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Introductory part      
 
Scope       
     1. Introduction  
     2. Foreword 
     3. Background for scalars, vectors, and matrices 
     4. Background for statics, kinematics, and dynamics 
 
I1. Introduction 
 
The presented text represents a background for undergraduate students attending one-semester 
course dedicated to mechanics of rigid bodies.  
 
The course is based on classical deterministic Newtonian mechanics in which space and time 
coordinates are completely independent. It is assumed that the rigid, i.e. non-deformable, bodies 
have masses that are independent of their speeds, that bodies move with velocities that are 
negligible with respect to the speed of light, and furthermore that we can accept the notion of an 
inertial system – that is the system which is at rest or which moves with constant velocity with 
respect to the ‘fixed stars’. Also, non-deterministic traps of quantum mechanics are avoided. 
 
The course, divided into three parts, is subsequently devoted to  
 

 Statics – analysis of forces acting on bodies – time variable is not considered. 
 Kinematics – displacements, velocities, accelerations – no forces are considered. 
 Dynamics – analysis of motions of bodies in time and space. 

 
This course is a prerequisite to series of future lectures devoted to mechanics of deformable 
bodies which will mainly deal with  
 

 Elastic deformations characterized by the fact that the relation between stress and strain, 
i.e. )( f , is linear.   

 Non-elastic deformations – no permanent deformations occur. The relation )( f  is 
non-linear, but no hysteresis occurs.  

 Non-elastic deformations – with permanent deformations. The relation )( f  is non-
linear, but there is a distinct hysteresis.  

 
Another series of courses devoted to a broader subject of computational mechanics is prepared 
and will be available soon. Its intended scope is as follows 
 
Computational Mechanics 
 

 Continuum mechanics. 
 Computer science.  
 Numerical analysis. 
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It is assumed that students have the ability to routinely evaluate standard mathematical functions, 
and have the elementary knowledge of vector calculus, matrix analysis, differential and integral 
calculus. The above mentioned items constitute a sort of engineering craftsmanship. 
 
The practical engineering result is required to be a number, a series of numbers and/or graphs 
based on which the thorough analysis and the rational engineering and managerial decisions are 
made. That’s why a reader (= future engineer) should be able to enter and manipulate lists and 
arrays of numbers and to write short programs – for this purpose the Matlab is employed. 
 
The text tries to explain the basic principles of mechanics of rigid bodies by detailed analysis of 
many worked-out examples. The enclosed short programs are intended to be read, played with 
and the obtained results should be thought about at length and in depth. Since it is only a one-
semester course, many advanced items of analytical mechanics are omitted.  
 
The course might be of interest to people intending to deal with commercial finite element 
packages, where a proper understanding of terminology and of basics of mechanical principles is 
a must. 
 
The author can’t resist to provide a few pieces of wisdom and to suggest the readers that the main 
goal to be achieved when studying mechanical engineering is to see things in proper relations, to 
be able to distinguish what is important and what could be neglected. One has to realize that the 
ability to find pieces of information somewhere on internet addresses does not establish the 
knowledge itself. Important are the relations between the pieces of information. And last but not 
least, the fundaments of understanding of mathematics and physics are required.  
 
I2. Foreword 
 
I2.1. Modeling 
 
The computational mechanics, of which this course is an introductory part, generally aims to the 
modeling of large and non-trivial tasks in physics and in engineering practice. One has to 
emphasize that the proper understanding of the treated problem and the appropriate choice of the 
physical, mechanical, as well as numerical models, are crucial for the successful solution of tasks 
in question. To fully succeed, one should furthermore master algorithms of numerical analysis 
and to command the basics of computer science, that is programming, programming languages, 
operating systems, etc.   
 
The model, as we understand it in physics and in mechanical engineering, is a purposeful 
simplification of an actual phenomenon in Mother Nature. It is created with the intention to 
predict – to describe what would be the behavior of the modeled phenomenon under the accepted 
simplifications. After that, one has to compare the model behavior with that of the modeled 
phenomenon. The assessment of model reliability and accuracy is usually based on properly 
conceived experiments. After the created model is thoroughly tested and satisfies our 
requirements on reliability and accuracy, then we do not need to perform the experiment. 
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So, the main goal of the modeling process is to predict the future without making excessive and 
repeated use of often difficult and rather expensive experiments. Of course, the experiments 
cannot be avoided since they are needed for validation of new models. The modeling that is 
properly validated is crucial for accepting meaningful decisions of engineering and/or managerial 
nature. 
 
I2.2. Doubts 
 
The results obtained by theoretical, numerical and experimental approaches in computational 
solid continuum mechanics are correlated and compared with intentions to ascertain which of 
them are ‘truer’ or closer to ‘reality’. This, however, invokes many questions.  
 

 How is truth related to consistency and validity of theoretical, numerical and experimental 
models we are inventing and employing?  

 What is the role of threshold in physics, engineering, computation and in an experiment? 
 How the basic quantities, as time, force, stress, etc. are defined? Do we properly 

understand them?  
 What is the role of singularity in mathematics, physics and in engineering?  

 
Answers to above questions are difficult to found and lead naturally to profound doubts. These 
difficulties, however, do not preclude our positive attitude to problem-solving. On the contrary, 
the presented text should persuade the reader to believe that the role of doubts in our 
understanding of Mother Nature plays a positive role. 
 
I2.3. Truth 
 
When trying to answer the question what is a true approach to modeling processes in physics and 
engineering we have to start inquiring about the notion of Truth.  

 
Thomas Aquinas (1225 – 1274) claimed that the truth is an agreement of reality with perception. 
Today, however, the perceived reality depends on observation tools being used. For example, the 
results of observation obtained by the magnifying glass with those of an electron microscope are 
quite different. 

 
Immanuel Kant (1724 – 1804) asked for a clear distinction between the 'true reality' and 
'perceived reality'. Kant argues that in principle it is impossible to observe and study the world 
without disturbing it. His ideas are very close to those of Heisenberg principle of uncertainty.  

 
As mentioned above, the model is a purposefully simplified concept of a studied phenomenon 
invented with the intention to predict – what would happen if … Accepted assumptions 
(simplifications) consequently specify the validity limits of the model and in this respect, the 
model is neither true nor false. The model – regardless of being simple or complicated – is good, 
if it is approved by an appropriately conceived experiment. 

 
When we, engineers, are modeling particular phenomena of Nature, the question of truth 
becomes irrelevant since the models we are designing with, checking and using, either work or do 
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not work to our satisfaction. It is an undeniable fact that the mechanical theories, principles, laws, 
and models, used in engineering practice, cannot be proclaimed true or false. They are either right 
or wrong. Furthermore, the ‘right’ theories might fail when applied out of the limits of their 
applicability. A few examples might illustrate the previous claims. 

 
• 1D wave equation is not able to predict stress wave pattern in a 3D body, and still is 

internally consistent and not wrong. 
• Bernoulli-Navier’s slender beam theory ‘fails’ for thick beams. 
• Newton’s second law ‘fails’ for motion of bodies approaching the speed of light, and still, 

it represents a perfect tool for engineering mechanics, including the computations and 
perfect prediction of celestial trajectories. 

• Einstein’s theory of relativity ‘fails’ when applied to quantum microcosms. 
 
So it is obvious that we rather strive for robust models with precisely specified limits of validity 
and not for philosophically defined categories of truth and falsehood. From it follows that it is the 
validity of models, theories, and laws that is of primary importance. How do we proceed? 
 

• When trying to reveal the ‘true’ behavior of a mechanical system we are using an 
experiment. 

• When trying to predict the ‘true’ behavior of a mechanical system we are accepting a 
certain theoretical model and then solve it analytically and/or numerically. 

 
The trouble is that the physical laws (or the models based upon them) cannot – in the 
mathematical sense – be proved.  We cannot, for example, prove Newton's second law. On the 
other hand, the Pythagorean Theorem can be proved rather easily. 

 
And still, one intuitively feels that a theorem is yet a less heavy-artillery term than a law. The 
terms, as law, theory, hypothesis, theorem, are not uniquely defined. ‘Words, words, words’1. 
 
To get rid of doubts we often claim that it is the experiment, which ultimately confirms the model 
in question. But experiments, as well as the subsequent numerical treatment of models describing 
the nature, have their observational thresholds. And sometimes, the computational threshold of 
computational analysis is narrower than those of an experiment. From this point of view, a 
particular experiment is a model of nature as well. 

 
In our incessant quest for truth we might have another mental hindrance, namely the lack of 
precise definitions of certain mechanical quantities. It appears that definitions of conceptually 
defined quantities as force, stress, energy, etc are rather intuitive and often circular.  
 
Other widely used terms as stress, energy, etc. may generate similar doubts and questions. 
 
 
 
 

                                                 
1 LORD POLONIUS: What do you read, my lord? HAMLET: Words, words, words. From Hamlet. SCENE II. A 
room in the castle. 

I, May 21, 2018 4



I2.4. Concluding our ideas about modeling we might say 
 
Mechanical theories, principles, laws, and models, used in engineering practice, cannot be 
proclaimed true or false. They are either right (working to our satisfaction) or wrong. Regardless 
of being simple or complicated, they are ‘right’, if approved by an appropriate experiment (i.e. 
the experiment conceived in agreement with accepted assumptions of the theory). History reveals 
that wrong theories might appear, but not being confirmed by experiments, are quickly discarded 
as ether or phlogiston. Theories might be right only within the limits of their applicability. We 
cannot claim that a theory being proved by an experiment is right. The only thing we can safely 
state is that such a theory is not proved wrong. 
 
Generally, a singularity appearing in a model always means a serious warning concerning the 
range of validity of that model. Usually, a more general model – having a wider scope of validity 
– is invented removing that singularity. Very often there is no need to discard the older and 
simpler model since it might perfectly work in the validity range for which it was conceived.  
 
The modeling process primarily consists of understanding the investigated phenomenon, in its 
decomposition into basic physical ‘items’, in establishing causal relations – often in terms of 
differential equations, whose solutions have to be found. 
 
In simple cases2 analytical solutions in closed forms are available. However, even in these cases, 
the solution is based on many physical, geometrical and numerical approximations.  
 
In most cases, however, we have to systematically rely on approximate approaches based on 
physical simplifications, spatial and temporal discretizations, on numerical methods, on their 
efficient implementations, and last but not least on computers. 
 
