sigkutau = 4*lkuh; 
taukusig = 1./sigkutau; 
xx = [0 50]; 
yy = [2 2]; 
  
figure(1) 
plot(lkuh, 100*taukusig, xx,yy, 'linewidth', 2); grid 
xlabel('l/h - length to height of cross section ratio', 'fontsize', 16) 
ylabel('100*(\tau / \sigma)', 'fontsize', 16) 
title('\tau as a percentage of \sigma', 'fontsize', 16) 
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9.2.10. The differential equation of the deflection curve 
 
We have stated that when analyzing the slender beams, the influence of the shear forces on 
deformations and stresses of could often be neglected and then the Bernoulli formula  

 

yEJ

M

r


1
, 

 
could be employed. The curvature radius 
is r , the curvature r/1 , the bending 
moment M ,  the elastic modulus is  E  
and yJ  is the second moment of the 

cross-sectional area. Often, the product 

yEJ  is constant and is called the 

bending stiffness.  
 
 
Fig. LM_18 … Bernoulli beam 01 
 
Let the distance of a generic point B of the beam centre line from the left support be x , while the 
vertical deflection w  is taken positively in the downward direction. See Fig. LM_18. We intend 
to find the function )(xww  , called the deflection curve of the beam, describing the vertical 
deflection (often called displacements) as a function of the longitudinal distance x .  

 
The normals of the deflection curve at locations x  and xx d  intersect at the point O, which is 
the local centre of curvature. 

 
The length of the indicated arc is  
 

drds  .           (LM_66) 
 
The minus sign indicates that with increasing length of the arc the tangent of the deflection curve 
diminishes.  
 
It is obvious that   
 

w
dx

dw tan  and 222 ddd wxs  .       (LM_67) 

 
The derivative of the inverse relation, i.e. w arctan , with respect the elementary length, i.e. 

drds  , gives 
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We could thus express the ratio  
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 .      (LM_69) 

 
Substituting Eq. (LM_69) into Eq. (LM_68) we get the formula relating the curvature of the 
deflection curve to the x-coordinate.  
 

   2

3
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1

w

w

r 
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 .          (LM_70) 

 

Realizing that 
yEJ

M

r


1
, the differential equation of the deflection curve has the form  

 

   2

3
21 w

w

EJ

M

y 
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 .          (LM_71)  

 
This equation is non-linear. In the linear theory elasticity the slope of the deflection curve, i.e. 









x

w

d

d
tan , is small and could be approximated by the angle itself.  Also the derivative value 

w  is small, thus the quadratic function  2w  is even smaller and could be neglected with respect 
to 1.  
 
So, the simplified linear differential equation for the deflection curve is 
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xw
xw
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d

)(d
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2

2

 .         (LM_72)

   
The minus sign on the right-hand side indicates that a positive bending moment introduces such a 
deflection that 0w . 
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9.2.11. Beam examples 
 
Example – Cantilever beam loaded by a force 
 
Given: Cantilever beam clamped at its left part, 
dimensions, force F . Fig. LM_19. 
Determine: Distribution of shear forces and bending 
moments along the beam. 
  
Part I for ax 0  
 

)()(I axFxM   … bending moment, (LM_73),  

EJ

xaF

EJ

xM
xw

)()(
)(I


   

   … differential equation , (LM_74), 
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I 2
)( Cx
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F
x

EJ

Fa
xw  ,      … slope, (LM_75) , 
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)( CxCx
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Fa
xw    

     … deflection, (LM_76). 
 
Boundary conditions 
 

00)0( 1I  Cw ,  (LM_77) 

00)0( 2I  Cw .  (LM_78) 
 
So, the slope and the deflection for ax 0  are 
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F
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Fig. LM_19 … Cantilever beam loaded by a force 
 
Part II for lxa   
 

0)(II xM    ... bending moment,       (LM_81) 

0)(II xw    ... differential equation,     (LM_82) 

3II )( Cxw     ... slope,       (LM_83) 

43II )( CxCxw    ... deflection.       (LM_84) 
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Boundary conditions 
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             ... (LM_85) 

 
So, the slope and the deflection for lxa   are 
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See the program mpp_014e_cantilever_beam_single_force and its graphical output in Fig. 
LM_20.   
 
% mpp_014e_cantilever_beam_single_force 
% which is loaded by a point force at  
% the distance a from the clamped end 
  
clear; format long e 
l = 1;                  % beam length 
a = 0.6;                % position of F force, measured form the clamped end 
b1 = 0.05; h1 = 0.05;   % dimensions of rectangular cross section 
Jy = b1*h1^3/12;        % cross-sectional moment 
F = 1000;               % loading [N] 
E = 2.1e11;             % Young modulus 
  
incr = 0.01;            % 'x' variable increment 
xrange = [0:incr:l];    % range of 'x' variable 
  
const1 = F/(E*Jy); 
const2 = F/(2*E*Jy); 
const3 = F/(6*E*Jy); 
  
ix = 0; 
for x = xrange 
    ix = ix + 1; 
    if x <= a 
        s(ix) = const1*(a*x - x^2/2); 
        w(ix) = const1*(a*x^2/2 - x^3/6); 
    else 
        s(ix) = const2*a^2; 
        w(ix) = const2*a^2*x - const3*a^3; 
    end 
end 
  
xx = [a a]; 
yy = [0.05e-3 -4e-3]; 
figure(1) 
plot(xrange,-w, 'k-', xrange,-s, 'k:', xx,yy, 'linewidth', 2) 
title('cantilever beam, force applied at x=a', 'fontsize', 16) 
xlabel('x-coordinate', 'fontsize', 16); grid 
ylabel('slope and displacement', 'fontsize', 16) 
legend('displacement', 'slope', 3) 
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Fig. LM_20 … Slope and displacement for a cantilever beam loaded by a force 
 
Example – a simply supported beam with a uniformly distributed load of constant intensity 
 
Given: Dimensions, distributed load q  N/m . 
See Fig. LM_21. 
Determine: The deflection curve )(xww  and 
its slope )(xw . 
 
 
 
Fig. LM_21 … Simply supported beam cont load 
 

There are no forces in the x-direction. Due to the symmetry, the vertical reactions are 

2BA

ql
RR  . At a generic point located in the distance x  from the left-hand support, the 

bending moment is   
 

)(
2

1

22
)( xlqx

x
qxx

ql
xM  .        (LM_88) 

 

Substituting it into 
yEJ

xM
xw

)(
)(   we get the second derivative of the deflection curve 

as a function of the x-coordinate in the form  
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 2

2
)( xlx

EJ

q
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y

 .         (LM_89) 

 
The slope of the deflection curve and the vertical deflection of the beam are obtained by 
consecutive integrations of Eq. (LM_89) with respect to the x-coordinate. 
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 21
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 .      (LM_91)

     
Two unknown integration constants are obtained by satisfying the pertinent boundary conditions. 
For the simply supported beam, it is obvious that the vertical displacements (deflections) at the 
locations, where the beam is supported, have to be identically equal to zero.  
 
So, 
  
a) 0)0( w ,            (LM_92) 
b) 0)( lw .            (LM_93)
   
Substituting the condition add a) into Eq. (LM_91) and realizing that ,0x  we  get 
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   02  C .      (LM_94) 

 
Substituting the condition given by Eq. (LM_92) into Eq. (LM_93) and realizing that ,lx   we 
get 
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Substituting the obtained integration constants into Eqs. (LM_(90) and (LM_91) we get the slope 
and the deflection of a simply supported beam subjected to a distributed load q . 
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See the program mpp_011e_beam_deflection_slope and its output in Fig. LM_22.  
 
% mpp_011e_beam_deflection_slope 
clear 
xrange = 0:0.05:1; 
l = 1; 
b = 0.05; h = 0.05; 
Jy = b*h^3/12; 
q = 1000; E = 2.1e11; 
konst = q/(24*E*Jy); 
i = 0; 
for x = xrange 
    i = i + 1; 
    fi(i) = konst*(l^3 - 6*l*x*x + 4*x^3); 
    w(i) = konst*x*(l^3-2*l*x^2 + x^3); 
end 
  
figure(1) 
plot(xrange,fi,'k:', xrange,w,'k-', 'linewidth', 2 ) 
grid 
legend('slope', 'deflection', 1) 
 

Fig. LM_22 … Slope and deflection of a simply supported beam subjected to a distribute load 
 

Notice that in Fig. LM_21 the positive deflection of the beam plotted is in the upward 
direction. This is an ordinary tradition in mathematics, but in engineering texts oriented to beam 
treatments, the positive deflection is often oriented downwards.  
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Example – simply supported beam loaded by a single force 
 
Given: Dimensions, force F . See Fig. LM_23.  
Determine: The deflection curve )(xww  and its slope 

)(xw . 
 
 
 
Fig. Fig. LM_23 … Simply supported beam force load 
 
At first, the reactions have to be found. From the equilibrium conditions we obtain 
 

l

Fa
R

l

Fb
R  BA , .         (LM_98) 

 
The bending moment is defined differently for the left-hand part of the beam, i.e.  for ax 0 , 
and for the right-hand part, i.e. for lxa  .  
For the left part, ax 0 , the bending moment is  
 

x
l

Fb
xM )(1 ,         (LM_99) 

        
while for the right part, lxa  , the bending moment is  
 

).()(2 axFx
l
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xM          (LM_100) 

       

By subsequent substitution of )(),( 21 xMxM  into 
yEJ

xM
xw

)(
)(   for both intervals we get two 

relations.  
 
For ax 0  
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For lxa   
 

)(
)(

)( 2
2 ax

EJ

F
x

lEJ

Fb

EJ

xM
xw

yyy

 .      (LM_102)  

 
Integrating Eq. (LM_101) twice we get 
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      ... slope1,    (LM_103) 
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     ... deflection1.   (LM_104) 

 
Integrating Eq. (LM_102) twice we get 
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  ... deflection2.   (LM_106)  

 
Four unknown integration constants are determined from the boundary conditions. 
 
The first two boundary conditions require that vertical deflections at locations where the beam is 
supported have to be zero. So,  
 

0)0(1 w ,          (LM_107) 

0)(2 lw .          (LM_108) 
           
The third boundary condition expresses the condition of the deflection continuity under the 
loading force, thus 
 

)()( 21 awaw  .         (LM_109) 
 
The deflection has to be not only continuous but should be smooth as well. So, the first 
derivatives of deflection at ax   from the left and from the right parts have to be equal. Thus, 
the fourth boundary condition is  
 

)()( 21 awaw  .         (LM_110) 
 
Four boundary conditions mentioned above, suffice to determine four integration constants.  
 
Eq. (LM_107) substituted into Eq. (LM_104) gives 02 C . 

From Eq. (LM_109) follows that 31 CC  . 

From Eq. (LM_110), follows that 42 CC  . And thus, 04 C . 
Eq.  (LM_108) substituted into Eq.  (LM_106) (deflection2) gives 
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Realizing that bal   we finally get 
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The slope and deflection for ax 0  are 
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The slope and the deflection for lxa   are 
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For a given value of b we could determine the maximum deflection due to the applied force F . 
The sought-after maximum of deflection is obtained from the condition 0)( max1  xw , thus 
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which gives the location of the maximum deflection for the given position of the force indicated 
by the distance b . 
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For the symmetric loading, i.e. for 2/lb  , we get  
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Substituting  22
max 3

1
blx   into the Eq. (LM_113), we get the maximum value of the 

deflection as a function of b  in the form  
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For the force F approaching the right support, i.e. for 0b , the location of the maximum 
deflection will approach the value  
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which is not very distant from the centre of the beam. It is a little bit surprising. Finally, let’s 
determine the deflection for the force acting just in the middle of the beam. Substituting 

2/lx  into Eq. (LM_113) we get 
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Fig. LM_24 … Simply supported beam – deflection and slope for a varying location of the force 
 

In this case, however, 
2

l
b  , so we finally get the often used formula for the deflection of the 

beam being loaded in the middle in the form  
 

0 0.2 0.4 0.6 0.8 1

-6

-4

-2

0

2

4

6

x 10-4 force is at 0.5*length

di
sp

la
ce

m
nt

 a
nd

 s
lo

pe

0 0.2 0.4 0.6 0.8 1

-6

-4

-2

0

2

4

6

x 10-4 force is at 0.6*length

0 0.2 0.4 0.6 0.8 1

-6

-4

-2

0

2

4

6

x 10-4 force is at 0.7*length

0 0.2 0.4 0.6 0.8 1

-6

-4

-2

0

2

4

6

x 10-4 force is at 0.8*length

length

di
sp

la
ce

m
nt

 a
nd

 s
lo

pe

0 0.2 0.4 0.6 0.8 1

-6

-4

-2

0

2

4

6

x 10-4 force is at 0.9*length

length
0 0.2 0.4 0.6 0.8 1

-6

-4

-2

0

2

4

6

x 10-4 force is at 0.95*length

length
 

 

slope [rad]
displacement [m]
location of max. displ.
location of force



LM 33

yEJ

Fll
w

482

3

1 





 .         (LM_122) 

 
In Fig. LM_24 there are depicted deflections and slopes along the length of the beam for a 
varying location of the applied force. The series of subplots show the subsequent ‘motion’ of the 
force from the middle part of the beam to its right support. The location of the force is indicated 
by a diamond, while the location of the corresponding maximum deflection is indicated by a 
circle. An interesting observation: The maximum deflection does not occur under the applied 
force. 
 
Fig. LM_25 shows the locations of the maximum beam deflections as a function of the force 
location. Only the second part of the beam is treated.  

 
Fig. LM_25 … Location of the maximum deflection as a function of the force location 

 
The Table LM_2 shows how the location of the maximum deflection and the value of the 
maximum deflection depend on the force location. Notice, how the location of the maximum 
deflection approaches to the theoretical limit value given by Eq. (LM_120). 
 
Force location    location of max. deflection  value of max. deflection 
 
5.0e-001        4.999999999999999e-001     1.904761904761905e-004 
6.0e-001        5.291502622129181e-001     1.806166228353427e-004 
7.0e-001        5.507570547286101e-001     1.527432898447346e-004 
8.0e-001        5.656854249492380e-001     1.103355952662894e-004 
9.0e-001        5.744562646538028e-001     5.777388718803958e-005 
9.5e-001        5.766281297335397e-001     2.921582523983270e-005 
 
Table LM_2 … Locations of force, locations of max. deflection and the value of max. deflection 
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See the program mpp_012e_beam_deflection_slope_single_force_ccc. 
 