I3. Background for scalars, vectors, and matrices 
 
I3.1. Scalars 
 
The quantities fully determined by their magnitudes are called scalars. Temperature, energy or 
density, denoted as ,, ET , are good examples. In the presented text they are printed in italics. 
 
I3.2. Vectors 
 
Vectors are quantities uniquely determined by their magnitudes and directions.  Examples are 
displacement, velocity, acceleration, force, moment, etc. They are denoted by a bar or by an 
arrow as vv


or . Sometimes they are printed by bold characters as for example. The magnitude 

of the vector  is denoted 

v

v


v


 or v . In literature the terms velocity and speed are often 

distinguished. The former is used for a vector quantity, i.e. v


, while the latter is reserved for its 
magnitude, i.e. vv




                                                

.  

 

 
2 As the deflection of a thin beam in the theory of linear elasticity. 
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Vectors are invariant with respect to a coordinate system. The choice of coordinate system is 
arbitrary, but a particular choice may be advantageous.  
 
Frequently, the position of the origin of the directed line is immaterial. In such a case two vectors 
are considered identical if they are of the same length and direction. These vectors are referred to 
as free vectors.  
 
Often, it is convenient to associate the vector with a line along which it can freely move. Such a 
line is often called the line of action. These vectors are referred to as bound vectors.  
 
Still, there are vectors associated with a fixed point. They are referred to as position, location or 
radius vectors. 
 
Any non-zero vector in 3D space can be expressed as a linear combination of three arbitrary non-
zero base vectors. The most frequent choice of base vectors in the right-handed rectangular 

Cartesian system is the set of three unit vectors kji


,,  aligned with coordinate axes. See Fig. I01. 

So, a vector, say , can be expressed by means of its scalar components  by a


zyx aaa ,,

 
kajaiaa zyx


 . 

 
 

F 
 
 
 
 
 
Fig. I01. Cartesian vector 

 
Instead of naming the coordinate axes by zyx ,,

kji

, we might alternatively denote them by . 

Similarly, the base vectors, instead of 

321 xxx


,, , could be denoted by 321 ,, eee


. This allows an 

efficient and elegant notation in the form of notation, i.e. . kkea


k
kkeaeaeaa

 



3

1
2211 ea


 33

Notice, that behind the last equal sign of the previous formula, we have dropped the summation 
sign. This is in agreement with so-called summation convention (sometimes Einstein’s rule) 
which states. 
 
When an index appears twice in a term then that index is understood to take all the values in its 
range and the resulting term summed. 
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A few things, obvious from the above figure, are worth remembering.  
 

Vector length:   2
1222

iizyx aaaaaaa  
. 

Direction cosines: 
a

a

a

a

a

a z
z

y
y

x
x    cos,cos,cos . 

ba


,  can be obtained from the relation 
ba

ba





cos . 


Angle, say  , between two vectors 

I3.3. Operations with vectors 
 
I3.3.1. Addition, subtraction 
 
Graphically, these operations are provided by so-called parallelogram law. See Fig. I02.  
 
Numerically we proceed as follows 
 

If   and bkajaiaa zyx


 kbjbib zyx


 , then 

kbajbaibaba zzxyxx


)()()(  . 

 
 
 
 
 

Fig. I02. Vector addition and substraction 
I3.3.2. Multiplication  
 
There are two kinds of vector multiplication defined.  
 

a) Dot multiplication (also dot product, sometimes scalar product) of vectors, say ba


, , 
yields a scalar quantity s . The dot serves as an operator of this operation. So, we write 

iizz bab 


. yyxx abababas 


If the angle between vectors  is ba,  , then the dot product is cosbas
 . From it follows            

that the dot product of two perpendicular vectors is zero since 0
2

cos 


. If the former vector 

represents the force and the latter the displacement, then the physical meaning of the dot 
product is the mechanical work, or energy. 

 
b) Cross multiplication (also vector product) of vectors, say ba


, , gives a vector quantity c


. 

The operation is denoted by a cross sign, i.e. by operator  . The resulting vector, say c


, is 

perpendicular to the plane formed by vectors ba


, , so we write ba


c

 .  
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The direction of the resulting vector is determined by so-called right-hand rule3. 
 

The vector product is defined by 

zyx

zyx

bbb

aaa

kji

bac




 .  

 
The above determinant might be evaluated by means of the Sarus’ rule which gives  

 
     kbabajbabaibabac xyyxzxxzyzzy


 . 

 

The magnitude of this cross product is sinbac


  where the quantity   is the angle 

between  and b . a
 

 
I3.3. Orthogonal transformation of a 2D vector 
 
The same vector could be observed in two coordinate systems having a common origin but 
different orientations of axes as shown in Fig. I03.  
 
One coordinate system has axes denoted by yx, , 
the other by . Even if the vector yx , a


 is unique, 

its components in both coordinate systems are 
different. 

 
The relation (also called the transformation) 
between components of the same vector in two 
different coordinate systems, is obtained by mere 
inspection of  Fig. FI03, which gives 
 

.cossin

,sincos





yxy

yxx

aaa

aaa








 

 
 

Fig. I03. Vector in two coordinate system  
 

 
 
 
                                                 

3 If the thump points in the direction of the vector a


 – see Fig. S03 – and the index finger in the 

direction of the vector b


, then the middle finger points in the direction of the resulting vector c


. 
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In the matrix form, we have 
 

aRa 














 













;

cossin

sincos

y

x

y

x

a

a

a

a




. 

 
In this case, the transformation matrix R  represents the rotation process and is said to be 
orthogonal. For an orthogonal matrix its determinant 1det R  and its inverse is obtained by a 
mere transposition, i.e. T1 RR  . So, the inverse transformation is defined by 
 

 . aRa T;
cossin

sincos
































y

x

y

x

a

a

a

a




 
I3.4. Orthogonal transformation of a 3D vector   
 
Let the axes and 321 ,, xxxO 321 xxxO   represent two right handed Cartesian coordinate systems 

with a common origin at an arbitrary point OO  . If a symbol represents the cosine of an 

angle between i-th primed and j-th unprimed coordinate axes i.e. 
ijr

 ji xxijr  between anglecos , 

then all the nine components can be arranged into a 33  matrix ][ ijrR

aRa

, that is called the 

rotation matrix or the transformation matrix, or the matrix of direction cosines. Then, the 
transformation of a generic vector a  is provided by same formulas as before, i.e.  and 

. aRa T
 
I3.5. Matrices 
 
The subject is fully treated in  

 Okrouhlik, M.: Numerical methods in computational mechanics. Institute of 
Thermomechanics, Prague 2009, pp. 1 – 356,  ISBN 978-80-87012-35-2. 
http://www.it.cas.cz/files/u1784/Num_methods_in_CM.pdf 

 Stejskal, V., Dehombreux P., Eiber, A., Gupta, R., Okrouhlik, M.: Mechanics with 
Matlab, Electronic Textbook, ISBN 2-9600226-2-9, http://www.geniemeca.fpms.ac.be, 

      Faculté Polytechnique de Mons, Belgium, April 2001 
 
I3.6. Notation 
 
Scalar variables are printed in lowercase or uppercase italics    as ,,qK . 
Matrix and vector variables are printed in bold fonts    as . qK, ,σ

Elements of matrices, are printed in italics, accompanied by indices  as iiij qK ,, .  

‘True vectors’ are printed with a bar or with an arrow or by bold fonts as vv


 or . v,

Partial derivatives, as 
j

i

x

u




 might be shortened to . jiu ,
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I4. Background for statics, kinematics, and dynamics 
 
The text is devoted to Newtonian mechanics which is valid for small velocities – small with 
respect to the speed of light. Under these conditions, the mass of a moving body is independent of 
its speed. In the theory of relativity, attributed to Albert Einstein, it is not so and it is assumed 
(and proved as well) that the current mass  depends on the rest mass  by the relation m 0m

22

0

/1 cv

m
m


 , 

 
where  is the current velocity of a moving body and  is the speed of light. It is obvious that as 
the velocity 

v c
vv


  approaches the speed of light  the denominator of the above formula goes to 

zero and thus the current mass in limit reaches infinity. So, in a limit we have 

c

 


 22

0

/1
lim

cv

m
cv

. 

 
From it follows that a body, having a non-zero mass, cannot reach the speed of light. 
 
One should recall, however, that a photon always moves at the speed of light within a vacuum. 
But it supposedly has the zero rest mass. 
 
To see things in proper relations  

 
 Find the speed v  needed for the current mass be doubled with respect to the rest mass. 

From the relation 
 2/1

1
2

cv
  we get 8660.0

2

3


c

v
. So, almost 87 % of the speed 

of light is required. Quite a lot – is it not? 
 

 Using the above formula check how the rest mass kg10 m  is changed when the velocity 

of Earth (approximately 30 km/s) is taken into account. The result is 
kg 5 . Notice, that the relative difference is of the order of 910 , and thus 

the resulting error is negligible.   
1.00000000m

 
Both examples show that, when dealing with current mechanical engineering problems, we are on 
the save ground when considering the value of mass independent of velocity. 

I4.1. Newton’s laws 

Newton describes force as the ability casing a body to accelerate. His three laws can be, for a 
mass point (particle), summarized as follows 
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1. First law: If there is no net force on a particle, then its velocity is constant. The particle is 
either at rest (if its velocity is equal to zero), or it moves with constant speed in a single 
direction.  

2. Second law: The rate of change of linear momentum vp m of a particle of mass m is 
equal to the acting force F, i.e., dp/dt = F. 

3. Third law: When a first body exerts a force F1 on a second body, the second body 
simultaneously exerts a force F2 = −F1 on the first body. This means that F1 and F2 are 
equal in magnitude and opposite in directions. 

Newton's first and second laws, as stated above, are valid only in an inertial frame of reference. 
That is in the frame (sometimes called system) which is either in rest or moves with a constant 
velocity along a straight line with respect to fixed stars or by other words is subjected to no 
acceleration. Even if such a system does not actually exist in the Universe, the notion of an 
inertial frame of reference is a useful and frequent approximation for many technical cases. 
 
Take the Earth for example. It rotates and moves with acceleration along its orbit and still, with 
accuracy sufficient for many (not for all4) engineering cases, is a good approximation of the 
inertial system. 
 