% mpp_012e_beam_deflection_slope_single_force_ccc 
% deflection and slope for a simply supported beam of the lenhgt l 
% loaded by a point force a a distance a from the left support 
  
clear; format long e 
l = 1;                  % beam length 
b1 = 0.05; h1 = 0.05;   % dimensions of rectangular cross section 
Jy = b1*h1^3/12;        % cross-sectional moment 
F = 1000;               % force is applied at a distance 'a' from the left support 
E = 2.1e11;             % Young modulus 
  
incr = 0.01;            % 'x' variable increment 
xrange = [0:incr:l];    % range of 'x' variable 
arange = l*[0.5 0.6 0.7 0.8 0.9 0.95];  % range of 'a' variable 
% dimensions of arrays 
ss = zeros(length(xrange), length(arange)); 
ww = ss; 
xmax = zeros(length(arange),1); 
  
const3 = F/(2*E*Jy); 
const4 = F/(6*E*Jy); 
ia = 0;                 % distance counter 
for a = arange          % 'a' loop 
    ia = ia + 1; 
    b = l - a; 
    const1 = F*b/(6*l*E*Jy); 
    ix = 0;              
    for x = xrange      % 'x'loop 
        const2 = const1*x; 
        ix = ix + 1; 
        if x <= a           % the first part of the beam 
            ss(ix,ia) = const1*(l^2-b^2-3*x^2);     % slope 
            ww(ix,ia) = const2*(l^2-b^2-x^2);       % displacement 
        else                % the second part of the beam 
            ss(ix,ia) = const1*(l^2-b^2-3*x^2) + const3*(x -a)^2; 
            ww(ix,ia) = const2*(l^2-b^2-x^2) + const4*(x - a)^3; 
        end 
        xmax(ia) = sqrt(1/3)*sqrt(l^2 - b^2);  % location of max. dospl. 
        wmax(ia) = F*b*((l^2)-b^2)^(3/2)/(9*sqrt(3)*E*Jy*l); 
        aa(ia) = a;                            % location of force 
    end    
end 
disp('    force applied at          max. displacment is at    maximum displacement') 
disp([aa' xmax wmax']) 
  
ax = [0 l -7e-4 7e-4];                          % axis argument 
figure(1) 
ia = 0; 
for a = arange 
    ia = ia + 1; 
    xx = xrange; yy1 = ss(:,ia); yy2 = ww(:,ia); 
    subplot(2,3,ia) 
    txt =['force is at ' num2str(aa(ia)) '*length']; 
    plot(xx,yy1,'k:', xx,yy2,'k-', xmax(ia),0,'o', a,0,'d', ... 
        'linewidth',2, 'MarkerSize',10 ) 
    grid; axis(ax);  title(txt, 'fontsize', 16);  
    if ia >= 4, xlabel('length', 'fontsize', 16); end 
    if (ia == 1) | (ia == 4), ylabel('displacemnt and slope', 'fontsize', 16); end 
    if ia == 6, 
        legend('slope [rad]', 'displacement [m]', 'location of max. displ.', 'location of force', 
3) 
    end 
end 
  
figure(2) 
isqrt3 = 1/sqrt(3); 
xx = [0.5 0.95]; yy = [isqrt3 isqrt3]; 
plot(aa, xmax,'k-o', xx,yy,'k:', 'linewidth',2); axis([0.5 0.95 0.5 0.6]); 
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grid;  
legend('location of max. displacement', 'limit value of max. displacement', 4) 
xlabel('location of applied force [m]', 'fontsize',16); 
ylabel('location of maximum displacement [m]', 'fontsize',16) 
title('simply supported beam loaded by a point force', 'fontsize',16 ) 

  
Example – cantilever beam subjected to a uniformly 
distributed load of constant intensity 
 
Given: dimensions, load q   N/m . See Fig. LM_26. 
Determine: The deflection and the slope as functions of 
the longitudinal coordinate. 
 
Fig. LM_26 … continuously loaded cantilever beam 
 
The bending moment as a function of the x-coordinate is  
 

222
)(

x
qxglx

l
gl

x
qxxRMxM AA  .     (LM_123) 

 
The differential equation of the deflection curve was derived in the form  
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Substituting Eq. (LM_123) into Eq. (LM_124) and after by two consecutive integrations, we get  
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The beam is clamped on the left. This means that no deflection and no rotation are permitted at 
this location. This constraint, expressed mathematically, means that  
 

0)0( w  and 0)0( w .        (LM_128) 
 
Substituting the boundary conditions into Eqs. (LM_126) and (LM_127)  we get 
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The slope of the deflection curve and the deflection as functions of the x-coordinate are 
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See Fig. Fig. LM_27 and the program mpp_013e_cantilever_beam_distributed_loading_c1 
This time, the positive deflection was plotted downwards.  
 
The maximum slope and the maximum deflection for a continuously loaded cantilever beam 
occur at its free end, i.e. for .Lx   

 

yEJ

qL
Lww

6
)(

3

max  ,  
yEJ

qL
Lww

8
)(

4

max  .    (LM_132), (LM_133) 

 
 
 

 

Fig. LM_27 … Slope and deflection for a continuously loaded cantilever beam 
 
 

Program mpp_013e_cantilever_beam_ditributed_loading_c1 
 
% mpp_013e_cantilever_beam_ditributed_loading_c1 
% deflection and slope of a cantilever beam 
% which is continuously loaded 
  
clear; format long e 
l = 1;                  % beam length 
b1 = 0.05; h1 = 0.05;   % dimensions of rectangular cross section 
Jy = b1*h1^3/12;        % cross-sectional moment 
q = 1000;               % loading [N/m] 
E = 2.1e11;             % Young modulus 
  
incr = 0.01;            % 'x' variable increment 
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xrange = [0:incr:l];    % range of 'x' variable 
  
const1 = q/ (6*E*Jy); 
const2 = q/(24*E*Jy); 
  
ix = 0; 
for x = xrange 
    ix = ix + 1; 
    s(ix) = -const1*(3*l^2*x - 3*l*x^2 + x^3); 
    w(ix) = -const2*(6*l^2*x^2 - 4*l*x^3 +  x^4); 
end 
  
figure(1) 
plot(xrange,w, 'k-', xrange,s, 'k:', 'linewidth', 3) 
% axis([0 1 -1.6e-3 0.05e-3]) 
title('cantilever beam, continuous load', 'fontsize', 16) 
xlabel('length', 'fontsize', 16) 
ylabel('slope and displacement', 'fontsize', 16) 
legend('displacement', 'slope', 3) 
  
smax = q*l^3/(6*E*Jy)       % max. slope at the end 
wmax = q*l^4/(8*E*Jy)       % max. displacement at the end 
 
 
Maximum slope in [rad] and maximum deflection in [m] are 
smax = 1.523809523809524e-003, wmax = 1.142857142857143e-003. 
 

 
Example – cantilever beam loaded at the free end by a single force  
 
Given: Cantilever beam, dimensions, force F  Fig. LM_28. 
Determine: Distribution of slope and displacement along the 
beam. 
 
 
 
Fig. LM_28 … Cantilever beam force 
 
Bending moment 
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Differential equation and its integration 
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Boundary conditions for the free end of the beam 
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Finally, the slope and displacement, plotted in Fig. LM_29, are  
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The maximum slope and the maximum displacement occur at the free end, i.e. for 0x . So, 
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Fig. LM_29 … Cantilever beam point force at the free end. 
 
The slope and displacement distributions are evaluated and plotted by the program  
mpp_014e_cantilever_beam_single_force 
 
% mpp_014e_cantilever_beam_single_force 
% deflection and slope of a cantilever beam 
% which is loaded by a point force at the free end 
  
clear; format long e 
l = 1;                  % beam length 
b1 = 0.05; h1 = 0.05;   % dimensions of rectangular cross section 
Jy = b1*h1^3/12;        % cross-sectional moment 
F = 1000;               % loading [N] 
E = 2.1e11;             % Young modulus 
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incr = 0.1;            % 'x' variable increment 
xrange = [0:incr:l];    % range of 'x' variable 
  
const1 = F/(2*E*Jy); 
const2 = F/(6*E*Jy); 
  
ix = 0; 
for x = xrange 
    ix = ix + 1; 
    s(ix) = const1*(x^2 - l^2); 
    w(ix) = -const2*(x^3 - 3*l^2*x + 2*l^3); 
end 
  
figure(1) 
plot(xrange,w, 'k-', xrange,s, 'k:', 'linewidth', 2) 
title('cantilever beam, point force at free end', 'fontsize', 16) 
xlabel('x-coordinate', 'fontsize', 16) 
ylabel('slope and displacement', 'fontsize', 16) 
legend('displacement', 'slope', 4) 
 
 
 

Example – statically indeterminate beam subjected to uniformly distributed load 
 
Given: Dimensions, distributed load  mNq / .  
See Fig. LM_30. 
Determine: Distributions of slope and displacements 
along the beam 
 
 
 
 
Fig. LM_30 … Beam indeterminate distributed load 
 
Since the problem is statically indeterminate, the equilibrium equations do not suffice for the 
determination of reactions. In this case, the role of the additional deformation condition will be 
played by the equation of the deflection curve.  
 
At the support A, there is a vertical reaction R . So far, it is unknown. Then, the bending moment 
at the distance x  is  
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Subsequent integrations give 
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From the first boundary condition, i.e. 0)0( w , follows that 02 C . 
 
The remaining two boundary conditions, i.e. ,0)(a0)(  lwlw  provide two equations 
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Solving them we get 
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Substituting the expression for R  into Eq. (LM_143) we get the bending moment in the form 
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which could be substituted into Eq. (LM_145) for the vertical displacement. So, 
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Fig. LM_31 … indeterminate beam distributed loading 
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The displacement function of the statically indeterminate beam subjected to uniformly distributed 
load is evaluated by the program mpp_015e_indeter_beam_distributed_loading and plotted 
in Fig. LM_31. 
 
% mpp_015e_indeter_beam_distributed_loading 
% deflection and slope of a statically indefinite beam 
% contnuous soad 
  
clear; format long e 
l = 1;                  % beam length 
b1 = 0.05; h1 = 0.05;   % dimensions of rectangular cross section 
Jy = b1*h1^3/12;        % cross-sectional moment 
q = 1000;               % loading [N] 
E = 2.1e11;             % Young modulus 
  
incr = 0.01;            % 'x' variable increment 
xrange = [0:incr:l];    % range of 'x' variable 
  
const = q/(48*E*Jy); 
  
ix = 0; 
for x = xrange 
    ix = ix + 1; 
    w(ix) = -const*x*(l^3 - 3*l*x^2 + 2*x^3); 
end 
  
figure(1) 
plot(xrange,w, 'k-', xrange,s, 'k..' 'linewidth', 2) 
title('stat. indef. beam, continuous load', 'fontsize', 16) 
xlabel('length', 'fontsize', 16) 
ylabel('displacement', 'fontsize', 16) 

 
Example – deformation of beams with variable cross sections  
 
There is nothing new when solving this type of task – the 
analysis, however, is lengthier and has to be carried out by 
parts. 
 
Given: Dimensions, force F , see Fig. LM_32. 
Determine: Distribution of the slope and the displacement as a 
function of the beam length. 
 
Fig. Fig. LM_32 ... Beam variable cross section. 
 
Evaluate the reactions at first. Due to the symmetry of loading both reactions are the same and 
equal to 2/F . Due to the geometrical symmetry it suffices to solve only the first part of the 
beam, i.e. 2/0 lx  . 
 
In the first part of the beam the bending moment is  
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There are two different cross sections and thus 
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In the first interval, i.e. for ax 0 , we have 
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In the second interval, i.e. for 2/lxa  , we have 
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Boundary conditions 
 

0)0(1 w   zero displacement in the left support,    (LM_160) 

0)2/(2  lw   zero slope in the middle of the beam (symmetry),   (LM_161) 

)()( 21 awaw    distribution of displacements has to be continuous,   (LM_162) 

)()( 21 awaw    distribution of slopes has to be continuous.    (LM_163) 
 
From the boundary conditions we get 
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The maximum displacement is in the middle of the beam  
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The distributions of the slope and vertical displacement is evaluated by the program 
mpp_016e_different_cross_sections_single_force for the following input data 
 
% beam length 
l = 1;   
% diam. of cross sections 
d = 0.05; D = 0.1;       
J1 = pi*d^4/64; 
J2 = pi*D^4/64; 
% loading [N] 
F = 1000; 
% Young modulus               
E = 2.1e11; 
% coordinate 
a = 0.3; 
 

The graphical output is in Fig. LM_33. 
 
The displacement in the location of a 
sudden change of the cross section is 
continuous. The derivative of the 
deflection curve (i.e. the slope) is 
continuous as well but is not smooth. 
From it follows that the second 
derivative of the displacement curve (i.e. 
bending the moment) makes a sudden 
jump in the distribution. But the bending 
moment is proportional to the stress. 
And the jump in the stress distribution is 
theoretically impossible to achieve. 
Thus, the theory is approximate. 
Heisenberg, however, said that there are 
no jumps in the Nature, since the Nature 
is full of jumps.    

 
Fig. LM_33... Beam with changing cross section 
 
The program evaluating the task is  mpp_016e_different_cross_sections_single_force 
  
% mpp_016e_different_cross_sections_single_force 
% simply supported beam 
% different cross sections 
% symmetry 
  
clear; format long e 
% beam length 
l = 1;   
% diameters of cross sections 
d = 0.05; D = 0.1;       
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J1 = pi*d^4/64; 
J2 = pi*D^4/64; 
% loading [N] 
F = 1000; 
% Young modulus               
E = 2.1e11; 
% coordinate 
a = 0.3; 
  
b = (l - 2*a)/2; 
  
incr = 0.01;                % 'x' variable increment 
xrange = [0:incr:l/2];      % range of 'x' variable 
  
C1 = F*a^2*(J2 - J1)/(4*E*J1*J2) + F*l^2/(16*E*J2); 
C2 = 0; 
C3 = F*l^2/(16*E*J2); 
C4 = F*a^3*(J2 - J1)/(6*E*J1*J2); 
  
const1 = F/(12*E*J1); 
const2 = F/(12*E*J2); 
const3 = F/(4*E*J1); 
const4 = F/(4*E*J2); 
  
ix = 0; 
for x = xrange 
    ix = ix + 1; 
    if x <= a, 
       s(ix) = -const3*x^2 + C1; 
       w(ix) = -const1*x^3 + C1*x + C2;   
    else 
       s(ix) = -const4*x^2 + C3;  
       w(ix) = -const2*x^3 + C3*x + C4; 
    end 
end 
  
wmax = F*a^3*(J2 - J1)/(6*E*J1*J2) + F*l^3/(48*E*J2) 
  
figure(1) 
plot(xrange,-w, 'k-', xrange,-s, 'k:', 'linewidth', 2) 
title('beam with changing cross sections', 'fontsize', 16) 
xlabel('length', 'fontsize', 16) 
ylabel('displacement and slope', 'fontsize', 16) 
legend('displacement', 'slope', 4) 
 
Example – the complete differential equation of the deflection curve 
 
From the relations derived and presented so far 
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the complete differential equation of the deflection curve could be derived in the form 
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Example – complete differential equation for a 
beam with distributed loading 
 
Given: simply supported beam, dimensions, 
uniformly distributed loading q . Fig. LM_34. 
Determine: Distributions of the slope and of the 
deflection along the beam length, and the 
distributions of the bending moment and of the 
shear force. 
 
Fig. LM_34 ... Simply supported beam cont load 
 
The task was already solved by another method before. Alternatively, using the above relations 
(LM_169) and assuming that constqxq )( , we could write 
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Integrating we get 
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The unknown constants are found from the boundary conditions. 
 
1) 
No deflection at the left support … 0)0( w . 
2) 
No moment at the left support … 0)0( M , and since )/()()( yEJxMxw  , then 0)0( w . 

3) 
No deflection at the right support … 0)( lw . 
4) 
No moment at the right support … 0)( lM , and since )/()()( yEJxMxw  , then 0)(  lw . 

From the first condition  … 04 C . 
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From the second condition  … 02 C . 

The fourth condition gives  … 
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Substituting the constants into the equations for the slope and the deflection we get  
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The second derivative of the deflection curve is proportional to the bending moment  
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So, 
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And similarly for the shear force that corresponds to the third derivative  
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Example – statically indeterminate beam with uniformly distributed loading 
 
Given: Statically indeterminate beam, length m1l , 
uniformly distributed loading kN/m40q , surface area 

2242 m00012.0m1012cm12  S , 
353

o m10397cm7.39 W , 

Young’s modulus Pa101.2 11E . See Fig. LM_35. 
 
Fig. LM_35 ... Stat indeterminate beam distributed loading 
 
Determine:  Distributions of the slope and of the deflection along the beam length and the 
distributions of the bending moment and of the shear force. 
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Due to static indeterminacy, the normal (axial) force N  arises. Due to symmetry, the vertical 
components of reactions are identical, i.e.  
 

2BA

ql
RR  .          (LM_181) 

 
Even if the reaction moment AM is unknown so far, the distribution of the bending moment is  
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Now, the standard procedure is applied, i.e.  
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Boundary conditions. 
 
At the left support (clamping) the slope of the deflection curve has to be equal to zero  
 

00)0( 1  Cw . 
 
At the left support (clamping) the displacement of the deflection curve has to be equal to zero  
 

00)0( 2  Cw . 
 
At the right support (clamping) the slope of the deflection curve has to be equal to zero  
 

12
0)(

2

A

ql
Mlw  . 

 
Thus, the equation of the deflection curve is   
 

 22
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Then, the distribution of the bending moment is  
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Its maximum value occurs at the location of supports, i.e. for 0x  and for lx  . In absolute 
value we get  
 

Nm3333
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The corresponding stress is  
 

Pa1039.8 5max
max 

oW

M
 .       (LM_188) 

 
The distribution of the displacements along the beam length is evaluated by the program 
mpp_017e_beam_clamped_at_both_sides and plotted in Fig. LM_36.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. LM_36 ... Stat indeterminate beam distributed loading results  
 
Program mpp_017e_beam_clamped_at_both_sides 
 
% mpp_017e_beam_clamped_at_both_sides 
% uniform distributed loading 
  
clear; format long e 
% beam length 
l = 1;   
S = 12e-4; 
Jy = 198e-6; 
W0 = 397e-5; 
q = 40000; 
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E = 2.1e11; 
  
incr = 0.01; 
xrange = 0:incr:l; 
const = q/(24*E*Jy); 
  
ix = 0; 
for x = xrange 
    ix = ix + 1; 
    w(ix) = const*x^2*(l - x)^2; 
end 
  
Mmax = q*l^2/12 
Smax = Mmax/W0 
  
figure(1) 
plot(xrange,-w, 'linewidth', 2) 
title('beam clamped at both sides, distributed loading', 'fontsize', 16) 
xlabel('length [m]', 'fontsize', 16) 
ylabel('deflection [m]', 'fontsize', 16) 

 
9.2.12. Strain energy in a beam subjected to pure bending 
 
In Fig. LM_37 there is depicted a part of the beam 
subjected to pure bending. We have derived that the axial 
stress due to the bending is   
 

z
J

xM

y
x

)(
 .      

 
Fig. LM_37 ... Beam defo 1 
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The pure bending means that the axial stress is of uni-axial nature, and that the influence of shear 
forces are non-existent or neglected. So, the strain energy of pure bending is analogous to the 
strain energy in tension – compression as it is reminded in Fig. LM_38. So, the elementary strain 
energy, contained in an element of a beam between two infinitesimally close slices, depicted in 
Fig. LM_37, is    

 


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g 
To explain the analogy of bending with the 
tension it should be reminded that for a bar 
of the length l  we write 
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... (LM_190) 
 
 
 
 
Fig. LM_38 ... 1D strain energy 
 
And similarly for a beam element of the length xd  
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The strain energy contained in the whole beam is obtained by the integrating Eq. (LM_189). If  

constJ y  , then 


l

y

xxM
EJ

U
0

2 d)(
2

1
.        (LM_192) 

 
Survey of elementary types of the simply supported beam and the corresponding distributions of 
shear forces and bending moments )(and)( xMxT  is depicted in Table LM_3.  
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Table LM_3 ... Beam_survey_of_T_and_M 
 
Lot of examples could be found in [21].  
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9.3. Torsion 
 
9.3.1. Introduction 
 
By torsion we understand the twisting of a body when it is loaded by moments tending to produce 
the rotation about the longitudinal axis of that body. In the text, we limit our attention to slender 
prismatic circular bars (rods). In this subsection, the figures are numbered from 50, the equations 
from 200, and the tables from 10. 

 
Consider a circular prismatic bar, depicted in Fig. 
LM_50, which is clamped at its left end and 
subjected to the twisting couple PpM  . Within 
the linear theory of elasticity, the right cross-
sectional surface rotates with respect to the left 
surface by a small angle   known as the angle of 
twist. The value of the angle of the twist varies 
linearly between the left and right surfaces from 
zero to its maximum. The radial rays stay straight. 
The initially straight line cd will become a helical 
curve dc  . Every cross section is subjected to the 
same torque – it remains planar and does not change 
its radius. This way, the state of the pure shear 
occur within the twisted bar.  
 
Fig. LM_50 ... Torsion 1 
  
9.3.2. Deformation, strain and stress 
 
Let’s analyze how the element of the bar during the 
twist deformation is deformed. In  Fig. LM_51 there 
is an elementary ring element with radius   (this 
quantity varies from zero to the outer bar radius R ) 
and of the thickness d  and of the length xd . 

 
The relative angular displacement of two layers, 
displaced by the distance xd , is d .  
 
Fig. LM_51 ...Torsion 2 

 
Considering a sector element d before and after the deformation (the latter is plotted by dashed 
lines) we can notice that the arc BC is displaced – with respect to the arc AD – by the distance  
 

dρCCBB  .         (LM_200) 
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Now, a new quantity, i.e. the shear strain, defined as an angle BBA  , is introduced. 
Evidently,   
 

x
x

d

d
dd

  .        (LM_201) 

 
Due to this deformation, the shear stress in the analyzed element arises.  Since we are living in a 
linear world, the shear stress   is proportional to the shear strain  . The proportionality constant 
is denoted G and is called the modulus of elasticity in shear. So, 
 

x
GG

d

d   .         (LM_202) 

 
This relation is analogous to the relation derived for the uni-axial stress, i.e.  E . 
 

The quantity 
xd

d
 corresponds to the relative angular displacement of two cross-section slices, 

displaced by the unit of length – it is denoted 
dx

d   and called the angle of twist per unit length 

or the rate of twist.  
 
So, the previous equation could be rewritten into the form 
 

 G .          (LM_203) 
 
Evidently, the shear stress is proportional to the distance   of the element from the axis. The 
maximum shear stress occurs at the surface of the bar, say R . 

 
9.3.3. How the applied torque (moment) is related to the shear stress in the bar 
 
In Fig. LM_52 there is depicted a hollow cylinder with 
inner and outer radii r  and  R  respectively. The 
elementary surface Sd , displaced by the distance   
from the axis, is loaded by the force SF dd  .   

 
 
 
 
 
 

Fig. LM_52 ... Torsion 3 
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The integral sum of these inner forces has to be in equilibrium with the outer moment kM , so 
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where 
xd

d   is the rate of twist and 

  

 SJ d2
p   is the polar moment of the cross-sectional area. 

 
So, 
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Integrating the previous formula with respect to the length, we get the total angle of twist for a 
bar of the length l  loaded by the moment kM in the form 
 

p
k GJ

l
M .          (LM_206) 

The variable  
pGJ

l
 is called the torsion flexibility.  

Its inverse value, i.e. 
l

GJp , is the torsion stiffness.  
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9.3.4. Analogy of relations for tension, bending and torsion 
 
1D stress    bending    torsion 
 

 E     E     G  ... Hooke’s law 

l

l
EεE

S

F
σ
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   

o
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W

M
    

k

k

W

M
  … stress 

where oM and kM are bending and torsion moments respectively 
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............................................... these relations are valid for circular cross sections only 
 
area     oW  and kW are section modules in bending and torsion 
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where Dt  is the allowable stress in tension and D  is the allowable stress in torsion. 

 
strain energy 
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constant force   variable moment  constant moment 
 
Table LM_10 ... Analogies 
      
Lot of examples could be found in [21].  
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9.4. Buckling 
 
9.4.1. Introduction 
 
In engineering, the term buckling is related to a loss of stability. The machine part being loaded 
might loose its geometrical integrity even if other conditions for its save conduct are satisfied. In 
this chapter we will devote our attention to the axial loading of long slender structural members. 
In this subsection, the figures are numbered from 200, the equations from 300, and, the tables 
from 20. 
 
9.4.2. Stability  
 
Generally, there are three types of equilibrium in statics.  
 
They could be classified according to the amount of mechanical work (energy) needed to displace 
the body from its immediate position. See Fig. LM_200. We distinguish three cases of stability 
 
- stable –  a positive energy is required, 
- indifferent – no energy is needed, 
- unstable – a small mechanical pulse is required, then the body produces mechanical energy.  
 
 
 
 
 
 
 
 
Fig. LM_200 ... Buckling stable unstable 
 
In mechanics of deformable bodies, any deformation 
could be considered as the possible displacement. In Fig. 
LM_201 there is depicted a ring loaded by two forces, 
maintaining, after the deformation, their directions.  
 
 
Fig. LM_201 ... Buckling 2 
 
Due to the twist deformation δφ , these two forces exert 
the mechanical work 
 

2
2

2 )())
2

)(
1(1(2)cos1(2 δφFr

δφ
FrδφFrAδ   . 

... (LM_300) 
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Fig. LM_202 ... Buckling 3 
 
where 2/dr  . See Fig. LM_201 and Fig. LM_202. In the previous equation the cosine function 
is approximated by the Taylor’s series expansion.  
  
The strain energy increases by 
 

2
pk

2 )(
2
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2

1
δφGJδφMδUδ  .       (LM_301) 

 
The total potential energy is defined as  
 

VUW  ,           (LM_302) 
 
where V – called the potential – was defined as the negative energy due to external forces. 
 
Generally, the equilibrium condition could be alternatively formulated as   
 

AδUδVδUδWδ  .        (LM_303) 
 
It was proved that the stable equilibrium occurs if   
 

022222  AδUδVδUδWδ .       (LM_304) 
 

In our example, the condition of stable equilibrium requires UδAδ 22  , so p2

1
GJFr  and 

finally  
 

2r
pGJ

F  .          (LM_305) 

Let’s define the critical force by 
2r

p
crit

GJ
F  . If the loading force reaches the critical force, the 

state of equilibrium becomes indifferent. If the loading force overcomes the critical force, then 
the state of equilibrium becomes unstable. It means that any – howsoever small – accidentally 
evoked torsional displacement will be increased without bounds and the loaded bar will lose its 
stability. 
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9.4.3. Buckling of slender bars 
 
A straight slender prismatic cylindrical bar2, depicted in Fig. LM_203, is loaded by two opposite 
compression forces.  The bar, being bended, is on the right. The deflection curve is described by 

)(xww  . The bending moment, in the cross-section displaced by x , is 
 

)()( xwFxMM  .   (LM_306) 
 
We know that  
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Fig. LM_203 ... Buckling 4 
Comparing the last two equations we get 
 

yEJ

xwF
xw
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)(  .         (LM_308) 

Introducing a new variable 
yEJ

F
p 2 , the previous equation could be rewritten as  

0)()( 2  xwpxw .         (LM_309) 
  
Then, its solution could be assumed in the form  
 

pxBpxAxw cossin)(  ,         (LM_310) 
 
where BA,  are constants of integration. The boundary conditions are  
 

0)(,0)0(  lww .         (LM_311) 
 
The former gives 0B , while from the latter we get 
 

0sin plA .          (LM_312) 
 
 
 
 
 
 

                                                 
2 This kind of machine detail is also called rod or strut. 
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The above differential condition could be satisfied under two conditions: 
 
either 0A , leading to a trivial solution –  the bar does not bend. This is the case which does 

not interest us, 
 
or the argument of the sine function has to reach the values πkππpl ,,2,,0  , where k  is an 

integer. 
 
So, the above differential equation has a non-trivial solution – equilibrium in the state of bending. 
This might happen if πkpl  , kde ,2,1k , thus for lπkp / . The value 0k  was excluded 
since it leads to the trivial solution again.  
 
So, the solution of the differential equation has the form  
 

x
l

πk
Axw sin)(  .         (LM_313) 

 
The smallest possible force – the critical force, say critF  – for which this situation could occur, is 

obtained for 1k . In such a case  
 

  lp /1   and also 
yEJ

F
p crit2  . From it follows 
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2
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EJ
F y
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This force, known as the Euler’s critical force, specifies the limit load that leads to the loss of the 
buckling stability.  The corresponding critical stress is SF /critcrit  , where S is the cross-

sectional area of the beam. The validity of Hooke’s law is assumed. 
 
For the critical stress we get  

2

2

krit
krit S Sl

EJF y
  .        (LM_315) 

 
Alternatively, the following quantities are used. 
 

- radius of gyration     
S

J
i y ,     (LM_316) 

- slendering ratio   
i

l
 .      (LM_317) 
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Then, the critical stress could be expressed in the form 

2

2

krit 
 E

  ... the relation is valid for ukrit   , where u is the proportionality limit. (LM_318) 

 
9.4.4. Four modes of buckling 
 
In engineering, according to the types of constraints being applied, four modes of buckling are 
usually distinguished. They are depicted in Fig. LM_204. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. LM_204 ... Four buckling modes 
 
The unified computational approach can be secured by defining four different values of in  for 

41i . They are presented in Table LM_20.  
 
i              1   2   3   4 

in  0.25   1   2   4 

 
Table LM_20 ... Four parameters of buckling 
 
Then, for the thi bucking mode, the critical force can be expressed by  
 

2
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Example – the first buckling mode, 25.0,1 1  ni  
 
Determine: Determine the dimension of a slender bar (strut) of a rectangular cross section 

hh2 made of steel with  MPa200E  and the proportionality limit MPa200u R , and the  

yield limit MPa250e R . The strut is clamped, its opposite part is free and is loaded by the force 

N102 5F . The length is m7.0l . See the leftmost subfigure of Fig. LM_204. Consider the 
safety factor 5.3k . The critical force is  
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Then,  
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Substituting the input data we get mm6.44h , approximately mm45 . 
 
Check the elastic behaviour. The critical stress for this mode is  
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So, the condition is satisfied and the suggested dimension, i.e. mm6.44h , is acceptable. 
 
Example – the second buckling mode, 1,2 2  ni  
 
Determine: The critical length kritl , leading to a buckling instability of a steel tube loaded by an 

axial force N1000F .  Consider the safety factor 3k .  Assume that the strut is constrained 

by frictionless joints at both ends. The material constants are MPa101.2 5E , the 

proportionality limit MPa190u R  and the yield limit MPa230e R . The outer and inner 

diameters of the tube are mm3.48D and mm3.40d respectively. See the second subfigure 
of  Fig. LM_204. 