For the safe application of Newton’s laws in non-inertial frames of references, so-called apparent 
inertia forces, in agreement with d’Alembert principle, have to be introduced.  
 
Newton’s second law, written for a particle of mass m, states that the time rate of linear 
momentum is proportional to the external force  
 

Fm
t

v
v

t

m
F

t

vm 



d

d

d

d

d

)(d
. 

 
The product of  is called the momentum. Sometimes, the linear momentum. If the mass does 
not change in time, i.e. , then we have the classical high-school formula in the form 

vm


constm 
 

FamFm
t

v 


d

d
, since the acceleration is a time derivative of velocity. 

 
Another possible formulation 
 

tPvm d)(d


  … states that the rate of momentum is equal to the impulse of an external force. 
 
When the acceleration can be neglected then the Newton’s law in its basic formulation 

 simplifies to . This is the condition of static equilibrium. When the vector 

sum of all applied forces is equal to zero, then the body is said to be in a state of equilibrium. And 
that is the subject of statics in which bodies are stationary or move with respect to ‘fixed stars’. 

amF


 0F


 

                                                 
4 The North-South bound rivers and the trade winds are good examples. 
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I4.2. Important terms to remember 
 
Force might be understood as the cause of the change of motion. 
Matter commonly exists in four states (or phases): solid, liquid, gas, and plasma. Matter has 
many properties as volume, density, color, temperature, and also the mass and the weight.  

Mass is the measure of unwillingness of the matter (body) to change its state of motion. It 
is independent of the gravitational field.   
Weight – another property of matter – depends, however, on the existence and intensity 
of gravitational field. 

 
I4.3. SI metric units  
 
The international systems of units SI (Le Système International d‘unites) defines seven basic 
quantities. They are measured by units for which standard symbols (labels) are used. For more 
details see https://www.bipm.org/utils/common/pdf/si_brochure_8_en.pdf . 
 
I4.3.1 Seven basic SI units are 
 
Quantity    Unit  Symbol 
 
length     meter  m 
mass     kilogram kg 
time     second  s 
electric current   ampere  A 
thermodynamic temperature  kelvin  K 
amount of substance   mole  mol 
luminous intensity    candela  cd 
 
I4.3.2 SI derived units used in mechanics 
 
Derived quantity   Name     Symbol In base units 
 
area     square meter     2m   
volume    cubic meter      3m  
speed, velocity   meter per second     m/s 
acceleration   meter per second squared     2m/s
mass density    kilogram per cubic meter     3kg/m
plane angle    radian     rad   1 
frequency    hertz     Hz    -1s
force     newton    N    2sm kg 

pressure, stress   pascal           2N/mPa  2-1 sm kg 

energy, work   joule     mNJ             22 sm kg 

power    watt     J/sW    32 sm kg 
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It should be reminded that in literature, and even more frequently in real life, we can still 
encounter units of so-called technical system of units in which the force quantity was considered 
as the base unit while the mass quantity was a derived one. In this system the force is measured in 
units of [kp] – kiloponds and the mass, the derived unit, is measured in . This unit – in 
contradistinction to that defined in imperial units – has no name. 

/m]s [kp 2

It is worth noticing that a sort of technical system, using, however, imperial units i.e. pound, feet, 
degree of Fahrenheit etc, is still in use the United States. The force is measured in pound-force 
[lbf] while the mass in pound-mass [lbm] units, called slug. For more details see 
www.en.wikipedia.org/wiki/Imperial_units  
 
I4.4. Work, energy, power and corresponding units 
 
I4.4.1. Mechanical work 
 
In mechanics, the term work is used for something produced by physical effort. 
Mechanical work (work for short) is a scalar quantity defined as a dot product of two 
vectors, i.e. the force and the displacement. When both quantities are of variable nature 
we have to work with increments. 
 

The increment of work is cosdddd TT sdFsFW


 FssF , 

 

where   is the angle between vectors a


 and b


. If both components are constant and have the 
same line of action, then one can simply state that mechanical work = forcedisplacement.  
 
I4.4.2. Mechanical energy 
 
The mechanical energy (energy for short) is an ability to produce work. Energy and work are 
measured by the same units, i.e. joules [J]. The law of conservation of energy states that the total 
energy of an isolated system is conserved over time. Energy can be transformed from one form to 
another. 
 
Units of work and energy in the SI system and their relation to the old technical system  
 

NmJ  ,  joule = newton  meter  ,   kp  kpm   meter 
kpm102,0J1      J9,81kpm1    

Recall, how it is related to the heat energy  kpm4271kcal cal, 2,343kpm1   
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I4.4.3. Mechanical power 
 
Mechanical power (power for short) is the rate of work, or work exerted per unit of time, i.e. 
power = work/time. It is measured in watts  ]W[ .
 
a) Metric horsepower. See Fig. I04. 
 

s/JW        

metrichp36,1kW1       

JWs    
kpm000 367J103,6kWh1 6   

Fig. I04. Horsepower definition 
So, 

kpm/s75hp1 metric  ... metric horsepower, 

kW 736,0hp 1 metric  . 

 
b) British horsepower 
 

James Watt determined that a horse could turn a mill wheel 144 times in an hour; that is 
2.4 times a minute. The wheel was 12 feet (3.6576 meters) in radius; therefore, the horse traveled 
2.4·2π·12 feet in one minute. He judged that the horse could pull with a force of 180 force 
pounds. So 

min

ftlbf
572,32

min 1

ft1224,2lbf180






t

Fd

t

W
P . 

James Watt defined and evaluated the horsepower as 32,572 ft lbf/min, which was then rounded 
to 33,000 ft·lbf/min. The equivalent in SI units gives  

Britishhp1 = 33 000 lbf ft/min  = 550 lbf ft/s ≈ 17 696   = 745,69987158227 W . 32 sftlbm 

It slightly differs from the metric horse power. Take care when you buy a new car out of 
continental Europe.  

I4.4.4. Potential and kinetic energy 
  
If a particle of mass , in the Earth’s gravitational field, is raised to the height of , then its 
potential energy is defined as the work done W . So,  

m h

pE

  
mghEW  p , where g  is the gravitational acceleration. 

 
We say that a particle, being raised to the height of h  gathers the potential energy .  pE
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If the particle is released (with zero initial velocity) from that elevated position, defined by , it 
hits the initial position (ground) by velocity , which might be determined from the equation of 
motion describing the free fall, using a few simple kinematic rules. We can write  

h
v

 

,  g
x

v


d2

d 2

,  ,     
hv

dxgv
00

2 2d
g

v
hghv

2
2

2
2  .  ma  mg

 
This way, we have obtained the relation between the ‘hit’ velocity and the height from which the 
particle was released. 
 
The work ‘obtained’ by the falling particle from the height  is also . h mgh

Substituting 
g

v
h

2

2

  into the previous equation we get the kinetic energy in the form  

2
k 2

1
mvmghE  . 

 
Neglecting the resistance, the sum of potential and kinetic energies, at any moment, is constant. 
For the rate of kinetic energy (for a mass particle), we can write 
 

 it
m F

v

d

d
,  rFr

v
dd

d

d  it
m ,  but tdd vr  ,  so, rFvv dd  im , 

 and finally   rFvv
v

v

dd
0

im   W 2
0vm 2

2
v

1
. 

 
I4.4.5. A few things to remember 
 

WEE  k0k . 

The change of kinetic energy (between the initial and final positions) is equal to the work done by 
applied forces. 
 
Since the , then timepowerwork  tPW dd  . Differentiating we get 

P
t

dE
tPdE 

d
d k

k .  

The rate of kinetic energy is equal to the power of applied forces.  
 
Also 

tdispacemenforcework  , 

t

ntdisplaceme
force

t

work

d

)(d

d

)(d
 , 

velocityforcepower  . 
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I4.5. Graphical engineering shorthand 
 
The picture is worth a thousand words. That’s why simple sketches are frequently used in the text 
to improve proper understanding of presented topics. Only a few samples with short explanations 
are presented in Fig. I05. The rest will be dutifully and systematically shown and explained later.  
 
 
2D representation of axiradial and radial bearings. 
 
2D rotary joint (constraint) connected to frame. 
 
2D rotary-sliding joint connected to frame. 
 
2D statically determinate truss bridge. 
 
 
 
 
 
 
2D clamped beam. 
 
 
 
 
Left – two rods (bars) connected by a rotary joint. Only 
axial forces could be transmitted. 
 
Right – two welded beams. Axial forces, as well as 
bending moments, could be transmitted. 
 

     Fig. I05. Engineering shorthand 
 

The schemes we are using are stripped to bare necessities as it is shown in following two 
pictures. The level of simplification varies according to actual purposes.  
 
On the left, see Fig. I06, there is schematically depicted a crankshaft mechanism as it suits the 
needs for static analysis. Both crank and rod are simply represented by straight lines. The 
trajectories of the rod and piston pins are indicated. On the right, see Fig. I07 there is a slightly 
more complex representation of a four-stroke engine, of which the crankshaft mechanism is a 
crucial part. Still, it is a substantial simplification of an actual appearance of engine parts seen in 
Fig. I08. 
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Fig. I06. Scheme of crankshaft mechanism              Fig. I07. Four-stroke engine  

       E – exhaust cam, S – spark  
     I – intake cam, W – water 

              P – piston, R – connecting rod  
                                      C – crank 

 
 
 
 
 
 
 
 

 
Fig. I08. Connecting rod and piston – actual machine parts 
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Statics    
 
Scope 

1. Introduction to statics 
2. Forces, moments, torque 
3. Principle of transmissibility 
4. Equilibrium 
5. Equivalence 
6. Degrees of freedom 
7. Constraints and free body diagram 
8. Classification of constraints 
9. Friction 
10. Rolling resistance 
11. Principle of virtual work 
12. Internal forces 
13. Centre of gravity, centre of mass, and static moment 
14. References 

 
S1. Introduction to statics 
 
In this text, the subject of statics is understood as a part of mechanics of rigid bodies. Statics 
deals with the analysis of static loads (forces and moments that do not vary in time) acting on 
rigid bodies trying to ascertain the conditions under which the equilibrium might occur. When 
in equilibrium, the bodies are either at rest or move with constant velocities. The condition of 
zero or constant velocity, i.e.  or 0v


constv 


, actually means that the acceleration, the 

time derivative of velocity, is equal to zero, thus 0
d

d


t

v
a




. So, in static analysis, the time 

and acceleration play no role1.  
 