The area is   222 mm557
4

 dDA


. 

Quadratic moment is   444
min mm8200

64
 dDJ


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The critical force is   
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From the “braced” part of the previous equation we get, 
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Substituting the input data we get mm2380krit  ll . 

 
Check the elastic behaviour. The critical stress for this mode is  
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So, the computed length satisfies the prescribed stress conditions. 
 
Example – the third buckling mode, 2,3 3  ni  
 
Determine: The allowed load value DF  for a steel strut with the Young modulus 

MPa101.2 5E , the proportionality limit MPa200u R  and the yield limit MPa240e R . 

The strut is clamped; its other side is constrained by a shiftable joint support.  Consider the safety 
factor 3k . See the third subfigure of Fig. LM_204. 
 
The area 222 34 aaaA  . 
 
The quadratic moment 12min JJJ  . 

12

16

12

82
2,212/

43
3

1

aaa
ahabbhJ 


  . 

1212
,12/

43
3

2

aaa
ahabbhJ 


  . 

12

15 4

min

a
J  . 

 
The critical force is  
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LM 63

 
The allowed force is 
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Substituting the input data we get N38862D F . To check the elastic behaviour, the following 
condition has to be satisfied  
 

MPa190Ru

(3)
krit

(3)
D

D 
A

Fk

A

F .       (LM_328) 

 
Example – the fourth buckling mode, 4,4 4  ni      
 
Determine: The diameter d  of a steel strut of the length mm1000l . Material data are 

MPa250MPa,210MPa,210 eu  RRE . The loading force is N105 4 . Consider the safety 

factor 4k . The constraints are depicted in the rightmost subfigure of  Fig. LM_204.   
     
The critical force is  
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First, the quadratic moment minJ  is determined from the part (a) of the previous equation 
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then, realizing that 
64

4

min

d
J


 , we get the diameter 
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Substituting the input data we get mm38d . 
 
For more details see [7], [14], [17], [18], [19], [39]. 
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10_EX. Simple examples 
 
10.1 Tension – compression  
 
Example – vertical rod loaded by its own weight and by an axial force 
 
Given: The homogeneous prismatic rod is clamped at its upper end. The values of density  , 
the constant cross-sectional area S , the length l , and the gravitational acceleration g  are 
known. At its lower end, the rod is loaded by a vertical force F . See Fig. EX_1. 
Determine: The distribution of strain and stress along the rod. In this case, it is non-uniform. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. EX_1 ... Hanging rod   Fig. EX_2 ... Free body diagram 
 
Free-body diagram allows determining the reaction force at the clamped area as 
 

gSlFVgFmgFR   ,        (EX_1) 
 
where m is mass, V  is volume,   is density, g  is gravitational acceleration, l  is length, and 
S is the cross-sectional area. 
 
We are looking for deformations and forces occurring at a generic cross-sectional area 
displaced by the distance x  measured from the lower end of the rod.  
 
As explained before, in the text dedicated to the mechanics of rigid bodies, we will apply the 
free body diagram reasoning. See Fig. EX_2. The lower part of the rod is mentally removed 
and replaced by a force, say N , which is equivalent to forces acting in the upper part of the 
rod. Due to the continuous and homogeneous material distribution in the rod, the internal 
force N  varies as a function of the x coordinate. So, 
 

xgSFxN )( ,  where Sx … volume, Sx … mass, gSx … weight. 
 

The dimensional check gives: N
s

mkg
mm

s

m

m

kg
2

2
23  . 

 
The stress as a function of x variable is  
 



EX 2

gx
S

F

S

xN
x  

)(
)( .        (EX_2) 

 
The overall rod elongation lΔ , and thus the strain  , depends on material properties that are 
expressed by the so-called constitutive relation, i.e. by the relation between the stress and the 
strain. Its simple form is represented by a linear1 function and is known as the Hooke’s law. 
The coefficient of proportionality is denoted E  and is called the Young’s modulus. It is 
expressed by the same units as the stress, i.e. PaN/m2  . The usual value for the design steel 
is Pa101.2 11

steel E .  

 
In this case, the stress and the strain are functions of the x coordinate 
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Actually, the local elongation2 is )()( xuxl   while the total elongation lΔ  is a cumulative 
quantity obtained by integration 
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           ... (EX_4) 
 
Example – The above results could be applied to the analysis of the case of a long mining 
wire rope to which a cabin of a given weight is attached.  
 
See the Matlab program mpp_004e_elongation_of_mine_rope 
 
% mpp_004e_elongation_of_mine_rope 
clear all; format compact 
% sigma(x) = a + b*x 
% a = F/S; b = ro*g 
F= 10000;       % weight of cabin in N 
L = 1000;       % length of rope in m 
E = 2.1e11;     % Young modulus in Pa 
ro = 7800;      % density in kg/m^3 
g = 9.81;       % gravitational acceleration 
d = 0.1;        % diameter of rope in m  
S = pi*d^2/4;   % cross section in m^2 
a = F/S; b = ro*g; 
% elongation 
deltaL1 = a*L/E             % elongation due to cabin's weight 
deltaL2 = (b*L^2/2)/E       % elongation due to weight of rope 
% deltaL = (a*L + b*L^2/2)/E   
deltaL = deltaL1 + deltaL2  % total elongation 
 
deltaL1 = 0.0061 … elongation due to the cabin weight,   
deltaL2 = 0.1822 … elongation due to the rope weight, 
deltaL =  0.1882 … total elongation. 
 

                                                 
1 The proportionality between the stress and the strain is not valid generally. It holds unless the plasticity 
behaviour of the material is reached. The details are treated later.  
 
2 That is the elongation of the element xd . 
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The results are in [m]. The above example shows a rather exceptional engineering case when 
the own weight of the body is crucial and exceeds the effects of the external loading. In many 
engineering applications, the gravity effects might often be safely neglected. 
 
If the rod, depicted in Fig. EX_1, is loaded by the force F only, (the weight of the rope is 
neglected) then the stress along the rod’s length is constant and can be expressed in the form 
 

SF / .          (EX_5) 
 
Substituting the above relations for the stress and the strain we get  
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while the total elongation is  
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Finally, the strain, i.e. the relative deformation, is constant along the rod’s length as well 
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Example – rod with a variable cross-sectional area 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. EX_3 ...Variable cross section 
 
Consider a rod with a variable cross-sectional area, clamped at its upper end, depicted in Fig. 
EX_3 and Fig EX_5. The rod is loaded at its lower end by the force F . The length of the rod 
is l , the cross-sectional area is defined by a known continuous function )(xSS  . For two 
close cross sections, being xΔ  apart, we can express the equilibrium of forces in the form 
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The force increment SΔ  is expressed using Taylor’s series while the increments of higher 
orders are neglected. For stresses, using infinitesimal elements instead, we can write 
 

)d(d)( xxx   .        (EX_10) 
 
Using the free body diagram principles we can express the weight of the part of the rod being 
removed as  
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The normal force and the corresponding stress in this cross section are  
 

)()( xQFxN  ,         (EX_12) 
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Knowing the cross-sectional area as a function of the length, the above relation could be 
evaluated. 
 
The total elongation of the rod is  
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Neglecting the increments of higher orders, simplifying the notation by )();( xSSx  , 
and realizing that the weight of the element is  dgS , then the equilibrium of forces acting 
on opposite sides of the element can be expressed in the form  
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Example – rod (rope) of the same strength, part 1 
 
The idea is to define a rod with such a variable cross-sectional area that would have the same 
stress along its length. Suppose that the allowable stress AL is known. How to find a function 

)(xS satisfying the above criteria? We might start with equilibrium considerations 
 

 ddd gSSS           (EX_15) 
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and realize that if the stress   should be constant, then its increment has to be zero, so 
0d  . From now on, the required constant stress is just the allowable stress, so 
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Integrating along the length of the rod (rope), and considering that the lower cross-sectional 
area is 0S ,  we get 
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Example – rope of the same strength, part 2 
 
Given: A rope of the length m3000L , diameter at the lower end m1.00 d , density 

3kgm7800  , Young’s modulus Pa101.2 11E , gravitational acceleration 
281.9  msg , weight of the cabin attached at the lower end of the rope N10000F , 

allowable stress Pa101 8
AL  . 

Determine: Elongation of the rope due to its own weight, elongation due to the weight of the 
cabin, diameter of the rope as a function of its length. 
 
The elongation due to own weight  
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The elongation and the cross-sectional area as a the function of the length due to the weight of 
the cabin 
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In our case we get 0.0071 m which is a negligible value with respect to the elongation due to 
the weight of the cabin 
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How to compute it shows the Matlab program mpp_002e_rope_of_equal_strength. The 
results are presented in Fig. EX_4. 
 
% mpp_002e_rope_of_equal_strength 
clear all 
sigd = 1e8;      % allowed strength in Pa, i.e. N/m^2 
d0 = 0.1;        % initial diameter in m 
S0 = pi*d0^2/4;  % initial cross section in m^2 
g = 9.81;        % gravity acceleration in m/s^2 
ro = 7800;       % density in kg/m^3 
  
x = 0:3000;      % the length 
Sx = S0*exp(ro*g*x/sigd);       % cross section as a function of x 
dx = sqrt(4*Sx/pi);             % diameter = f(x) 
rx = dx/2;                      % radius 
  
% elongation of the rope of the length 3000 m - due to gravity only 
L = 3000; 
E = 2.1e11; 
a = ro*g/sigd; 
F = 10000;  % the cabin weight in N 
sig0 = F/S0; 
  
deltaL1 = sigd*L/E                  % influence of gravity 
deltaL2 = F*(1- exp(-a*L))/(E*S0*a) % influence of the cabin's weight 
  
y1 = sigd*x/E; 
y2 = F*(1 - exp(-a*x))/(E*S0*a); 
  
figure(1) 
subplot(1,2,1) 
plot(x,rx, 'linewidth', 2) 
title('rope of equal strenght', 'fontsize', 16) 
ylabel('radius in [m]', 'fontsize', 16);  
xlabel('length in [m]', 'fontsize', 16); 
subplot(2,2,2) 
plot(x,y1, 'linewidth',2) 
title('elongation [m]', 'fontsize', 16) 
ylabel('due to gravity', 'fontsize', 16); 
subplot(2,2,4) 
plot(x,y2, 'linewidth',2) 
ylabel('due to cabin''s weight', 'fontsize', 16);  
xlabel('length in [m]', 'fontsize', 16) 
 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. EX_4 ... Radius of the rope cross-sectional area as a function of length, elongations 
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Example – rotating arm 
 
Given: The arm of prescribed dimensions, see Fig. EX_6, rotates by the constant angular 
speed  , density  , cross-sectional area S . 
Determine: Using free body diagram and d’Alembert principle determine displacement, force 
and stress within the body. 
 
Apparent inertia force acting on the indicated mass element  ddd SVm   is 2d m , 
i.e. mass radiusangular velocity squared. It is in equilibrium with the internal force )(xN . 
 
 
 
 
 

Fig. EX_5 ... Varying cross section   Fig. EX_6 ... Rotating arm 
 
The internal force acting at the cross section determined by the coordinate x  is  
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So, the stress as a function of the x-coordinate is   
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According to Hooke’s law the local elongation of the element of the elementary length xd  is   
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The total elongation of the arm is obtained by integration 
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The obtained expression is approximate since the presented analysis does not take into 
account the non-uniform state of deformation in the vicinity of the central hub.  
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Example – a thin prismatic ring of the cross-sectional rectangular area bhS   is loaded by 
the internal pressure p   
 
Given: Radius r , thickness h , width b , pressure p . See Fig. EX_7. 
Determine: Stress, strain, radial elongation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.  EX_7 ... A thin ring 
 
Use the free body diagram principle and observe the equilibrium of forces acting on the 
element dbh  depicted in Fig. EX_7.  
 
The equilibrium conditions for the element, determined by a small elementary angle d , give 
the radial force in the form   
 

dd NF  ,          (EX_26) 
 
since the small circle can be approximated by a straight line. This elementary force could also 
be expressed by means of a product of the pressure and the elementary surface as  
 

dd rbpF  .          (EX_27) 
 
Combining the last two equations we get  
 

rbpN  .          (EX_28)
          
Assuming a uniform distribution of the force N  within the cross-sectional area we might 
express the stress as   
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This is the circumferential or tangential stress. We found that the radial pressure inside the 
ring evokes the tensional circumferential stress in the ring cross-section. Under these 
simplifying conditions (a thin ring, i.e. hr  ) the radial stress in the ring – that evidently has 
to be there as well – is not accounted for. The analysis of thick-walled vessels will give a 
more detailed answer. 



EX 9

Assuming a uniform circumferential strain distribution within the cross-sectional area we get  
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Due to the internal pressure p  the radius of the ring is increased by  
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Example – a rotating thin ring  
 
Given: A thin ring rotates by a constant angular velocity  . In Fig. EX_7 disregard the 
internal pressure. In this case the measure b is more important.  
Determine: The circumferential stress due to the ring rotation.  
 
The apparent inertia force – the centrifugal force in this case – acting on the mass element is  
 

222 dddd  rhbrVrrmF  .      (EX_32) 
 
 As in the previous case, the tensional circumferential force is   
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Realizing that the circumferential velocity is rv  , the circumferential stress is  
 

2v
bh

N   .          (EX_34) 

 
This approach could be used for an approximate determination of the circumferential stress in 
the rotating flywheel rim. 
 
10.2. The strain energy and the work exerted by an external force – uniaxial case 
 
It is taken for granted that in statics the time quantity plays no role – there are no 
accelerations, no inertia forces. The actual loading process, however, always occurs in time 
but in statics, we overcome this inconsistency by stating that the loading process is so slow 
that the inertia forces could be neglected.  
 

Here, for the proper understanding of the loading process, we will temporarily deal 
with the time dimension. Imagine a slender rod of the length l  and of the cross-sectional area 
S  being loaded by an axial force )(tF  that is a function of time. The initial value of that 

force at time 0t  is zero, then it raises to its maximum value, say maxF . As said before, the 

loading process is assumed to be so slow that the inertia forces could be neglected. 
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Let’s introduce a new quantity  , varying in the range 1,0 , as the time-dependent ratio of 

the immediate to the maximum value of force in such a way that 
max

)(
)(

F

tF
t  . 

From it follows that 
 

)()( max tFtF  .         (EX_35) 

 
Under these assumptions, the elongation of the rod as a function of time could be expressed 
by  
 

lt
ES

lFt
tu  )(

)(
)( max 

,        (EX_36) 

 
where l  is the total elongation corresponding to the maximum force maxF .  

  
Also, the elementary work of external force is a function of time. Thus,  
 

 d)(d)(d)()(d maxmax lFtlFtutFtW  .     (EX_37) 

 
The total (cumulative) work of external force – from the beginning of loading to its end – is 
obtained by the following integration  
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Assuming the validity of Hooke’s law – ( ESlFl /max ) – the previous relation could be 

rewritten into the form 
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10.3. Statically indeterminate cases 
 
In courses dedicated to mechanics of rigid (non-deformable) bodies, we have stated that a 
structure is statically indeterminate when the static equilibrium equations are insufficient for 
determining the internal forces and reactions acting on that structure. The mechanics of 
deformable bodies (strength of material) is able to solve these tasks by adding a sufficient 
number of so-called deformable conditions. 
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Example – statically indeterminate clamped rod 
   
Given: Length  bal  , force F , cross-sectional area S , Young modulus E . There are no 
axial gaps between the rod and its supports. See Fig. EX_8. 
Determine: Reactions 21, RR . 
  