From it follows that Newton’s law, in its simplest form, amF


  written for a particle, 

degenerates to . The last equation represents the condition of equilibrium requiring that 
the resulting force, or more generally the sum of all acting forces, should be identically equal 
to zero. For the equilibrium of bodies, the condition of zero moments has to be added. This 
will be explained later. 

0


F

 
The reader is recommended to study other textbooks and web sources cited in Paragraph 14 of 
this chapter. Studying the texts of references listed there allows to broaden the reader’s view 
on mechanics of rigid bodies. Following many worked-out examples might not only help to 
deepen  understanding the subject of statics but also to increase the reader’s proficiency 
needed to solve more complicated engineering tasks – to find out what is crucial and what 
might be neglected.  
 
 
 
 
 

                                                 
1 Of course, all the phenomena occur in time. So, the subject of statics is a good approximation of those 
problems where bodies move so slowly, that their acceleration can be neglected. 
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S2. Forces, moments, torque 
 
Definitions of quantities appearing in mechanics, as force, moment, pressure, stress, energy, 
etc, are rather intuitive and often circular. A few examples from standard textbooks are 
following. 

 
 Force is only a name for the product of acceleration by mass. Attributed to 

d'Alembert and cited in [1, p.532].  
Forces are vector quantities which are best described by intuitive concepts such as 

push or pull. See [2].  
 

Similar unsatisfying definitions may be found for time. Intuitively, everybody knows what it 
is until the moment when a direct and precise definition is required. See [3]. 
 
S2.1. Force 
 
There is no precise definition of force. The force is 
usually defined by its effects. In the presented text we 
accept a simple, easily understood and intuitive 
definition, namely that the force represents an action of 
one body on another. This action is either due to an 
actual contact between bodies (the forces between 
interacting bodies are equal and opposite) or due to an 
action at a distance (for example due to the 
gravitational or the magnetic fields).  

Fig. S01. Transmissible force 
 
In most cases, the action between bodies is simplified as a point contact, even if actual 
contacts always occur in finite-size areas instead, and the actual ‘action’ is actually provided 
by pressure. So, we assume that forces are vector quantities represented by their directions 

and magnitudes as an applied force P


 shown in Fig. S01 with indicated reaction forces from 
the frame. We will explain that these forces are in equilibrium. 
 
S2.2. Moment and couple 
 
Generally, the moment of a force is a torque action of that force with respect to a point, or to 
an axis.  
 
 

 
 
 
 
 
 
 
 
 

 
Fig. S02. Moment of a force 
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S2.3. Moment of a force about a point and about an axis 
 
Moment of the force P


about a point O, see Fig. S02, in the right-handed Cartesian coordinate 

system  is a vector, defined by means of the cross product zyx ,,,O
 

PrM


 AO ,          (S2_1) 

 

where kzjyixr


AAAA   is the radius vector of the point of the application of the force P


, 

defined by . Its components are kz


PjPiPP yx


 1cosPPx


 , 1cosPPy


 , 1cosPPz


  

and the magnitude of that force is 222
zyx PPPPP 


. 

 
The cross product, defining the moment, is usually evaluated as a determinant by the 
Sarus’rule, i.e. 
 

     

.:Magnitude; 222

AAAAAAAAAAO

zyxOOzyx

xyzxyz

zyx

MMMMMkMjMiM

PyPxkPxPzjPzPyi

PPP

zyx

kji

PrM













 … (S2_2) 

 
The vector components of the moment are scalars and have 
geometrical meanings of moment components of that force 
about particular axes, i.e. 
 

 yzx PzPyM AA  , 

 zxy PxPzM AA   ,     (S2_3) 

 xyz PyPxM AA  . 

 
Fig. S03. Right-hand rule 

 
The resulting vector is perpendicular to the plane formed by both components of the cross 
product and its positive direction is defined by the right-handed rule. The picture in Fig. S03 

is for a triple of vectors . bav



 
The positive sense of rotation of a moment about an axis, indicated by 
curved arrows (see Fig. S02), corresponds to a rotary motion of an 
imaginary nut, which causes its lateral motion along a right-handed thread, 
located along that axis, in the direction of the positive sense of that axis. 
Observing Fig. S04 we may also say that if a


 is rotated into the direction of 

 through an angle (less thanb


 ), then  v


  advances in the same direction as 
a right-handed nut would if it turned in the same way. 
 

       Fig. S04. Right-hand screw 
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The scalar value of the moment of P


 about a line  , defined by a unit vector 

, is actually the projection of 222 coscoscos  kjie


 OM


 into that line. The 

projection is defined by the dot product multiplication, which gives 
 

   
.coscoscos

coscoscos

222

222O





zyx

zyx

MMM

kjikMjMiMeMM






  … (S2_4) 

 
Using the matrix notation, we can alternatively proceed as follows. 

Defining the force  as a column vector and the radius coordinate matrix by 

















z

y

x

P

P

P

P























0

0

y0

ˆ

AA

AA

AA

xy

xz

z

r ,   

 
then the matrix representation of the moment is a product of the radius coordinate matrix 
multiplied by the column vector of force components 
 













































































xy

zx

yz

z

y

x

z

y

x

PyPx

PxPz

PzPy

P

P

P

xy

xz

z

M

M

M

AA

AA

AA

AA

AA

AA

O

0

0

y0

ˆPrM . 

 
 
Sometimes, one can simply evaluate components of a moment by mere inspection. As an 
example, the acting force and its components are shown using the Monge’s projection in Fig. 
S05.  

 
Observing Fig. S05 we might immediately express the 
components of force moments about the indicated coordinate 
axes by inspection  
 

 sinrbFM yx  , 

 sinrbFM xy  , 

  hFraFM xyz  cos . 

 
 
 

 
Fig. S05. Moment of a force 
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S2.4. Couple of forces  
 
By a couple of forces (briefly just a couple) we understand two forces, 
say F


and F


 , equal in magnitude and oppositely directed, acting on 

parallel lines that do not coincide.  See Fig. S06. The resultant moment of 
that couple is a vector perpendicular to the plane formed by those parallel 

lines and its magnitude is FrMM  CC


, where r  is the shortest distance 

between the parallel lines. 
Fig. S06. Couple of forces 

 
The moment of a couple is a free vector – in mechanics of rigid bodies, it can be located 
anywhere, while in mechanics of deformable bodies its location is crucial.  The moment of a 
couple is often called a torque. 

 
Earlier, for rigid bodies, we have stated that a force, as a bound vector attached to the line of 
action, can freely move along that line. However, it cannot, without penalty, be shifted 
laterally.  
 
If one still has to shift the force laterally, then that action has to be compensated for by adding 
a couple. The rule is that a single force, acting along a specified line of action of a rigid body, 
can be replaced by an equal and parallel force F provided that a couple of forces is added in 
such a way that the moment of that couple is M = Fd, where d  is the shortest distance 
between two lines of action.  
 
Hint – what to do if we intend to shift a force laterally, say to the right 
 
We add two parallel forces at the required position that are equal in 
magnitude and oppositely directed. In the rigid body world, nothing is 
changed since the forces are canceling themselves and are thus causing no 
overall effect. 
 
Decomposing the middle part of the sketch, as indicated in Fig. S07, we 
might deduce that to shift a force laterally requires adding a proper couple, 
which – in this case – is oriented counterclockwise.  
 
 

 
Fig. S07. Shift a force laterally 

 
S3. Principle of transmissibility – is valid for rigid bodies only 
 
The exact location of a force along its ‘line of action’ is immaterial. In our example, depicted 
in Fig. S08, the location of force P


 does not influence so-called reaction forces2 acting on 

supports3. This is due to the fact that we assume that the bodies are perfectly rigid, i.e. not 
deformed due to applied forces. This principle does not apply to deformable bodies.  

                                                 
2 How to evaluate reaction forces will be presented later. 
3 If a force were applied to a body which is not supported, the body would start to accelerate. This is, however, 
the problem that is out of the scope of statics – it belongs to the realm of dynamics. 
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If a body, shown in Fig. S08, is considered 
deformable, then the forces  and 1P


2P


cannot be taken 
as identical and their effects on the body are generally 
different. The subject will be treated later. 
 
 
 

       Fig. S08. In mechanics of deformable bodies the force is non-transmissible 
 
S4. Equilibrium 
 
A spatial system of forces and moments is in equilibrium if the sum of all forces and the sum 
of all moments are equal to zero. Then, we say that such a system is in the state of 
equilibrium. In vector form, we write 

 

   0,0


ii MF .       (S4_1) 

 
S5. Equivalence 
 
Any system of forces can be replaced by an equivalent force, called the resultant force, such 

as


.          (S5_1)  iFR

 
As an alternative, the force can 
also be replaced by an equivalent 
system consisting of a single 
force at a chosen point, say O, 
and of a corresponding moment, 
as illustrated in Fig. S09. 
 
 
 
 

Fig. 09. Force-couple equivalence  
 
So, any force system can be replaced either by a single equivalent force or by a force at a 
chosen location accompanied by a properly dimensioned couple. 
 
For practical purposes, it is convenient to treat equilibrium and equivalence conditions for 1D, 
2D and for 3D cases separately.  
 
The simplest situation occurs when there are no moments and all the forces share a single 
line of action.  
 

Two forces Z


and P


, shown in Fig. S10, are in equilibrium if 0 PZ


. The condition of 
equilibrium – expressed in a scalar form – is: .0 xx PZ  In this case, the index, denoting 

the axis, is arbitrary, immaterial and might be omitted. 
 

S, May 21, 2018 6



 
 
 

Fig. S10. Equilibrium of two forces 
 
Forces pass through a single point in 2D space 
 
Equivalence 
 
Two forces 21,ZZ


, shown in Fig. S11, are acting at the single point 

in a plane. The force V


 is the resultant force. It is equivalent to 

forces 21,ZZ


. The force P


 is in equilibrium with the force V


. The 
condition of equivalence, written in vector and scalar notations, is 

 

21 ZZV


 , 

yyyxxx ZZVZZV 2121 ,  .    Fig. S11. Equilibrium and equivalence 

 
Equilibrium 
 
The force P


, see Fig. S11 again, being of the same size and of the opposite direction with 

respect to the force V


, is said to be in equilibrium with force V


or with its components 21,ZZ


. 
The condition of equilibrium, written sequentially in vector and scalar notations, is 
 

0VP


, 
0,0  yyxx VPVP . 

 
The difference between equivalence and equilibrium, as 
treated graphically, is depicted in Fig. S12. 
 

Fig. S12. Equilibrium – left, equivalence – right 
 

Summary of equilibrium conditions for forces and moments, i.e.    0,0


ii MF ,  

expressed in scalar forms for different spatial cases 
 
System of forces acting along a single line of action 
 

  0iF .          (S4_2) 

 
System of forces acting at a single point in plane 
 

  0,0 yixi FF .        (S4_3) 

 
For a system of forces and moments in a plane to be in equilibrium, two component-type 
equations (sum of all the forces along the specified directions is to be zero) and one moment 
type equation (sum of all moments of all forces about a specified point is to be zero) has to be 
satisfied.   
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,0:
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A 









iiyiixi

yi

xi

MxFyFM

Fy

Fx

       (S4_4) 

 
Out of three equilibrium conditions, at least one equation of the moment type always has to be 
used. Using three component-type equations leads to a linearly dependent system of equations 
that is singular and does not allow finding a unique solution. Each component type equation 
could, however, be replaced by a moment one. But not vice versa. 
 
System of forces for a single point in 3D 
 

  0,0,0 ziyixi FFF .       (S4_5) 

 
System of forces and moments for a body in 3D 
 

.0:

,0:

,0:

,0:

,0:

,0:

z

y

x




















ziiyiixi

yiixiizi

xiiziiyi

zi

yi

xi

MxFyFM

MzFxFM

MyFzFM

Fz

Fy

Fx

       (S4_6) 

 
Out of six equilibrium conditions, at least three equations of the moment type have to be 
always used. 
 
S6. Degrees of freedom 
 
The number of degrees of freedom (number of dof’s for short) is the measure of a degree of 
‘movability’4 of a body. The number of degrees of freedom of a rigid body is defined as the 
number of independent coordinates uniquely determining the position of that body in space.  
 
A few examples might clarify the subject. 
 

 The position of a free5 rigid body in space is uniquely determined by six coordinates 
– three longitudinal coordinates of a certain point (usually the center of mass) and 
three rotational coordinates (angles) determining the body orientation (pitch, yaw and 
roll angles) with respect to arbitrarily chosen fixed coordinate axes. We say that a free 
rigid body in space has six dof’s. 

 
 The position of a free rigid body in a plane is uniquely determined by three 

coordinates – two longitudinal coordinates of a certain point (usually the center of 
                                                 
4 The term mobility is used as well. 
5 The attribute ‘free’ indicates that the body in question is unsupported. We might also say that a free body is not 
constrained. As for example a space capsule in the outer space. 
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mass) and one rotational coordinate (angle) determining the body orientation with 
respect to chosen coordinate axes. So, the free rigid body in a plane has three dof’s. 

 
 The position of a particle6 in space is uniquely determined by three longitudinal 

coordinates – three dof’s. 
 

 The position of a particle in plane is uniquely determined by two longitudinal 
coordinates – two dof’s. 

 
 The position of a particle constrained to a line is determined by one positional 

coordinate – it has one dof.  
 
The concept of degrees of freedom for deformable bodies is quite different and will be treated 
and explained later.  
 
S7. Constraints and free body diagram 
 
From a rather academic treatment of equilibrium of forces, we have analyzed so far, we 
proceed to the treatment of a body, or to a set of bodies, that are in a state of equilibrium. As 
before, the condition of equilibrium requires that the vector sums of all the forces and all the 
moments, acting on the body or bodies, are equal to zero. Strictly speaking, we are seeking 
the conditions under which the state of equilibrium might occur.  
 
We have already mentioned that a free body is an object not being supported – it is freely 
‘flying’ in space and has its degree of ‘movability’ which is specified by the number of 
degrees of freedom. A free body, however, cannot be treated by static tools because any 
applied nonzero force would invoke its motion with certain acceleration. Since the 
acceleration and time are excluded from considerations in statics, a body always has to be 
‘properly’ constrained – i.e. connected to the frame or to other bodies.  

 
By the mechanical constraint, we understand a type of a mechanical attachments gadget or 
implement, having a specific engineering design, allowing the bodies to be constrained 
(restricted) in their motions or allowing them a sort of limited motion. In most cases, we will 
be evaluating the constraint forces and moments due to applied forces for bodies staying in 
rest and having zero dof’s.   

 
A body can be constrained in its potential motions by a variety of ways. Among the analyzed 
bodies there is always one playing a special role, namely the fixed frame of reference (frame 
for short) which is firmly attached to the ground – usually to Mother Earth, which for most of  
analyzed cases is considered stationary. 
 
In statics, the analyzed problem might consist of one body attached to the frame or of a set of 
interconnected bodies. Generally, whenever a motion of one body is restricted by another 
body, including the fixed frame, then there are corresponding forces and/or moments, typical 
for the type of constraint in question, occurring in contact (connecting) locations. 
 

                                                 
6 A particle is rigid by definition. It has no dimensions and its angular orientation in space is immaterial. 
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To allow the mathematical analysis of applied forces that are in equilibrium with the 
constraint forces (often called reactions) a helpful tool, named the free-body diagram (FBD), 
is frequently used.  
 
Free body diagram is a graphical sketch used to visualize body (bodies) under applied forces 
and moments and also under the reaction forces and reaction moments occurring due to the 
existence of particulate constraints. This helps to understand the way how the bodies are 
mutually connected facilitating thus the formulation of equilibrium equations.  
 
The free body diagram depicts the forces and moments applied to a body, and complement 
them with corresponding reaction forces and moments. This is a sort of mental procedure. The 
actual physical connections (constraints) between bodies are apparently removed and replaced 
by equivalent forces and moments that are characteristic for the particular type of constraints 
in question. These forces and moments should be suitably indicated and named to be 
susceptible for further analysis. This way, we convert the problem of bodies being in the state 
of equilibrium to that of equilibrium of forces. 

 
Example – a car on an inclined plane 
  
Given: A stationary car on the inclined road, being held in its 
position by a rope, is schematically depicted in Fig. S13. The 
car brakes are not applied. The mass of the car is m .  
Determine: Using the free body diagram technique, visualize 
the forces acting on the car, write the equilibrium equation 
and find the force in the rope, say , required to hold the car 
in its current position. 

S

  
 

Fig. S13. Car on the slope 
The thought process required for establishing 
the free-body diagram is illustrated by a 
sketch in Fig. S14. As the first approximation, 
the car might be considered as a particle 
through which all the forces pass. Then, the 
first constraint, the ‘road’, is removed and 
replaced by an equivalent reaction force acting 
from the road to the car.  

 
       Fig. S14. Equilibrium of forces 

 
Considering the stationary car and neglecting friction effects, the reaction force, say , has 
to be perpendicular to the ‘road’. That force allows the car to stay in its current position even 
if the road is ‘removed’. The second constraint, the rope, is cut and replaced by a force, say 

, acting in the direction of the rope. What remains to consider is the weight of the car, say 
, which can be visualized by a vertical vector, acting ‘down’, in the opposite direction 

of the y-axis.  

N

S
W mg
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We have added constraint forces (reactions), named them, and now the equilibrium conditions 
can be mathematically expressed. In this simple case, all three forces pass through a single 
point, approximating the car7.  
 
For the car remain stationary, all three forces have to be in equilibrium – their vector sum has 
to be zero, so 
 

0


 gmNS . 
 
Since we have simplified the problem by assuming that all the forces pass through a single 
point, then the scalar conditions of equilibrium (equivalent to the above vector form) might be 
written for x and y force components in the form 
 

.0cossin:

,0sincos:



mgNSy

NSx




 

 
This way, we have obtained two linear algebraic equations. Knowing the angle   and the 
weight of car mg, two unknowns, i.e.  (the normal reaction) and (the force in the rope) 
can easily be determined.  

N S

 

The magnitudes and directions of unknown vectors N


and S


 can also be determined 
graphically, as indicated on the right-hand side of Fig. S14. The graphical reasoning is also 
based on the fact that the resulting force of these three vectors is equal to zero – satisfying 
thus the conditions of equilibrium.  
 
There are different kinds of constraints (body connections). To determine the character of 
forces and/or moments, associated with a particular type of constraint, is the subject of the 
following text. 
 
S8. Classification of constraints 
 
At first, frictionless constraints are considered. See the chapter devoted to friction phenomena. 
 
S8.1. Rigid constraint – clamping 
 
This kind of constraint is assumed to be perfectly rigid – it secures 
that in the connection point there is no motion possible between the 
fixed frame (the wall) and the body shown in Fig. S15. 
 
 
 
 
 
 
 

Fig. S15. Clamped beam 

                                                 
7 Accepting this degree of simplification, there is no way how to determine the forces between the road and 
wheels. There are, however, other manners, by which we will solve this task. 

S, May 21, 2018 11



Let’s analyze 2D and 3D situations separately. 
 
a) Rigid constraint in 2D – clamping 
 
To draw a free body diagram for a clamped beam in a plane requires removing the rigid 
connection constraint, where the beam is attached to the frame by clamping. Simultaneously 
we require that the beam stays in its current position. To do so, we have to add a force (having 
two scalar components) preventing the beam to move in up and down and in sideways 
directions. Also, a moment has to be added preventing the beam to rotate. (The moment 
vector has one scalar component). A free body in a plane has three degrees of freedom. Each 
force component removes one possible motion – we say that two force components remove 
two translatory degrees of freedom. The remaining degree of freedom, i.e. the rotation, is 
removed by the reaction moment. As before, the equilibrium equations are 

, and their scalar form is    0,0


ii MF

 

,0:

,0:

,0:

A 









iiyiixi

yi

xi

MxFyFM

Fy

Fx

    where iM  is the thi  applied moment. 