 
 
 
 
 
 
 
 
 
 

 
 

Fig. EX_8 ... Statically indeterminate clamped rod 
 

The clamping reactions due to the loading by the force F are 21, RR  respectively. From the 
point of view of the mechanics of rigid bodies only one equilibrium equation is available, i.e. 
  

021  FRR .          (EX_40) 
 
The equation contains two unknowns – so the tools of the mechanics of rigid bodies do not 
suffice to solve the task. We say that the task is statically indeterminate. Living in the world 
of the mechanics of deformable bodies we can add a so-called deformable condition (also 
called the condition of compatibility of deformations). In this, case it represents the condition 
that the length of the rod l  cannot change due to the loading since the supports are assumed to 
be perfectly stiff. A free body diagram is sketched for two cases – in a cross section below the 
acting point of the force F and above of it. The internal forces 21, NN  represent actions of the 
“removed” parts.  
 
For the shorter part of the rod – below the force F  – the equilibrium condition is 011  RN , 

while for the longer one, it is 021  FNR .  
 
So, the internal forces are 
 

1211 , RFNRN  .        (EX_41) 
 
The overall elongation of the rod (which has to be zero in this case) is composed of individual 
non-zero deformations of two parts of the rod with lengths a and b respectively. So,  
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The clamping supports are assumed to be perfectly stiff, so the rod’s elongation 0l . From 
it follows that the above deformation condition could be expressed in the form  
 

0)(1  FbbaR .         (EX_43) 
 
Now, there are two available equations 
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Solving them we get 
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Furthermore, we can determine, how the point of action of the force F is displaced 
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Example – statically indeterminate truss structure 
 
Given: Structure depicted in Fig. EX_9, length a , force F . 
Determine: The forces in 321 ,, PPP  and the displacements of the joint A, i.e. vu, . 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. EX_9 ... Indeterminate truss structure 
 
Assume that the rods are of the same materials and have the same cross-sectional areas. The 
rods are connected by frictionless joints, and there is no initial pre-stress. The structure is 
loaded by a single vertical force F  acting at the joint A. 
 
Generally, only two equilibrium equations could be written for a system of forces passing 
through a single point in the plane. In this case we have  
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In these two equations, there are three unknowns. The missing equation can be obtained from 
the deformation condition – in this case, it represents the fact that the resulting displacements 
of individual rods, ending at the joint A, have to be identical.  
 
As always, small deformations are considered – from it follows that the small rod’s rotations 
due to the applied loading are neglected.  Under these approximations the deformed 
configuration of the structure is plotted in Fig. EX_9 by dashed lines. The joint A moves to a 
new position A’ defined by displacements vu and respectively.  
 
The elongations of individual rods are  
 

shortened.actually  is rod the...
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      (EX_48) 

 
Eliminating  u  and v  from the above equations and rearranging we get the deformation 
condition in the form  
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Assuming the validity of Hooke’s law the elongations of rods are 
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Using the previously derived deformation condition, we get the missing equation in the form  
 

3122 PPP  .          (EX_51) 

 
Summarizing, the required equations are  
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In the matrix form we have 
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How to proceed in Matlab? See the program mpp_006e_three_rods. 
 
% mpp_006e_three_rods 
clear all 
sq = sqrt(2)/2; K = [1 sq 0; 0 sq 1; 1 -2 1]; 
 
invK = inv(K); rhs = [1 0 0]'; 
 
P = invK*rhs 

 
Notice, that the force F in the program was considered to be equal to 1. Then,  
 
 0.7929 0.2929 -0.2071 
 
To find the response for the actual loading, it suffices to pre-multiply the previous 
‘normalized’ results by the actual force. 
 
Matlab could help to solve the problem symbolically to get the result in an analytic form as 
shown in the program mpp_007e_three_rods_sym. 
 
% mpp_007e_three_rods_symb 
clear all 
syms K s P F 
  
s = sym(sqrt(2)/2) 
F = [F 0 0].' 
  
K = [1 s 0; 0 s 1; 1 -2 1] 
invK = inv(K); 
P = invK*F 

 
The result is 
 
P = 
  
 1/2*(2^(1/2)+4)/(2+2^(1/2))*F 
               1/(2+2^(1/2))*F 
    -1/2*2^(1/2)/(2+2^(1/2))*F 
 
This could be expressed in a ‘nice human’ form as  
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     (EX_54) 

 
10.4. Thermal stress 
 
A tendency of a body to change its geometrical shape due to the change of temperature is 
called the thermal expansion. If a body is mechanically constrained in such a way that it 
cannot freely dilate when the temperature is changing, then an additional stress occurs in the 
body even if no external loading is applied. This happens for statically indeterminate cases – 
the suppressed dilatation evokes the thermal strain and consequently the thermal stress. 
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Example – heated statically indeterminate rod  
 
Given: A thin rod, of the length bal   with cross-sectional areas 21,SS  and Young’s 
modulus E , is put – at a given temperature and with no axial clearance – in between two 
supports as seen in Fig. EX_10. Then, the temperature is increased by tΔ  degrees.  
Determine: The reaction R . 

 
 

 
 

Fig. EX_10 ... Statically indeterminate rod. 
 
If the rod were free (unconstrained) – then due to the temperature increase by tΔ  – it would 
increase its length by tll   , where deg]/1[α  is the coefficient of thermal expansion. 
Due to the existence of perfectly stiff supports, the rod’s elongation is suppressed and 
consequently the reaction forces, say R , are induced – they are of the same magnitude but of 
opposite directions. 
 
The elongations of individual parts of the rod consist of two parts – the elongation due to the 
temperature increase and the contraction due to the loading by compressive reaction forces. 
Thus,  
 

21 ES
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tbb

ES

Ra
taa   .      (EX_55) 

 
Substituting these expressions into the deformation condition, requiring that the overall 
deformation is zero, i.e. 0 bal , we get the unknown reaction in the form  
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Assuming the validity of Hooke’s law, the corresponding stresses in the rod’s parts are 
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For current design steels the coefficient of the thermal expansion is 15 deg102.1  . 
 
Lot of examples could be found in [21], [39]. 
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11_FE. A brief survey of finite element method 
 
11.0. Introduction 
 
Finite element method is a well-established procedure, routinely used in mechanical engineering 
by means of commercial finite element packages. This text should help to understand the basics 
and feel the flavor of the method and might help to realize what is behind seductive color screens 
of those packages, full of rolled-out menus containing – for a beginner – a lot of often unknown 
choices. There are a lot of publications recommended for future studies. For example [3] to [8], 
[11] to [14], [18], [20], [25] to [28], [30], [33], [34], [42]. 
 
11.1. Discretization of continuous quantities in continuum mechanics 
 
Modelling a dynamic rigid body system leads to equations of motion having the form of the 
system of ordinary differential equations. Such systems have the finite number of 
eigenfrequencies and eigenmodes. 
 
Structural elements appearing in engineering practice (rods, beams, plate, shells, etc.) are, 
however, not rigid, but generally flexible, having continuously distributed stiffness and mass. 
Their mathematical descriptions lead to partial differential equations. Corresponding frequency 
equations are of a transcendent type and give the infinite number of degrees of freedom and thus 
the infinite number of frequencies. See [23]. 
 
Rigid model systems are thus a simpler representation of reality, than continuous models, they 
are, on the other hand, easier to solve. Continuous models are thus a better representation of 
reality but at a cost. They are more difficult to solve, which leads us to the digitization again – but 
of a different kind, that will be explained in the following paragraphs. 
 
11.2. Basic equations of continuum mechanics 
 
Continuum mechanics deals with deformations of bodies and forces that are responsible for those 
deformations. We will limit our attention to solids, assuming that the material properties are 
independent on dimensions of an investigated specimen. Also, the material quantities and those 
describing the deformation process are assumed to be continuous functions of space and time. 
 
The motion and deformations of a solid continuous body are described by three systems of 
equations. 
 
11.3. Cauchy equations of motion 
 
relating inner, outer and inertia forces, have the form 
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.         (FE_1) 
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These equations have, however, a different interpretation in linear and non-linear concepts of the 
world. Generally, in continuum solid mechanics with finite displacement, rotations and strains, 
the stress tensor ij

t
t  (Cauchy or true stress) is measured in the current configuration at time t  

(this is indicated by the upper left-hand side index) and is related to the same configuration at the 
same time t (indicated by the lower left-hand side index). The Cauchy (true) stress tensor is thus 
defined as the current elementary force acting on the current elementary surface in its deformed 
shape. Elementary forces i

t f  and the density t are also related to the current configuration. 

This seems to be obvious, but in linear mechanics (where infinitesimal displacements and strains 
are assumed) we are employing a simplified approach and instead of the Cauchy (true) stress we 
work with so-called engineering stress – eng

0 ijij
t    (usually we write only ij ), which relates 

the current elementary force to the not to the current but to the initial (reference) configuration 
considered at time 0t . In the same, i.e. initial configuration are considered the inner forces and 
the density, i.e.   00 ,ii ff . Also, the coordinates are considered in reference configuration 

only, i.e. ii
t xx 0  – which is briefly denoted ix . 

 
11.4. Kinematic relations 
 
relate strains and displacements and secure thus compatibility conditions. There is an infinite 
number of ways how to define strain tensors. As an example, let’s present the Green-Lagrange 
strain tensor, which is independent of the choice of coordinate system as well as of rigid body 
rotations. 
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This tensor – in case of small deformations and strains – simplifies into a so-called engineering 
(or infinitesimal) strain tensor having the form 
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1 .        (FE_3) 

 
11.5. Constitutive equations 
 
relate stresses and strains. Generally, any couple of energetically conjugate stress and strain 
quantities could be employed. In a linear case, the generalized Hooke’s law, with engineering 
stress and Cauchy’s infinitesimal strain, is being employed, i.e. klijklij C  eng  . 

 
Impossibility to solve the system of partial differential equations for complicated geometrical 
cases and for generic initial and boundary conditions led to the development of numerical 
methods. 
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11.6. Numerical approaches 
 
It was probably the finite difference method which was primarily used for the solution of partial 
differential equations describing the solid continuum problems. Partial derivatives appearing in 
these equations were systematically replaced by finite differences. 
 
For example, the second derivatives can be replaced by central differences according to the 
following formula 
 

  )()()(2)(
1)( 2
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

     (FE_4) 

 
where h  is a parameter denoting the mesh size and the term )( 2hO  represents the residuum, 
showing the order of error. For more details see [11], [12b], [41]. 
 
Employing linear approximations and other simplifying assumptions allowed to find closed-form 
solutions describing the mechanical behavior of simple engineering design parts, like bars, 
beams, plates, etc. This way, the relations between generalized coordinates, displacements, and 
forces in nodes connecting these parts were expressed. The approach, based on these ideas, is 
known as the theory of transfer matrices. A nice introduction can be found in [4], [30]. 
 
What followed was the so-called direct stiffness method that was based on the idea of 
decomposing the structure into the assembly of simple design parts (again bars, beams, plates, 
etc.). Then, for each part, called element (e), were defined generalized forces )e(Q and generalized 

displacements )e(q  related by means of so-called elementary stiffness matrices )e(k . 
 
Then, the elementary forces, displacements and stiffness matrices were assembled in such a way 
as to create the global quantities, KqQ ,, , describing the overall behavior of the considered 
structure. Finally, the system of algebraic equations QKq  , was solved determining the 
unknown displacements. One of the forefathers of this method was professor John Argyris. It was 
during the Second World War. 
 
Approximately at the same time, a similar method was conceived in the U.S.A. It was given the 
name matrix displacement method. Besides, the elements derived by the direct stiffness method 
the new elements, based on the continuum mechanics considerations were conceived, namely 
triangular, rectangular, brick and other elements. The equations of motion were derived using 
variational principles. In the mentioned form the above method was already very close to what is 
known under the name the deformation variant of finite element method, where the 
displacements are considered to be primary unknowns form which the force variables are 
consequently evaluated. See [30]. 
 
There exists a complementary formulation, namely the force variant of finite element method, 
where the forces are considered to be primary unknowns and the displacements are computed 
from them. The force formulation, based on the Castigliano theorem, did not gain such popularity 
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as the deformation one. This was due to the fact that the resulting algorithm of force variant 
depends on the correct determination of the static indeterminacy of the solved system. See [30]. 
 
The Hybrid formulations of the finite element method are based on the combinations of 
deformation and force variants. The stresses are approximated within the elements, while the 
displacement on their surfaces. See [30]. 
 
The Boundary integral method is just another tool for the numerical solution of continuum 
mechanics problems, being based on variational principles. The method, while satisfying the 
internal equilibrium conditions, allows solving the problem on the surface of the body only. See 
[5], [8].  
 
In the following text, we will concentrate our attention on the deformation variant of the finite 
element method within the scope of solid continuum mechanics. In order to better understand the 
method’s nonlinear features presented in the following text, we will start with its linear 
background here. 
 
The Finite Element Method (FEM) is based on the discretization of the solid mechanics tasks in 
space and time. In space we fill-up the volume occupied by the considered body (or bodies) by 
many small parts (called elements) of simple geometrical shapes whose inertia, damping and 
stiffness properties are known and expressed in matrix forms. 
 
In time, we give up to find the response of the discretized body as a continuous function of time. 
Instead, we aim to express all the geometrical and force variables at discrete time periods, whose 
time distance – called time step – is rather small. 
 
Satisfying compatibility conditions and equations of motion with prescribed boundary and initial 
conditions, we are then able to determine the response of the body in kinematic and force 
quantities at all parts of the body and at all considered time instants. See [4], [11]. 
 
There are many ways how to derive and explain the basic relations for the FEM. The one 
presented here is based on the principle of virtual work. 
 
11.7. The finite element method 
 
The principle of the virtual work, formulated for solid continuum mechanics, states, see [23], that 
the virtual work done by internal forces U is equal to that done by external forces W , so 
 

WU  .          (FE_5) 
 
The idea behind that thought experiment is, that all the particles (material points) of the body are 
subjected to the virtual displacements u , while the time, for a given moment, is frozen. It is also 
assumed that the acting forces and boundary conditions do not change during that virtual 
displacement. To prescribed virtual displacements are uniquely assigned the corresponding 
virtual strains ε . 
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As mentioned before, to clarify the presentation, the explanation will proceed in two steps – first 
for linear and then for the non-linear case. This allows pinpointing the differences and 
similarities. 
 
11.8. Linear case 
 
Let’s start with small strains and small deformation using the usual engineering notation. The 
energy balance according to Eq. (FE_5) – for a considered body in Fig. FE_1 – is 
 

Qqtufuσε TTTT
ddd   SVV

SVV

,      (FE_6) 

 
where u  are virtual displacements, ε  are 
virtual strains, σ  are engineering stresses, 
f are volumetric forces, t  are traction forces, 

q  are virtual displacements of nodes, Q  are 
generalized external forces acting at the nodes. 
 