 
Example – clamped beam in 2D 
 
Given: In Fig. S16 there is schematically depicted a 2D beam 
of the length  which is clamped at point C to the rigid 
frame, being visualized by hatching. Graphically, the beam is 
approximated by a straight horizontal line of the length . 
The beam is loaded by forces  and  at locations 
indicated by the distance dimensioning  and . The forces 
are graphically represented by vectors with their directions 
and magnitudes defined. Also, a moment is applied at the 

location of force . In the lower part of the figure there is 
shown the free body diagram corresponding to this case.  

l

l

1F 2F

1

a l

M

1F

 
 
Fig. S16. Free body diagram for a loaded clamped beam 

 
Besides the external loading, represented by ,  and , there is the reaction force, 
represented by its two components, and the reaction moment. These correspond to the rigid 
connection (clamping) between the beam and the frame. As explained before the reaction 
force and moment are associated with this type of constraint in question – the clamping. The 
reaction force components, say , and the reaction moment, say , are unknown 

quantities that are to be determined from equilibrium conditions: 

1F 2F 1M

yx RR , CM

 

.0sin:Cpoint about themoments force of sum

,0sin:directionincomponents force of sum

,0cos:directionincomponents force of sum

11C

1

21






MaFM

FRy

FFRx

y

x





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Determine: Knowing dimensions, angle  , external forces , and external moment  

the above equations could be solved for the unknown reaction components, i.e. and 

. 

1F 2F 1M

yx RR ,

CM

 
b) Rigid constraint in 3D – clamping  
 
A free body in 3D space has six degrees of freedom. In this case, the clamped constraint 
represents also a vector force and a vector moment, but these, however, represent three force 
components and three moment components – altogether six unknown reactions. 
 
S8.2. Rotary constraint – hinge joint or pin joint or revolute pair 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. S17. A hinge constraint 
 
A hinge constraint allows a free rotation only about the hinge axis and prevents any 
translation. See Fig. S17. 
  
In 2D, a single reaction force (with two scalar components) represents this constraint. In 3D, a 
single reaction force (with three scalar components) and two reaction moment components, 
i.e. , about axes perpendicular to the hinge axis, are needed. In 3D these five 

components remove five of dof’s corresponding to a free body in space, and since 
yx MM ,

156  , 
there remains one degree of freedom corresponding to the rotation about the z-axis.  
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Graphical representation of different types of constraints in free body diagrams 
 
In the text and in accompanying examples we will 
use a sort of easily drawn ‘shorthand’ 
representations of constraints. In Fig. S18 a few of 
them are shown together with reaction forces and 
moments that correspond to a particular type of 
constraint and are needed for the free body 
diagram reasoning.  
 
An example of an engineering design of a shaft 
supported by two bearings is in Fig. S19.   
 
The left bearing, being firmly connected to the 
shaft and to the housing, is able to support both 
radial and axial forces. The right bearing, 
connected to the shaft but allowing left or right 
sliding motions with respect to the housing, 
permits to support radial forces only.  

                              Fig. S18. Free body diagrams 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. S19. Engineering design of a supported shaft 
 

This is the way how the thermal expansion of the shaft is provided for. 
 
The corresponding FBD is in Fig. S20. 
 
 

 
 
 

 
 Fig. 20. FBD for a supported shaft 
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Individual bodies of mechanical structures are connected by constraints of different types, 
sometimes also called kinematic pairs. Generally, a kinematic pair is a connection between 
two bodies imposing constraints on their relative motions. A few types of 2D frictionless 
kinematic pairs are listed in Table 1. 
 

Planar kinematic pairs 
 

Revolute pair, joint – allows rotary motion 
only, 1 dof, 2 reaction components. 
 
 
 
Prismatic pair, slider, sleeve – allows 
translational motion only, 1 dof, 2 reaction 
components. 
 
 
 
Rolling pair – no slipping, 1 dof, 1 reaction 
component. 
 
 
 
 
Higher pair – slipping occurs, 2 dofs, 2 
reaction components 
 
 

 
 

Table. 1. Kinematic pairs 
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Hint - kinematic pairs, the principle of action and reaction, FBD for a 2D crank mechanism 
 
The crank mechanism has one dof. See Fig. S21. So, 
only one coordinate (either the angular displacement 
of the crank or the positional coordinate of the piston) 
is sufficient for determining its actual position. 
 
Crank, denoted by number 2, is a 2D body loaded by 
a planar system of forces. Thus, three equilibrium 
equations are required. 
 
Rod, number 3, even if it is actually a body in the 
plane, is loaded by forces sharing the same line of 
action. So, only one equilibrium condition is needed. 
 
Piston, number 4, is a 2D body loaded by a planar 
system of forces. Three equilibrium equations are 
required.  
 

 
 

 
 
 

           Fig. S21. Free body diagram for crank mechanism  
 

Generally, the normal force between the cylinder and piston does not pass through the piston 
pin. 
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S8.3. Ball and socket joint 
 

 This type of constraint allows for attachment of two bodies, allowing their free mutual 
rotation and at the same time restricting any mutual translation. See Fig.  S22. A human hip 
joint is a good example. When considered in a free body diagram, this type of constraint is 
replaced by a reaction force having three components in 3D and two in 2D. Since a free 
frictionless rotation is allowed, there are no moment components in this case. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. S22. A spherical joint or a socket ball 
 
S8.4. Wires, ropes, cables, chains, rods, bars, struts, springs, belts, and dashpots 
 

 
 
 
 
 
 
 
 

Fig. S23. Free body diagrams for a rope 
 
Wires, ropes, cables, chains, rods, bars, struts, springs, and dashpots are machine design 
elements that are frequently used in mechanical engineering. See Fig. S23. They serve as 
connecting elements, whose transversal dimensions are small with respect to lateral ones. 
That’s why their transversal dimensions, their weight and/or mass are often neglected. The 
element of this kind is only able to transfer the force that acts within the line connecting its 
extremity points. In rigid body mechanics, they are considered inextensible. 
 
Wires, ropes, cables, chains, and belts are assumed to have a capability transmitting tension 
forces only, while rods, bars, struts, springs, and dashpots could transfer compression forces 
as well. The terms rod, bar and strut are considered synonymous.  
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S8.5. Springs 
 
The spring is a machine design element that is 
elongated under the influence of an axial tensional 
force or shortened when an axial compression force is 
applied. See Fig.  S24. Its initial or unstrained length 
s l , the change of lengthi 8 (which might be positive or 

negative), due to an applied force might be denoted 
. The force in the spring, say F , is usually taken as 

a linear function of elongation, i.e. 
l

lkF  . The 
coefficient of linearity, k , goes under the name of the 
stiffness, or the spring stiffness. Its dimension is 

. The spring linearity should not be taken for 
granted, it is valid only for cases when the elongation 

 is small with respect to the unstrained length l , 
and for cases when elastic deformations, with no 
permanent material changes (so the plasticity effects 
are excluded) in the spring, occur. 

]N/m

l

[



 
Fig. S24. Free body diagram for a spring 

 
In engineering, we also encounter torsional springs and coiled springs. The latter is still used 
in mechanical watches being connected to the balance wheel securing thus its regular 
oscillations. 
 
The actual appearance of a spiral spring is in Fig. S25.  

 
 
 
 
 
 

 
 
 
 
 

Fig. S25. Actual spring 
 
  

                                                 
8 Sometimes called the deformation or elongation. 
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The meaning of spring linearity is graphically illustrated in 
Fig. S26. This kind of behavior is in accordance with 
Hooke’s law, that states that the force , required to 
elongate or shorten a spring by a displacement 

F
x , is linearly 

proportional to the magnitude of that displacement, i.e. 
, where the coefficient of proportionality   is called 

the spring stiffness.  
kxF  k

 
The law is named after Robert Hooke who published it in 
1676 in the form ut tensio, sic vis, meaning ‘as the 
extension, so the force’.  
 

Fig. S26. Linear behavior of a spring 
 

It should be emphasized that Hooke's law is only a first-order 
approximation of the real response of springs. Spring 
characteristics, i.e. the dependence of force to spring elongation, 
could be of various types as shown in Fig. S27. That is (1) 
progressive, (2) linear, (3) degressive, (4) almost constant or (5) 
progressive with a knee. 

 
 
 
 
 
 
 

Fig. S27. Spring characteristics 
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S8.6. Dashpots, dampers 
 
The dashpot, also called damper, is a machine design element 
that resists the change of its initial length l . The resisting 
(reaction) force is linearly proportional to the change of its 
initial length, or by other words, to the relative velocity of 
its extremity points. See Fig. S28.  

Rv

 
 
 

Fig. S28. Free body diagram for a dashpot  
 

So, the corresponding reaction force appearing in the FBD is Rd

d
cvlc

t

l
cT   .   

 
In this case, a linear behavior of the dashpot is assumed.  Often, non-linear dashpots, with 
forces proportional to the second, third and higher powers of velocity, are considered in 
engineering practice as well. 
 
The dashpots play no role in statics. We will explain their importance in dynamics. 
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Survey for constraints, FBD and dof’s 
 
Six cases of a differently constrained body (a truss structure, composed of thin rods, also 
called bars) connected at their ends by frictionless joints, are depicted in Table 2.  Due to 
miscellaneous constraints applied to that body, we can analyze six different cases with 
different numbers of degrees of freedom. For simplicity, the bridge structure is assumed to be 
two dimensional and all the constraints are considered frictionless. 
 
 
 
 
Structure 

 
 
#dof’s    3       2        1       0       -1       -2 

 
 
reactions 
 
 
# reactions components  0        1        2            3           4            5 
 
# equilibrium equations 3  3       3            3           3            3 
 
type of structure    | ......    moving ............. |  properly    | ... constrained ...  | 
                     |                                | constrained  |       too much       | 
        
type of problem      | ....... statically ........... |  statically  | ... statically ...   | 
                     |      underdeterminate          |  determinate |  interdeterminate    | 
 
to be solved in      | ......   dynamics   .......... |   statics    | strength of material | 

 
Table 2. Degrees of freedom and free body diagrams 

 
The first column corresponds to a free, unconstraint or unsupported body that has 3 dof’s in 
the plane. There are no reaction forces to be associated with the case. 
 
The second column. The body is attached to the frame by a radial joint that besides the 
rotation allows left or right sliding motions. By mutual consent, the vertical motion in the up 
direction is prohibited. The body could freely rotate around the joint and also could freely 
move in left or right directions as well, it thus has two dof’s. In the FBD this joint could be 
replaced by one unknown reaction component on the left, which would act vertically.  
 