 
Fig. FE_1 ... Acting forces 
 
Quantities V and S denote the volume and the 
surface of the body in the reference 
configuration. The integration process is carried out in reference (un-deformed) configuration, in 
agreement with accepted assumptions about small displacements and strains. This is what the 
linear theory is based on. 
 
Deformation variant of the finite element method is based on the idea of approximation of 
continuous displacements of individual particles (material points) by polynomial functions. The 
approximation can be expressed by the relation Aqu  , by which we understand 
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In continuum, the displacement field of the body is continuous in time and space. In FE 
approximation this field is approximated by a product of so-called shape functions, contained in 
A(x)  matrix, and of displacements q  of certain, a priory set, and points – called nodes. The 
shape functions are polynomial functions of space and the nodal displacement are generally 
functions of time. This way, we approximate the continuous system, which has the infinite 
number of particles, and thus the infinite number of degrees of freedom, by a discrete medium, 
with the finite number of elements, having the finite number of degrees of freedom. 
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To make this process unique, the matrix A  has to be determined. How to do it will be shown in 
the following paragraphs. Also, the initially continuous strains have to be discretized. This will be 
secured by another operator, i.e. B , called stress-displacement operator, which relates strains to 
displacements in nodes by Bqε  . 
 
By the strain approximation, we understand 
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The A  and B  operators will be derived in the following text. So far, we can state that the B  
operator will depend on A due to the existence of kinematic relations. 
 
In linear cases, the kinematic relations are simplified as  
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The virtual displacements and strains depend on accepted approximations given by Eqs. (FE_7),  
(FE_8) , so 
 

qBqBεqAqAu  , .      (FE_10) 
 
Since the operators A,B do not depend on displacements, the relations Eq. (FE_10) simplify to 
 

qBεqAu  , .        (FE_11) 
 
The volumetric forces might represent inertia forces. Using d’Alembert’s principle we can write 
 

uf  .          (FE_12) 
 
It is worth mentioning that in continuum mechanics the volumetric forces are defined as forces 
related to a unit of volume, so their dimensions are  3Nm . Double dots, superimposed on 
displacements, represent the second derivative with respect time – that is the particle acceleration. 
It is approximated by 
 

qAu   .          (FE_13) 
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We tacitly assume that the A  operator is not a function of time. The principle of virtual work, 
formulated for a discretized body, can be obtained by substituting the above assumptions into Eq. 
(FE_6). Rearranging we get 
 

0ddd TTTT 







   

V V S

SVV QtAqAAσBq  .     (FE_14) 

This equation has to be valid for any virtual displacement qd . To satisfy this condition, the 
contents of the bracket must be identically equal to zero. Rearranging we get 
 

 
VV

VRV dd TT σBqAA  ,       (FE_15) 

 
where the R vector covers contributions of both traction and point forces. The term appearing by 
acceleration is called mass matrix and is denoted m. We assume that during the deformation 
process the mass is conserved, so the mass matrix is constant. The Eq. (FE_15) holds at any 
moment, that is at the beginning, at the time 0t , so 
 

 Vd:C 0T000 σBRqm         (FE_16) 

as well as at a generic time 0t , so 
 

 Vtttt d:C T σBRqm  .       (FE_17) 

In linear cases, the changes in geometry are neglected. If, furthermore, the linear relation between 
stress and strain is considered, then we can write 
 

qCBεCσ ttt  .         (FE_18) 
 
The quantity C  represents the symmetric matrix of elastic moduli. Substituting Eq. (FE_18) into 
Eq. (FE_17) we get 
 

Rqkqm ttt  .         (FE_19) 
 
The previous relation, valid for a generic time t, represents the discretized equation of motion for 
a generic element, where 
 


V

VdTAAm   is the mass matrix and     (FE_20) 


V

VdT BCBk  is the stiffness matrix.      (FE_21) 

It is not difficult to add another term representing the viscous damping being proportional to the 
velocity 
 

Rqkqdqm tttt           (FE_22) 
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but a meaningful determination of material constants might pose a problem. Sometimes a so-
called Rayleigh’s approach, defining the damping matrix  
 

kmd             (FE_23) 
 
with constants  , , is employed. See [4]. 
 
If inertial effects could be neglected then the equation of motion (FE_19) becomes the 
equilibrium equation having the form 
 

Rqk tt  .          (FE_24) 
 
In linear cases there is no need to keep the upper left-hand side index, denoting the configuration 
state, since the final result is obtained by a single computational step, i.e. by solving the system of 
algebraic equations, supplying the unknown displacements. 
 
The integration of Eqs. (FE_14), (FE_15) and (FE_20), (FE_21) has to be carried out separately 
for each element. Then, the individual results (mass and stiffness matrices) have to be 
systematically assembled to represent the inertia and stiffness properties of the whole body. From 
now on, we will assume that the volume V belongs to a generic element as well as that the 
matrices m, d and k. They are called mass, damping and stiffness matrices respectively. 
Equations of motion for the whole body have formally the same form, only instead of the local 
matrices m, d and k we formally write M, D, and K, meaning the global mass, damping and 
stiffness matrices respectively. 
 
The global matrices are obtained from local ones by so-called assembly process, based on an idea 
of so-called nodal compatibility, meaning that the displacements on element boundaries are 
continuous (going from one element to another) and that the nodal forces could be systematically 
assembled into vectors. The assembling will be described in the following text.  
 
11.9. Determination of A, B operators 
 
Let’s start with Lagrangian and Hermitian elements that are frequently used in technical practice. 
They are based on the idea of Lagrangian or Hermitian polynomial interpolations. There are also 
other interpolation procedures. See [11]. 
 
Let’s remind the Lagrangian interpolation procedure for a function of one variable. See  [35], 
[36]. For a given function )(xfy   defined in the interval  ba,  one has to find a suitable 
approximation in the form of a polynomial function based on the knowledge of a few functional 
values within that interval. 
 
Knowing n couples of values  ii yx ,  within the interval  ba,  it is possible to find a 

polynomial function of the  th1n  degree passing through all the known n points. We can write 
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Uc 12
321approx

n
nxcxcxccy  ,       (FE_25) 

 
where 
 

 121  nxxx U  and  T
321 ncccc c .       (FE_26) 

 
Values ix  define the locations of points in which the approximation is being provided. They are 

often called nodes. Values iy represent the function values at nodes. The U is the so-called matrix 

of approximation functions; the c vector contains unknown coefficients of the polynomial 
approximation. Substituting all n couples of  ii yx ,  into the previous relation we get 

 
Scy  ,           (FE_27) 

 
where 
 

 T
321 ncccc c ,          (FE_28) 

 T
321 nyyyy y ,          (FE_29) 

 
and 
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S .         (FE_30) 

 
The unknown coefficients ic  are determined from the condition ySc 1 . Finally, the 

approximation function can be expressed in the form 
 

AyyUSUc  1
approxy ,         (FE_31) 

 
where the A – matrix being the product of the approximation-function matrix U and the inverse 
of S matrix – containing not functions but pure numbers only – is called the shape function 

matrix. As stated above for n couples of points we get the Lagrangian polynomial of the   th1n   
degree. 
 
They are the nodal displacements that play the role of unknown function values in the 
deformation variant of the finite element method. Then, the shape function matrix A secures the 
approximation of element displacements, based on displacements at nodes, while the B, secures 
the strain-displacement approximation. This will be shown in detail in the following text. 
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The Hermitean interpolation approach requires to deal not only with the values of functions at the 
nodes but also with their derivatives. For more details see [35]. 
 
11.10. Material non-linearity only 
 
This case is based on assumptions of small displacements, rotations, and small strains. The only 
non-linearity entering the game is the non-linear constitutive relation. The usual procedure is 
based on replacing the actual non-linear stress-strain dependence by a series of relations which 
are linear by parts. This way, the engineering stress in a new configuration is 
 

σσσ ΔΔ  ttt ,         (FE_32) 
 
where the stress increment σΔ  is expressed as a linear function of strain increment in the form 
 

εCσ ΔΔ t ,          (FE_33) 

 
where Ct  is a tangential value to the )(εfC  function at the Ct configuration. Introducing so-
called nodal displacement increment we get 
 

qqq ttt  ΔΔ          (FE_34) 
 
and then the strain increment could be expressed in the form 
 

qBε ΔΔ  .          (FE_35) 
 
Substituting into (FE_17) and rearranging we get 
 

FRqkqm ttt
t

tt   ΔΔ Δ ,        (FE_36) 

 
where 
 


V

t VdT BCBk          (FE_37) 

 
is the tangential stiffness matrix and 
 


V

tt VdT σBF          (FE_38) 

is the vector of internal forces at nodes and the vector Rtt Δ is the loading at time tt Δ . 
 
The integration goes across the non-deformed volume. Using a suitable assumption for 
expressing the acceleration at the time tt Δ  as a function of displacement at time t, one can, 
using Eq. (FE_36), express qΔ  as the first estimation of displacement increment that must, 
however, be refined in a subsequent iteration process. The condition required for a successful 
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iteration process is based on achieving the equilibrium of internal and external forces. The details 
could be found in [7], [12a]. 
 
11.11. Material and geometrical nonlinearity 
 
By this we understand cases where there is a nonlinear relation between stress and strain; and 
large displacements and large strains are taken into account. One of the possible approaches is 
based on employing Green-Lagrange strain tensor with the second Piola-Kirchhoff stress tensor. 
For more details see  [4], [7]. 
 
11.12. Finite element method in mechanics of deformable bodies 
 
Linear static problems are numerically treated by solving the system of algebraic equations 

QKq   where K is the stiffness matrix, Q is the loading vector and q is the unknown vector of 
generalized displacements at nodes. 
 
When nonlinear static problems are solved, the stiffness matrix is not constant – generally it is a 
function of unknown displacements, the system to be solved is QqqK )( and requires the 
iterative solvers. 
 
Linear steady state vibration problems are numerically treated by solving the generalized 
eigenvalue problem, which is defined by 0xMK  )(  , where M is the mass matrix and K is 
the stiffness matrix. The sought-after quantities are the eigenmodes x  and eigenvalues λ. 
 
Generally, n pairs could be found for the system with n degrees of freedom. The eigenvalues are 
related to eigenfrequencies by the relation 2

ii Ω  . 

 
Transient dynamical problems are treated by solving the system of ordinary differential 
equations, which – in linear cases without damping – has the form of ordinary differential 
equations, i.e. RKqqM  . The loading vector is a function of time. Explicit and implicit 
numerical procedures are used to obtain the solution. The solution consists of a series of 
displacements, velocities, accelerations, strains, and stresses for each time step. See [10], [13], 
[14], [20], [28], [31], [34], [42]. 
 
A general procedure for defining mass and stiffness matrices was illustrated in broad terms in the 
previous text. Now, we will show how these matrices – for a few simple elements – are derived 
in detail. We will use the standard approach based on so-called generalized coordinates. Later, we 
will show another approach which leads to so-called isoparametric elements. The former process 
could be summarized as follows. 
 
Displacement approximation is secured by a polynomial function of coordinates in the form 
 

Ucu  ,          (FE_39) 
 
where u is the column vector containing the displacements to be approximated and U is the 
matrix of approximation functions, containing the function terms appearing in the approximation 
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polynomial. The column vector c contains the constants of the assumed polynomial function. 
Substituting nodal coordinates into Eq. (FE_39) we get 
 

Scq  ,          (FE_40) 
 
where q is a column vector of nodal displacements and S is the matrix containing numbers, i.e. 
nodal coordinates and their powers. For elements which are not geometrically deteriorated (we 
will explain this term soon) the S matrix is regular, could be inverted, and so 
 

qSc 1 .          (FE_41) 
 
Substituting Eq. (FE_41) into Eq. (FE_40) we get 
 

AqqUSu  1 ,         (FE_42) 
 
where 1 USA  is the matrix defining shape functions. Strain approximation could be generally 
expressed in the form (u)ε f , whose discretized form is 
 

Fcε   ,          (FE_43) 
 
where the F matrix contains the derivatives of functions appearing in A. Substituting Eq. (FE_41) 
into Eq. (FE_43) we get 
 

BqqFSε  1 ,         (FE_44) 
 
where B is the strain-displacement operator. Now, the stiffness and mass matrices could be 
expressed in the forms 
 


V

VdT BCBk ,         (FE_45) 


V

VdTAAm .         (FE_46) 

 
In the following text, we will derive the mass and stiffness matrices for a few geometrically 
simple elements. Later, a procedure for assembling global matrices out of elementary ones will 
be presented. 
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11.13. Rod (bar) element 
 
The element is schematically depicted in Fig. 
FE_2. This is the simplest element being used in 
the technical practice. It lives in an one-
dimensional space defined by its axial 
(longitudinal) axis. 
 
It can transmit only axial forces and knows 
nothing about the bending or torsion. With its 
neighbors is connected, at its boundary nodes.  
 
 
Fig. FE_2 ... Rod element with two dof’s  
 
It communicates with neighbors by means of two axial displacements 1q  and 2q , defined at 
boundary nodes.  
 
These displacements are measured in the local coordinate system x. To see their distribution in 
space, they are plotted perpendicularly to their actual directions. The element is characterized by 
its length l, the density ρ and the Young’s modulus E. 
 
Now, we are looking for a suitable polynomial approximation Aqu  for this element. Since we 
have only two free nodal displacement to play with, the only available choice is the polynomial 
of the first degree which has two unknown constants, ie. 21,cc . 
 
In the local coordinate system we can write 
 

  Uc









2

1
21approx 1

c

c
xxccuu .      (FE_47) 

 
Denoting the nodal displacements 
 

10
qu

x



and 2qu

lx



        (FE_48) 

 
and realizing that the assumed approximation should holds for the nodes as well 
 

Scq  ,          (FE_49) 
 
where 
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cSq .       (FE_50) 
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Eliminating out of our considerations the negative or the zero length of the element (this way we 
exclude geometrically deteriorated element) then the S matrix is regular and could be inverted. 
From Eq. (FE_49) we can express c and substituting it into Eq. (FE_47) we get 
 

AqqUSUcu  1 .        (FE_51) 
 
Then, carrying out the above multiplication, we get the shape matrix in the form 
 

     )()(//1
/1/1

01
1 21 xaxalxlx

ll
xA 










 .    (FE_52) 

 
When deriving the strain-displacement matrix B from Bqε  one has to take into account the 
proper kinematic relations. In the case of one-dimensional deformations, applicable for this 
element, we can write 
 

     qAqε lllxlx
xxx

u
/1/1//1

d

d

d

d

d

d
 .    (FE_53) 

 
Thus, the strain-displacement matrix (operator) is 
 

 ll /1/1B .         (FE_54) 
 
Notice that the B operator does not depend on x variable – it this case it is constant. It is not 
generally so. This is due to the fact that the linear approximation of displacements was assumed. 
And the derivative of a linear function is constant, of course. From this follows that using this 
approximation we obtained the element which has the constant distribution of strains along its 
length. That’s why it is sometimes called constant strain element. Now, we have all the 
ingredients necessary to derive the mass and stiffness matrices. Using Eq. (FE_20) we can 
express the mass matrix 
 









  21

12

60

TT
l

V

Al
dxAdVm

 AAAA .     (FE_55) 

 
This is so-called the consistent mass matrix, being derived consistently in agreement with so far 
presented rules.  
 