The third column. The body is attached to the frame by a radial joint allowing a free rotation 
around this joint only, it thus has one dof. In the FBD, this joint could be replaced by two 
unknown components of the reaction force in that joint. 
 
The constraint bodies, depicted in the first three columns, have one common property, – they 
can move. Generally, the moving structures are characterized by the fact that their number of 
dof’s is greater than zero. Mechanical systems composed of more rigid elements, having a 
positive number of dof’s, are often called mechanisms. More about the subject is in the 
chapter devoted to kinematics. 
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Any structure able to move will start to change its position in space and cannot be treated by 
statics tools of mechanics. Their motions, due to the applied forces and moments, are 
described not by equations of equilibrium, but by equations of motions having the form of 
ordinary differential equations. In the following text, we will show how these problems are 
analyzed by tools of dynamics. 

 
The fourth column. The body is attached to the frame at two places. On the left, there is a 
radial joint, which when considered alone, allows a free rotation. On the right, there is a 
sliding radial joint allowing both the rotation and the horizontal motions. The left joint 
removes one dof, and represents two unknown reaction components, the right one two dof’s 
and requires to add one unknown reaction component in the FBD. Altogether, the body 
cannot move and has, in this case, zero degrees of freedom. Reaction forces represent three 
unknowns, two on the left and one on the right, and for a body in a plane, we have three scalar 
equations of equilibrium at our disposal. This case is thus easily solvable. We say that such a 
system is statically determinate.  

 
Generally, we can state that the actual number of dof’s of a body, say , plus the i

number of unknown reaction components due to prescribed constraints, say , is equal to the m
number of dof’s of that body “freely” flying in the space (rigid body motions). In plane, we 
could write , in space 3 mi 6 mi . 
 
The fifth and sixth columns correspond to structures that from the statics point of view are 
‘constrained too much’. They have a negative number of degrees of freedom. We say that 
these cases are statically interdetermine. In these cases, the number of unknown reaction 
components is greater than the number of available equilibrium equations. Consequently, the 
conditions of equilibrium do not suffice to find unknown reactions. Cases of this kind will be 
explained, analyzed and treated in chapters devoted to the mechanics of deformable bodies. 
We will show that adding an adequate number of so-called deformation conditions, the tasks 
of this type can be solved. 
 
The treated tasks could be classified according to the number of degrees of freedom.  
If # dof’s = 0, then the mechanical system is said to be statically determinate and for given 
forces and moments, the corresponding reactions are readily obtained from properly 
formulated equilibrium conditions. In this case, the system is stationary and the number of 
unknowns is equal to the number of available equilibrium conditions.  
 
If # dof’s > 0, then the system is statically underderterminate and generally cannot be solved 
by statics tools. For given forces and moments, the system would start to move with 
accelerations and could only be treated by dynamics tools. Still, the tasks of this kind could be 
analyzed in statics if the problem is reformulated.  
 
There are two possibilities. 
 
First, for a given position determine such forces and moments that allow the system to stay in 
its current configuration. 

 
Second, determine such a configuration in which the system – for a sufficient number of 
prescribed loads – will be in the state of equilibrium. 
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If # dof’s < 0, then the system is said statically indeterminate and cannot be solved by statics 
tools since the number of unknown reactions is greater than the number of available 
equilibrium equations. The tasks of this kind could be treated by tools of mechanics of 
deformable bodies, where a suitable number of so-called deformation conditions are added, 
which together with equilibrium equations will suffice to find all the unknown reactions. 
 
Example – structure of six rods, zero dof’s, forces passing through a point  
 
Type of task: 2D, rods, forces passing through a point. 
 
Given: dimensions, angles, force Q. 
Determine: rod forces . 61 to SS

 
A structure, composed of 

six rod elements that are connected 
by frictionless joints, is depicted in 
Fig. S29. 
 
The left side and right side joints 
connect the structure to the fixed 
frame, which is indicated by 
hatching.  

 
Fig. 29. Rod structure 

 
The rods are able to transfer axial forces in directions of 
their end joints only, so to find them it is required to 
analyze the equilibrium of forces passing through the 
joints A, B and C, respectively. The vectors of all the 
forces have directions of rods (lines connecting their end 
joints), their directions, which might be chosen 
arbitrarily, are indicated by arrows.  
Generally, the free body diagram, the principle of action 
and reaction and conditions of equilibrium are applied. In 
detail, we proceed in four steps. See Fig. S30.  

 
a) Starting at the joint A we mentally cut the rods 

that are connected by a frictionless joint A and replace 
them by equivalent forces  and .  1S 2S

 
 
 

    Fig. S30. Free body diagram, action and reaction, equilibrium 
  

Their directions are given by lines connecting their end joints, their directions, indicated by 
arrows, are chosen arbitrarily. This is what we also see in the lower part of Fig. S29. Now, the 
conditions of equilibrium of forces acting at the joint A are applied – it is required that 

021  QSS


. Solving the equation allows determining the unknown forces . So far, 
we are talking about forces acting on the joint A. 

21,SS
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b) Now, let’s analyze the forces acting on the rod with end joints A and B. According 
to the principle of action and reaction the joint A, as a part of the rod is acted on from the joint 
A itself by a force which has the same magnitude as before, but is of an opposite direction. 

 
c) Equilibrium of forces acting on the rod AB. Since there are no other external forces 

acting on the rod, the left and right reaction forces have to have the same magnitude and the 
opposite directions to satisfy the equilibrium conditions. 

 
d) Plotting the FBD for the joint B we take into account the principle of action and 

reaction again. Then the equilibrium conditions can be written. It is required that 

. For practical purposes, the vector equations of equilibrium are often replaced 

by a corresponding number of scalar equations. 

0431  SSS


 
Similarly, we proceed for other joints. We believe that a detailed discussion of this 

kind will not be needed when solving the tasks that follow. 
 
Expressing the equilibrium conditions in scalar forms we can write 
 
Forces passing through the joint A 

.,Knowing

.0sinsin:

,0coscos:

21

21

21

SSQ

QSSy

SSx










 

Forces passing through the joint B 

.,Knowing

.0coscossin:

,0sinsincos:

431

431

431

SSS

SSSy

SSSx










 

 
Forces passing through the joint C 

.,Knowing

.0sinsin:

,0coscos:

652

62

652

SSS

SSy

SSSx








 

 
We have stated that the directions of forces in FBD are chosen arbitrarily. Their actual 
directions come from analyzing the results of the numerical solution. If the resulting unknown 
variable has a positive value, then the original choice of direction was chosen correctly. And 
vice versa. 
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Example – forces passing through a single point. 
See Fig. S31.  
 
Type of task: 3D, rods, zero dof’s, forces passing 
through a point. 
 
Given: dimensions, force P. 
Determine: forces . 31 to SS

 
Three rods are attached to a rigid wall (plane xz) 
by frictionless joints. Their other ends are 
connected in another joint where a vertical force P 
is applied. 

Fig. S31. Forces through a point 
 
The angles come from geometry considerations, i.e. from 

lblalc /tan,/tan,/tan 321   . 

 
The task requires solving the spatial system of forces passing through a single point. As 
explained above three scalar equations in directions of coordinate axes are needed. 
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Equilibrium conditions in the matrix notation are 
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To get a purely analytical solution the Matlab symbolic toolbox might help. See the program  
S01_three_rods_3D.m 
 
%S01_three_rods_3D 
% old file is named tri_pruty_3D 
 
clear  
syms a1 a2 a3 P b A x 
A = [0 -sin(a2) sin(a3); -cos(a1) -cos(a2) -cos(a3); sin(a1) 0 0]; 
b = [0; 0; P]; 
inv_A = inv(A); 
x = A\b; 
pretty(x) 
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The result is  
 

      [                      P                          
                [                   -------                    ] 
                [                   sin(a1)                    ] 
                [                                              ] 
                [               sin(a3) cos(a1) P              ] 
                [- ------------------------------------------- ] 
                [  sin(a1) (sin(a2) cos(a3) + sin(a3) cos(a2)) ] 
                [                                              ] 
                [               sin(a2) cos(a1) P              ] 
                [- ------------------------------------------- ] 
                [  sin(a1) (sin(a2) cos(a3) + sin(a3) cos(a2)) ] 

 
 
Example – forces passing through a single point of a body 
 
Type of task: 2D body, zero dof’s, all the forces are passing through a single point. 
 
Given: dimensions, angles, forces F, Q. 
Determine: reactions . BA , NN
 
A cylinder, whose weight is Q, is supported 
by two perpendicular planes, as depicted in 
Fig. S32, and loaded by a force F. Free body 
diagram reasoning requires to remove 
supporting planes and to add corresponding 
reactions, say , acting at contact points. 
Since no friction is considered both reactions 
are perpendicular to supporting planes. 

BA , NN

  
Fig. S32. Equilibrium of forces passing through a point  

 
At the first sight, we deal with a body loaded by a planar system of forces, requiring 
expressing and solving three equilibrium equations. In this case, however, all the forces pass 
through a single point, so only two equilibrium conditions are needed. 

 
Generally, the orientation of the coordinate system is arbitrary but a smart choice is 

always advantageous.  
 
Equilibrium conditions, written for scalar components of acting forces, are 
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Discussion 
The task would have no solution if the force F had an opposite direction. 

Mathematically, this would be indicated by negative values of contact reactions. If the 
angle 4/   then the above solution is not valid. Explain why. 
 
Example  – forces acting on a 2D block, zero dof’s 
 
A rectangular block is supported by a sliding joint at point A (one vertical reaction) and by 
two rods connecting the block to the frame. See Fig. S33. Both rods have frictionless joints at 
their ends. Rod reactions represent axial forces in direction of their end joints. The block is 
loaded by forces P, Z and Q. 
 
Type of task: 2D, body, zero dof’s. 
 
Given: P, Q, Z, dimensions, angles. 
Determine: . A21 ,, RSS
 
Equilibrium equations 
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Fig. S33. Equilibrium of a body 

Discussion  
For certain combination of values and directions of forces P and Q the reaction might be 
negative. What does it indicate? 

AR

 
Example – simplified 2D bridge 
 
Type of task: A 2D structure 
with zero dof’s,  composed of 
three bodies is depicted in  Fig. 

34.  