There is another approach to the derivation of the mass matrix, which is based on its 
diagonalization. It this case there is a nice physical interpretation stemming from the idea of 
concentrating the continuously distributed mass into nodes. 
 
What we get is so-call lumped or diagonal mass matrix 
 











30

03

6

Al
m


.         (FE_56) 
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Using Eq. (FE_21) we get the stiffness matrix 
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11
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d

0
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l
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l

l
V

l

V

BCBk .   (FE_57) 

 
We have taken for granted that there is a linear relation between the stress and strain, expressed 
by Eq. (FE_3), and the fact that in 1D case the matrix of elastic moduli simplifies to a scalar, i.e. 
to Young’s modulus, so C = E. 
 
According to the generally accepted terminology, we say that an element having n independent 
nodal displacements has n degrees of freedom. 
 
11.14. Planar beam element  
 
Let’s consider a planar beam element of prismatic 
cross-sectional area, with the shearing forces and 
the bending moments, depicted in Fig. FE_3. 
 
In the first approach, we are neglecting axial 
forces. The element is characterized by the cross-
sectional area A, bending stiffness EI, density ρ 
and the length 0l  

 
Fig. FE_3 ... Planar beam element with 4 dof’s 
 
Neglecting the axial forces, there are two displacements and two rotations at each node – 
altogether four degrees of freedom. 
 
For more details see [30]. Let’s approximate the vertical displacements by 
 

    Ucu  3
4

2
321)( xcxcxccxuy ,       (FE_58) 

 
where the x-coordinate goes along the longitudinal beam axial axis. Again, this approximation 
has to be valid at nodes as well, so 
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y  ,     (FE_59) 

 
So, 
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After inverting the S matrix 
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we get 
 

 23
0

23
0

32
0

22
0

3
0

23
0

32
0

21 ///2/3//2/2/31 olxlxlxlxlxlxxlxlx  USA . 

        ... (FE_62) 
 
In this case, the role of generalized strain is played by the beam curvature 22 d/d~ xuy  and also 

Aqyu , and then qA )d/d(~ 22 x  . Finally, 
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B . (FE_63) 

 
Using Eqs (FE_20), (FE_21) we get the mass and stiffness matrices 
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 11.15. Planar triangular element with 6 dof’s  
 
Let’s consider a planar triangular 
element depicted in Fig. FE_4. In 
each node there is one 
displacement which can be 
decomposed into two 
components in directions of 
coordinate axes. Altogether the 
element has three displacement 
components in each direction – 
so six degrees of freedom. The 
triangular element was one the 
first element derived in history. 
A natural polynomial choice for 
such an element would be two 
linear functions of coordinates x 
and y, for each direction.  
 
Fig. FE_4 ... Triangular element with 6 dof’s 
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Six unknown constants ic  of the approximation polynomial are found from the condition that Eq. 

(FE_66) must hold for all three nodes as well. Denoting the nodal coordinates by 3,2,1,, iyx ii , 

then for all nodes we can write 
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The S matrix contains the coordinates of nodes. Unless the triangle degenerates into a line or into 
a single point then   0det S – matrix is regular – and one can write 
 

qSc 1 .          (FE_68) 
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Substituting into Eq. (FE_66) we get qUSu 1 . The analytical evaluation of 1S  is easy and 
gives 
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where 
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Denoting  yx1T φ  then the A matrix is 
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where 3,2,1,),( )(T  iyxa i

i sφ  are linear functions of 

yx, . Expressing the displacements in one direction, say 

),( yxux , then we can write  

 

))(
~

det(/1(),( 332211 qaqaqayxux  S .  

 
Geometrical interpretation of this relation is depicted in 
Fig. FE_5. The plane   is defined by three nodal 

displacements 321 ,, qqq  (in one direction).  

 
Fig. FE_5 ... Continuity of displacements 
 
So far, one element, say A, was considered. For a neighbor element B we will get a similar plane, 
say  , that must share with    plane two displacements – so the approximation of displacements 
has a common intersection line, which means that the approximation of displacements is 
continuous. The fact that both planes (approximations) have the same intersection line means that 
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the approximated displacements are continuous, satisfying thus the so-called compatibility 
conditions. This cannot, however, be said of approximations of strains defined as derivatives of 
displacements. Since the approximations of displacements are defined by linear functions, their 
derivatives (approximations of strains) are constant within the element. This means that we have 
to live with fact that that approximation of strains (and stresses of course) will – for this kind of 
element – be discontinuous. There are strain jumps at element boundaries. 
 
The strain displacement operator B depends on the type of stress state assumed. For the plane 
stress or the plane strain conditions, we start with Eqs. (FE_3) and (FE_66) obtaining 
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which, written in the matrix form, gives 
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We thus get qScFcε 1,  and finally 
 

Bqε  ,          (FE_75) 
 
where 1 FSB so, 
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In this case, the strain displacement matrix B contains nodal coordinates only – not functions. 
Alternatively, the B matrix could be obtained from A by evaluating the partial derivatives. 
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The mass and stiffness matrices of this element could then be obtained by integrating relations 
(FE_20) and (FE_21), using yxhV ddd  , where h is the element thickness, being considered 
constant. 
 
11.16. Quadrilateral element with 8 dof’s  
 
The dimensions and node numbering 
are in Fig. FE_6. 
 
The element lives in the plane, its 
thickness is h. The displacement 
approximation requires such a 
polynomial which has the same 
number of free polynomial constants 
as there is the numbers of nodal 
displacements in each direction. In this 
case, an incomplete polynomial of the 
second degree, having the form of a 
bilinear function – satisfying the 
spatial isotropy requirements, could be 
used. See [4], [11]. 
 
Fig. FE_6 ... Quadrilateral element with 8 dof’s. 
 
The displacement approximation could be expressed by 
 

  Uc,u  T
yx uu ,         (FE_78) 

 
where 
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and 
 

     81
TTT ,0000,1 ccxyyx  c0φ . 

 



FE 21

Substituting the nodal coordinates into Eq. (FE_78) we get 
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where 0 is 4x4 matrix full of zeros and  81

T qq q  is a column vector of nodal displacements 

arranged with agreement of numbering shown in Fig. FE_6. 
 
The analytical derivation of mass and stiffness matrices is provided by Matlab Symbolic 
Toolbox. See the program symb_q4_mk. 
 
% symb_q4_mk 
% mass and stiffness matrices of a rectangular elements 
% for the plane stress 
% a,b dimensions 
% h thickness 
% ro density 
% mi Poisson ration 
% E Young modulus 
clear; format compact 
% declaration of symbolic variables 
syms fi x y s a b u h ro F B C mi Bt E p q; 
fi = [1 x y x*y]; % approximation polynomial 
zero = [0 0 0 0]; 
u = [fi zero; zero fi];   % matrix of approx. functions 
S = [1 0 0 0 0 0 0 0; ... % matrix S 
     1 a 0 0 0 0 0 0; ... 
     1 a b a*b 0 0 0 0; ... 
     1 0 b 0 0 0 0 0; ... 
     0 0 0 0 1 0 0 0; ... 
     0 0 0 0 1 a 0 0; ... 
     0 0 0 0 1 a b a*b; ... 
     0 0 0 0 1 0 b 0]; 
sinv = inv(S); % inversion of S matrix 
aa = u*sinv;  % shape function matrix A 
aat = aa.’;   % transpose of A 
ata = aat*aa; % integrand without constants 
m1=int(ata,’y’); % integration with respect to y 
mu=subs(m1,’y’,’b’); ml=subs(m1,’y’,’0’); % substitute limits 
m2 = mu-ml; % subtract 
m3=int(m2,’x’); % integration with respect x 
mu=subs(m3,’x’,’a’); ml=subs(m3,’x’,’0’); % substitute limits 
m4 = mu - ml; % subtract 
m4 = ro*h*m4; % multiply by constants 
const = 36/(a*b*h*ro); % 
disp(’mass matrix - multiplication by a*b*h*ro/36 is omitted’) 
m4 = const*m4 
% stiffness matrix 
% derivatives of approx. functions 
dfix = diff(fi,x); dfiy = diff(fi,y); 
% create F matrix 
F = [dfix zero; ... 
zero dfiy; ... 
dfiy dfix]; 
% B matrix 
B = F*sinv; 
% transpose of B 
Bt = B.’; 
% matrix of elastic constants for the plane stress 
% with omitted constant ... constk 
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constk = E*h/(1-mi*mi); 
C = [1 mi 0; ... 
mi 1 0; ... 
0 0 (1-mi)/2]; 
% integrand of the stiffness matrix 
btcb = Bt*C*B; 
% integration with respect to x and y variables within a,b 
% thickness h is constant 
k1 = int(btcb,’y’); % integrace podle y 
ku = subs(k1,’y’,’b’); kl = subs(k1,’y’,’0’); % substitute limits 
k2 = ku - kl; % subtract 
k3 = int(k2,’x’); % integration with respect x 
ku = subs(k3,’x’,’a’); kl = subs(k3,’x’,’0’); % substitute limits 
k = ku - kl; % subtract 
k = constk*k; 
k = subs(k, {’a/b’, ’b/a’}, {’p’, ’q’}); 
k = subs(k, {’1/3/b*a’, ’1/6/a*b’}, {’p/3’, ’q/6’}); 
k = subs(k, {’1/6/b*a’, ’1/6/a*b’}, {’p/6’, ’q/6’}); 
constk = (1-mi^2)/(E*h); k = constk*k; simplify(k); 
k = -24*k; k = simplify(k); 
disp(’ ’) 
disp(’stiffness matrix’) 
disp(’multiplication constant E*h/(24*(mi^2 - 1)) is omitted ’) 
disp(’the first part k(1:8,1:4)’); disp(k(1:8,1:4)) 
disp(’the second part k(1:8,5:8)’); disp(k(1:8,5:8)) 
% end of symb_q4_mk 
 

The program gives 
 
mass matrix - multiplication by a*b*h*ro/36 is omitted 
 
m4 = [ 4, 2, 1, 2, 0, 0, 0, 0] 
     [ 2, 4, 2, 1, 0, 0, 0, 0] 
     [ 1, 2, 4, 2, 0, 0, 0, 0] 
     [ 2, 1, 2, 4, 0, 0, 0, 0] 
     [ 0, 0, 0, 0, 4, 2, 1, 2] 
     [ 0, 0, 0, 0, 2, 4, 2, 1] 
     [ 0, 0, 0, 0, 1, 2, 4, 2] 
     [ 0, 0, 0, 0, 2, 1, 2, 4] 
 
stiffness matrix 
multiplication constant E*h/(24*(mi^2 - 1)) is omitted 
 
the first part k(1:8,1:4) 
[ -8*q-4*p+4*p*mi, 8*q-2*p+2*p*mi, 4*q+2*p-2*p*mi, -4*q+4*p-4*p*mi] 
[ 8*q-2*p+2*p*mi, -8*q-4*p+4*p*mi, -4*q+4*p-4*p*mi, 4*q+2*p-2*p*mi] 
[ 4*q+2*p-2*p*mi, -4*q+4*p-4*p*mi, -8*q-4*p+4*p*mi, 8*q-2*p+2*p*mi] 
[ -4*q+4*p-4*p*mi, 4*q+2*p-2*p*mi, 8*q-2*p+2*p*mi, -8*q-4*p+4*p*mi] 
[ -3*mi-3, 9*mi-3, 3*mi+3, -9*mi+3] 
[ -9*mi+3, 3*mi+3, 9*mi-3, -3*mi-3] 
[ 3*mi+3, -9*mi+3, -3*mi-3, 9*mi-3] 
[ 9*mi-3, -3*mi-3, -9*mi+3, 3*mi+3] 
 
the second part k(1:8,5:8) 
[ -3*mi-3, -9*mi+3, 3*mi+3, 9*mi-3] 
[ 9*mi-3, 3*mi+3, -9*mi+3, -3*mi-3] 
[ 3*mi+3, 9*mi-3, -3*mi-3, -9*mi+3] 
[ -9*mi+3, -3*mi-3, 9*mi-3, 3*mi+3] 
[ -8*p-4*q+4*q*mi, -4*p+4*q-4*q*mi, 4*p+2*q-2*q*mi, 8*p-2*q+2*q*mi] 
[ -4*p+4*q-4*q*mi, -8*p-4*q+4*q*mi, 8*p-2*q+2*q*mi, 4*p+2*q-2*q*mi] 
[ 4*p+2*q-2*q*mi, 8*p-2*q+2*q*mi, -8*p-4*q+4*q*mi, -4*p+4*q-4*q*mi] 
[ 8*p-2*q+2*q*mi, 4*p+2*q-2*q*mi, -4*p+4*q-4*q*mi, -8*p-4*q+4*q*mi] 

 
Four basic finite elements were derived – just to feel the flavor of the method. There are hundreds 
of elements available in technical practice. For more information see [4], [11]. 
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11.17. Coordinate transformation 
 
11.17.1. Rod element (2 dof’s) in plane 
 
depicted in Fig. FE_7, was derived in the local 
coordinate system. Let’s denote it by x , while the 
global coordinate system will denoted by yx, . 
 
Fig. FE_7 ... Local displacements of the rod element 
 
 
 
 
    
    
    

 
 
 
 
 
 
 
 

 
Fig. FE_8 ... Global displacements of the rod element 
 
Both coordinate systems are shown in Fig. FE_8.  The angle   is measured from the global to 
the local system. The relations between nodal displacements in local and global coordinate 
systems are 
 

 sincos 211 qqq  ,        (FE_81a) 

 sincos 432 qqq  .        (FE_81b) 

 
Written in matrix form, we have  
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or Tqq  ,          (FE_83) 
 
where the transformation matrix is  
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Forces are vector quantities of the same kind, so 
 

TPP  .          (FE_85)  
 
The inverse relation to (FE_85) could be obtained by means of the following reasoning. The 
work done by external forces on virtual displacements should be independent of the coordinate 
system in which the displacements and forces are expressed, so  
 

PqPq TT   ,  where Tqq  ;  qTq   ; TTT Tqq   ,  (FE_86) 
 
and 
 

PTqPq TTT    0)( TT  PTPq . 
 
This relation must hold for any virtual displacement – this requires that the contents of the 
bracket must be identically equal to zero. So the inverse relation to (FE_85) is 
 

PTP T .          (FE_87)  
 
Forces in the local coordinate system are proportional to displacements expressed in the same 
system. Briefly, we call them local forces and local displacements. They are related by the local 
stiffness matrix k . So, in the local system, we have 
 

qkP  .          (FE_88)  
 
This relation must be valid in the global coordinate system, as well. So, 
 

kqP  .          (FE_89)  
 
Starting with Eq. (FE_87)  
 

PTP T and substituting for qkP  we get qkTP T . Substituting then Tqq  we finally get 
 

TqkTP T ,          (FE_90) 
 
which might be rewritten into  
 

kqP  ,          (FE_91) 
 
where we have defined the stiffness matrix of rod element in global coordinates by 
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TkTk T .          (FE_92)  
 
Let’s recall   
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where E  is Young’s modulus, S  is the cross-sectional area and l  is the element length. In 
practice the stiffness matrices and their transformations are routinely are evaluated and the FE 
user is not burdened with processing details. Here, just for pleasure and for pedagogical reasons, 
we will explicitly do it step by step. See the following short program using the Matlab symbolic 
features 
 
% mpp_stiffness_matrix_tranf_rod 
clear 
syms k k_bar T sin cos 
k_bar = [1 -1; -1 1]; 
T = [cos sin 0 0 ; 0 0 cos sin]; 
k = T.'*k_bar*T; 
pretty(k) 

 
The output is 
 
[    cos^2,  cos*sin,   -cos^2, -cos*sin] 
[  cos*sin,    sin^2, -cos*sin,   -sin^2] 
[   -cos^2, -cos*sin,    cos^2,  cos*sin] 
[ -cos*sin,   -sin^2,  cos*sin,    sin^2] 

 

Notice that the multiplicative constant 
l

ES
was intentionally omitted. So the stiffness matrix of 

the rod element, expressed in the global coordinate system, written in full, is  
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11.17.2. The planar beam element with 6 dof’s 
 
Degrees of freedom of a planar beam with 6 
degrees of freedom are schematically depicted in 
Fig. FE_9. 
 
Fig. Fig. FE_9 ... Local dof’s (displacements and rotations) of the beam element  
 
The transformation of generalized displacements from the local to the global coordinate system is 
depicted in Fig. FE_10. The local coordinate system is yx, . The global coordinate system is 

yx, . 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. FE_10 ... Local and global dof’s of the beam element 
 
The angle   is measured from the global to local axes.  
 
Observing  Fig. FE_10 one can conclude that the relations between the generalized coordinates in 
global and local system are  
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In matrix form  
 

qRq  ,          (FE_96)  
 
where  
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The R matrix is orthogonal (which means that inverse is equal to its transposition), so  
 

TqqRq  T . 
           (FE_98)  
Analogically for generalized forces 
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We formally introduced  
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In the local coordinate system, we have 
 

qkP  .          (FE_101) 
 
Substituting for qP and we get 
 

TqkTP            (FE_102) 
         
and after multiplication by TT from the left, we obtain 
 

kqTqkTP  T ,         (FE_103) 
 
where the stiffness matrix of the beam element in the global coordinate system is  
 

TqkTk T .          (FE_105) 
 
The stiffness matrix of the beam element in the local coordinate system, see [30], is  
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The transformation of the relation (FE_106) is left to the reader.  
 
11.18. Assembling 
 
So far, the mass and stiffness matrices have been derived in the so-called local coordinate system. 
We call them the local matrices expressed in the local coordinate system. Usually, the 
displacements, forces and the matrices themselves have to be recalculated into another coordinate 
system, which is uniquely defined for all the elements. Such a system is called the global 
coordinate system and the mass and stiffness matrices are then called the local matrices expressed 
in the global coordinate system. 
 
For more details see [4], [11], [30]. 
 
After having expressed the mass and stiffness matrices of all the elements in the global 
coordinate system, it is necessary to find a systematic way, how to assemble them into so-called 
global matrices, which would then represent the inertia and stiffness properties of the whole 
system. 
 
The assembling process is based on the topology and compatibility considerations. The topology 
means that we know who is the neighbor of whom, while the compatibility means that the 
continuity of displacements (in their approximation forms) has to be satisfied. In this paragraph, 
the variables with the hat, say q̂ , will denote the local variables in the local coordinate system, 
the variables with the tilde, say q~ , will denote the local variables in the global coordinate 
system.  
 
And the variables without any upper accent, sayq , will indicate the global variables in the global 
coordinate system. 
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Let’s show it on an example. 
 
Denoting by the upper right-hand side index the element number, then the equation of motion of 
the i-th element in the global coordinate system is 
 

iiiii Pqkqm
~~~~~  .        (FE_107) 

 
For the whole system created by n elements, we can – simply but rather non-efficiently – 
assemble a single equation in the form 
 

Pqkqm
~~~

cc  ,        (FE_108) 

 
where 
 

   T21T21 ~~~~,
~~~~ nn qqqqPPPP   ,    (FE_109) 
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The vector of local nodal displacements of all elements in the global coordinate system 
q~ depends on the vector of global displacements of the system q by 
 

Zqq ~ ,         (FE_111) 
 
where Z is the so-called incident matrix. Each row of this matrix contains zeros with the 
exception a single ’1’ located at a place where the element of the vector q~ corresponds to the 
element of the vector q. The process might be elucidated by the following example 
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Example 
 
Let’s assemble the incident matrix Z for a ‚truss structure‘, formed by three rod elements, 
depicted in Fig. FE_11.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. FE_11 ... Truss structure  
Fig. FE_12 ... Nodal displacements of individual elements in local coordinates 

 
In Fig. FE_12 to Fig. FE_14 we follow the transformation from the nodal displacements of 
elements in the local coordinate system q̂ , through the nodal displacements of elements in the 
global coordinate system q~ , to the displacements of the structure expressed in the global 
coordinate system, i.e. q. In this case, the relation (FE_111) has the form 
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Fig. FE_13 ... Nodal displacements in global coordinates (individual elements) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. FE_14 ... Nodal displacements in global coordinates (truss structure) 
 
Out of 12 nodal displacements corresponding to individual elements only 6 displacements are 
actually independent. This way the compatibility conditions are satisfied, meaning that the nodal 
displacements of neighboring elements are identical, say  1

1
2

1
~~ qq  . 

 
The principle of virtual work requires that the work done by inertia and internal forces must be 

equal to the work done external forces P
~

. 
 

Pqqkqqmq
~~~~~ T

c
T

c
T   .        (FE_113) 

 

Using qZqqZq   TT ~,~  and Eq. (FE_111) and substituting into Eq. (FE_113) gives 
 

PZqqZkZqqZmZq
~TT

c
TT

c
TT   .      (FE_114) 

 
The last equation must hold for any virtual displacement q which leads to 
 

FKqqM  ,         (FE_115) 
 
where 
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ZmZM c
T   is the global mass matrix,     (FE_116) 

ZkZK c
T   is the global stiffness matrix,     (FE_117) 

PZF
~T   is the vector of external forces.    (FE_118) 

 
The elements of F vector are assembled the same way as those in the vector of displacements q. 
Generally, the F vector contains contributions of surface (traction) forces (i)P  acting on surfaces 

iΩ , of initial stresses )(
0
iσ  in volumes iV , and the external forces )(iQ acting in nodes – generally, 

it is a function of time. 
 

)()(
0

1

 T)(

1

 T dd i
i

i
n

i V

(i)
i

i
n

i Ω

(i) VΩ
ii

QσBPAF   


.     (FE_119) 

 
In statics, the F vector does not depend on time and the inertia forces are neglected. Instead of 
Eq. (FE_115) we get 
 

FKq  .          (FE_120) 
 
Example 
 
In Fig. FE_11 the node numbers and element numbers of the considered truss structure are 
indicated. The stiffness matrix of the  i-th element in local coordinates is 
 

.3,2,1,
2221

1211)( 







 i

kk

kk
ii

ii
ik         (FE_121) 

 
An equivalent matrix in global coordinates has the form 
 

3,2,1,

~~~~

~~~~

~~~~

~~~~

~

44434241

34333231

24232221

14131211























 i

kkkk

kkkk

kkkk

kkkk

iiii

iiii

iiii

iiii

ik .      (FE_122) 

 
Let’s create the table of so-called code numbers for this structure. The code numbers are actually 
the indices of global displacements, belonging to individual elements, listed in the same manner, 
i.e. from the local node 1 to the local node 2. The code numbers in our case are 
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element  code  
number  numbers 
    1   1 2 5 6 
    2   1 2 3 4         (FE_123) 
    3  3 4 5 6 
 
Notice that the code numbers actually express the locations of 1’s in the previously defined 
incident matrices Eq. (FE_115).Writing the code numbers around the first element matrix 1k we 
get 
 
1       2      5       6 

6
~~~~

5
~~~~

2
~~~~

1
~~~~

1
44

1
43

1
42

1
41

1
34

1
33

1
32

1
31

1
24

1
23

1
22

1
21

1
14

1
13

1
12

1
11

kkkk

kkkk

kkkk

kkkk

        (FE_124) 

 
Comparing with Eqs. (FE_116), (FE_117) we see that the code numbers have the meaning place-
holders (pointers) indicating where the element of the local matrix is to be located in the global 
matrix. For example, the element 1

34k  is to be located in the global matrix to the location defined 

by indices 5, 6. Graphically, the procedure is depicted in Fig. FE_15. The same way is followed 
when a mass matrix is to be assembled. 
 
 
 
 
 
 
 
 
 
 
 
Fig. FE_15 ... Assembling the global matrix 
 
Let’s recall that the global matrix, assembled this way, corresponds to a mechanical system to 
which no boundary conditions have been prescribed yet – it floats freely in the space. Such a 
matrix cannot be inverted since it is singular – its determinant 0det K . 
 
11.19. Assembling algorithm 
 
Let’s have a system with imax (generalized) displacements, kmax elements, each element having 
lmax local (generalized) displacements, i.e. the local dof’s – degrees of freedom. Furthermore, 
there exists a procedure CODE(k,ic), which – when called – gives on its output the vector 
ic(lmax) containing the code numbers of the k-th element. The procedures RIG(k,xke) and 
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MAS(k,xme) generate the stiffness and mass matrices of the of the k-th element – i.e. the matrices 
xke(lmax, lmax) and xme(lmax, lmax). 
 
For simplicity, we assume that all the elements are of the same type and have the same number of 
dof’s, i.e. lmax. The global matrices are xk a xm. In the old-fashioned Fortran, not exploiting the 
symmetry of matrices we are dealing with, we could write 
 
C     Loop over elements 
      DO 10 k = 1,kmax 
C     Code numbers of the k-th element 
      CALL CODE(k, ic) 
C     Local matrices of the k-the element 
      CALL RIG(k, xke) 
      CALL MAS(k, xme) 
C     Loop over elements of local matrices 
      DO 20 k1 = 1,lmax 
      DO 20 k2 = 1,lmax 
C     Locations in global matrices and matrice themselves 
      i1 = ic(k1) 
      j1 = ic(k2) 
      xk(i1,j1) = xke(k1,k2) + xk(i1,j1) 
      xm(i1,j1) = xke(k1,k2) + xm(i1,j1) 
20    CONTINUE 
10    CONTINUE 
 
 

In Matlab, where the vectors of pointers could appear at the index site of variables, the procedure 
is more elegant and substantially simpler. 
 
% loop over elements 
for k = 1:kmax 

ic = code(k);    % code numbers of the k-th element 
xke = rig(k); xme = mas(k);  % local matrices of the k-th element 
 
% assembly 
xm(ic,ic) = xm(ic,ic) + xme; 
xk(ic,ic) = xk(ic,ic) + xke; 

end 
 
 

11.20. Respecting boundary conditions 
 
We have shown that the external (generalized) forces are related to (generalized) displacements 
by FKq  . We already know how to assemble the global stiffness matrix, which, however, as it 
comes from the assembly process, is singular. It is due to the fact that so far the matrix knows 
nothing of boundary conditions and being singular cannot be inverted, not allowing to get 
displacements from FKq 1 . Evidently, a part of force components in F  is due to reaction 
forces due to the way the body is constrained – attached to the fixed frame. Also, a part of 
displacements is already known, being dependent on the prescribed boundary conditions. To take 
these facts into account let’s rearrange the ‘equilibrium equation’ in such a way that the known 
and unknown quantities are put apart. We can proceed as follows 
 

KqF  ,          (FE_125) 
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,        (FE_126) 

 
where 
 

1F   known external forces, 

2F   unknown reactions, 

1q   unknown displacements, 

2q   prescribed displacements, representing boundary conditions. 
 
Due to the symmetry of the stiffness matrix K it holds that T

2112 KK  . 
 
From  Eq. (FE_126) we get two matrix equations. From the first, solving the system of algebraic 
equations, we get  
 

12121111 qqKFqK  .        (FE_127) 
 
Knowing 1q , the second matrix equation leads to the evaluation of unknown reaction forces from 
 

2221212 qKqKF  .          (FE_128) 
 
If the system being solved is fixed to the frame in such a way that no mutual displacements 
between the body and the frame, are allowed, then we have 0q 2  and the previous equations 
simplify to  
 

11111 qFqK  ,         (FE_129)  

1212 qKF  .          (FE_130) 
 
We could alternatively proceed by deleting the rows and columns from the Eq. (FE_126) which 
correspond to those dof’s that represents the prescribed zero displacements, from the global 
‘unconstrained’ K  matrix. 
 
Example 
 
The boundary conditions could be prescribed in many ways. One of them is based on the idea of 
eliminating those degrees of freedom, which are a priory known that is to eliminate the 
generalized displacements which are, at the chosen supports, identically equal to zero. In other 
words, it requires deleting those rows and columns which correspond to the prescribed zero 

displacements. Formally, MMKK  ~
,

~
. This process is sometimes called the static 

condensation. The loading vector has to be submitted to this process as well, i.e. FF ~
. 
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How it is done in Matlab. 
 
% boundary conditions 
% prescribe dof's where displacements,  
% pointed to by elements of bc vector, are prescribed zero 
 bc = [1 2 16 17]; 
 
% static condensation - delete corresponding rows and columns 
 k_glob(bc,:) = []; 
 k_glob(:,bc) = []; 
 m_glob(bc,:) = []; 
 m_glob(:,bc) = []; 
 % delete corresponding items in the loading vector as well 
 F(bc) = []; 

 
In Matlab, the system of algebraic equations is solved by the backslash „\” operator. The 
unknown displacements are 
 
displ = k_glob\F; 
 
There is another way, how the stiffness matrix could be treated to recognize the boundary 
conditions and be thus regularized. Instead of rearranging the rows and columns, which is a 
computationally unpleasant operation, we could proceed in a following, approximate, way.  
 
Imagine that in our stiffness matrix K  we want to prescribe just one boundary condition, say 

0nq . Let’s replace the current diagonal element nnk ,  by a ‘big’ number, say m , which is at 

least 810 times larger than other element values appearing in the matrix. Now, the approximate 
inverse matrix of  K  could be obtained from the equation IKK 1 . Decomposing the matrix 
and writing the partial products in full we have 
 


























1TTT 0

0I

u

yX

c

bA

vm
.        (FE_131) 

 
Notice the different fonts used for the scalar values 1,,vm , the matrix values 0IXA ,,, , and for 

the vector values ycb ,, . It should be reminded that b  represents the column vector, while Tb , its 
transpose, is the row vector.  
 
From the previous equation, the following four equations could be written 
 

IbuAX  T ,         (FE_132)  
TTT 0uXc  m ,         (FE_133)  

0bAy  Tv ,          (FE_134)  

1T  mvyc .          (FE_135)  
 
From Eq. (FE_135)  
 

 ycT1
1


m

v ,         (FE_136) 
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can be substituted into Eq. (FE_134) 
 

bAbcy
1

T11








 

mm
.        (FE_137) 

 
From Eq. (FE_133) 
 

Xcu TT 1

m
 .         (FE_138) 

 
Finally,  
 

1
T1









  bcAX

m
.         (FE_139) 

 

Since m is very large, then 
m

1
is very small and thus 

 
TT1 and,0, 0uAX0y  v .     (FE_140) 

 
So, the approximation of the inverse stiffness matrix is 
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
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1
1

0

0A
K .         (FE_141) 

 
Which is what we wanted to show. 
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