Given: dimensions and 

S
 

,,, 432 QQQ . 

Determine: reactions at joints 

 
           Fig. S34. A simplified bridge 

 

EDCBA ,,,, RRRRR . 
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Equilibrium of each body is treated separately. Notice the ‘transfer’ of reactions from one 
body to another using the principle of action and reaction as shown in Fig. S35.  
      
Body 2 
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Fig. S35. Free body diagrams for bodies.  
 
Now, follow the text of the program S02_bridge.m. Altogether, we have nine equations 
allowing to evaluate nine unknown reactions . The above equations could be written 

in the matrix form as [ . The matrix of the system of equilibrium equations is 
91 to RR

}F{}R]{KK 
 
%      1  2  3  4   5   6  7   8  9   
KK  = [0  1  0  0   0   0  0   0  0;  %1 
       1  0  1  0   0   0  0   0  0;  %2 
       0  0  a  0   0   0  0   0  0;  %3 
       0 -1  0  1   0   1  0   0  0;  %4 
       0  0 -1  0   1   0  1   0  0;  %5 
       0  0  0  0   a   a  a/2 0  0;  %6 
       0  0  0 -1   0   0  0   1  0;  %7 
       0  0  0  0  -1   0  0   0  1;  %8 
       0  0  0  0   0   0  0   0  a]; %9 

 
Right hand side – the vector of loading forces 
F = [Q2*sin(alfa) Q2*cos(alfa) Q2*b*cos(alfa) 0 Q3 Q3*c 0 Q4 Q4*d]'; 
 
Reactions are obtained solving the system of algebraic equations 
R = KK\F; 
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Results 
reactions 
            1       259.81 
            2          500 
            3       606.22 
            4       853.11 
            5         -800 
            6      -353.11 
            7       2906.2 
            8       853.11 
            9         1200 
 
% S02_bridge  
% old file name is mst_010_most_c2 
clear; format short g 
a = 1; b = 0.7; c = 0.2; d = 0.6; 
Q2 = 1000; Q3 = 1500; Q4 = 2000; 
alfa = pi/6; 
% loading forces 
F = [Q2*sin(alfa) Q2*cos(alfa) Q2*b*cos(alfa) 0 Q3 Q3*c 0 Q4 Q4*d]'; 
% the matrix and the right hand side of the system {KK]{R} = {Q} 
%      1   2  3  4  5   6   7  8  9          
KK  = [0  1  0  0   0   0  0   0  0;  % 1    Q2*sin(alfa) 
       1  0  1  0   0   0  0   0  0;  % 2    Q2*cos(alfa) 
       0  0  a  0   0   0  0   0  0;  % 3    Q2*b*cos(alfa) 
       0 -1  0  1   0   1  0   0  0;  % 4    0 
       0  0 -1  0   1   0  1   0  0;  % 5    Q3 
       0  0  0  0   a   0  a/2 1  0;  % 6    Q3*c 
       0  0  0 -1   0   0  0   1  0;  % 7    0 
       0  0  0  0  -1   0  0   0  1;  % 8    Q4 
       0  0  0  0   0   0  0   0  a]; % 9    Q4*d 
rank(KK);       % check 
R = KK\F;      % solution 
counter = [1:9]'; 
disp('reactions') 
disp([counter R])  

 
 
Example – parallel forces in 3D 
 
A block of weight Q is suspended by three 
parallel rods (connected to the block and to the 
frame by frictionless joints) of equal length as 
depicted by means of Monge’s projection in Fig. 
S36.  
 
Type of task: 3D, body.  
 
Given: Q, dimensions. 
Determine: rod forces . 321 ,, SSS

 
Here, we are dealing with a system of forces in 
3D space, so 6 equilibrium scalar conditions are 
required. 
 
 
 
 
 

Fig. S36. Equilibrium of a body  
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Due to the fact that all the forces are parallel and vertical, three equations are satisfied 
identically. Knowing  and dimensions, the remaining three equations suffice to evaluate 

unknown forces .   

Q

3,S21,SS

 
Explain, why the task could not be solved if the block were suspended by more than three 
rods.  
 
What would happen if the force Q were not vertical? Answer: The block would start to move 
and the task would not be solvable by statics tools.  
 
Example – cable forces in 3D 
 
Type of task: 3D, rods, zero dof’s, forces passing through a point. 
Given: Three rods, attached by frictionless joints to the ‘ceiling’, as depicted in Fig. S38, are 
connected by another joint located at point A. The system is loaded by an attached cylinder 
whose weight is mg.  
Determine: rod forces. 
 
It should be reminded that the direction 
cosines of a vector see Fig. S37, can be 
expressed in the form 
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Fig. S37. Components of a vector.   Fig. S38. Equilibrium of a body in space 
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Locating the origin of the coordinate system, as indicated in Fig. S38, then the radius vectors 
associated with rods, expressed in Matlab style, are 
 
AB = [1 3 5]; 
AC = [-3 0 5]; 
AD = [1 -4 5]; 
 
% their lengths 
L_AB = sqrt(dot(AB,AB)); 
L_AC = sqrt(dot(AC,AC)); 
L_AD = sqrt(dot(AD,AD)); 
  
% direction cosines for rod AB 
cos_alfa(1) = AB(1)/L_AB; 
cos_alfa(2) = AB(2)/L_AB; 
cos_alfa(3) = AB(3)/L_AB;  
 
% direction cosines for rod AC 
cos_beta(1) = AC(1)/L_AC; 
cos_beta(2) = AC(2)/L_AC; 
cos_beta(3) = AC(3)/L_AC; 
 
% direction cosines for rod AD 
cos_gama(1) = AD(1)/L_AD; 
cos_gama(2) = AD(2)/L_AD; 
cos_gama(3) = AD(3)/L_AD; 

 
Assembling them into a matrix of direction cosines columnwise 
 
CS = [cos_alfa' cos_beta' cos_gama'] 
 
we get  
 
CS = 
 
    0.1690   -0.5145    0.1543 
    0.5071         0   -0.6172 
    0.8452    0.8575    0.7715 

 
The equilibrium conditions are 
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To simplify the subsequent analysis of results we have substituted  1mg  here. 
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Solving the system of equations by T = CS\b we get  
 
T = 
    0.5071 
    0.2915 
    0.4166 
 
Now, we claim that the resulting rod forces are multiples of the value of mg . 
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Alternatively, we can proceed more efficiently, even if in a less transparent way. Let’s collect 
the radius vectors in a matrix columnwise as 
 
r(:,1) = [1 3 5]; 
r(:,2) = [-3 0 5]; 
r(:,3) = [1 -4 5]; 

 
Their lengths are  
 
for i = 1:3 
 LL(i) = sqrt(dot(r(:,i),r(:,i))); 
end 

 
Similarly, the direction cosines are stored columnwise into another matrix as  
 
for i = 1:3 
   CSS(:,i) = r(:,i)/LL(i); 
end 

 
The rest of the procedure is the same as before. This could be verified by executing the 
statement TT = CS\b. See the program S03_cable_forces.m. 
 
% S03_ cable_forces 
% m_024_cable_forces_en.m 
clear 
% position vectors 
AB = [1 3 5]; 
AC = [-3 0 5]; 
AD = [1 -4 5]; 
  
% their lengths - Pythagoras and the dot product 
L_AB = sqrt(dot(AB,AB)); 
L_AC = sqrt(dot(AC,AC)); 
L_AD = sqrt(dot(AD,AD)); 
  
% direction cosines for AB 
cos_alfa(1) = AB(1)/L_AB; 
cos_alfa(2) = AB(2)/L_AB; 
cos_alfa(3) = AB(3)/L_AB; 
% direction cosines for AC 
cos_beta(1) = AC(1)/L_AC; 
cos_beta(2) = AC(2)/L_AC; 
cos_beta(3) = AC(3)/L_AC; 
% direction cosines for AD 
cos_gama(1) = AD(1)/L_AD; 
cos_gama(2) = AD(2)/L_AD; 
cos_gama(3) = AD(3)/L_AD; 
  
CS = [cos_alfa' cos_beta' cos_gama'] 
% losding vector 
b = [0 0 1]'; 
% solve the system oquations 
T = CS\b 
  
% and now, a more efficient style 
% direction vectors are assembled columnwise in r matrix 
r(:,1) = [1 3 5]; r(:,2) = [-3 0 5]; r(:,3) = [1 -4 5]; 
  
for i = 1:3                     % compute lengths 
 LL(i) = sqrt(dot(r(:,i),r(:,i))); 
end 
  
% the same for direction cosines 
for i = 1:3 
   CSS(:,i) = r(:,i)/LL(i); 
end 
  
TT = CS\b                       % compute forces 
  
% end of m_024_cable_forces.en 

S, May 21, 2018 32



Exa  mple – 2D body of weight W suspended by two cables, as seen in Fig. S39. 
 
Type of task: forces passing through a point. 
Given: , , 

, . 

m5BC L

m 2000W

m3AB L

N6D
Determine: forces in cables. 
 
 
 
 
 
 
 
 
 

 
                 Fig. S39. Weight suspended by two cables 

 
The equilibrium conditions for forces passing through the point B are 
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Sine and cosine rules give 
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and from this we get 
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System of equations corresponding to equilibrium conditions is 
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Input data are 
 
D = 6; LAB = 3; LBC = 5; MG = 2000; 
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Writing and executing this piece of code 
 
theta = acos((D^2 + LAB^2 - LBC^2)/(2*D*LAB)); 
fi = asin(LAB*sin(theta)/LBC); 
 
K = [-cos(theta) cos(fi); sin(theta) sin(fi)]; 
F = [0 MG]'; 
T = K\F 

 
we obtain 
 
T = 
       1737.2 
       1113.6 

 
Now, let’s analyze what would happen if, leaving the length of the rope  constant, the 

angle 
BCL

  is allowed to vary. Consequently, the length of  will be varying as well. Now, in 

the enlarged task one has to determine the rope forces as functions of the varying length  . 
ABL

ABL
 
Considering the triangle properties and the condition that ropes cannot transmit compression 
forces we could write 
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In Matlab we have 
 
LAM_min = D - LBC; 
LAB_max = sqrt(D^2 + LBC^2); 
incr = 0.1; 
LAB_range = LAM_min+incr : incr : LAB_max; % vynech zacatek intervalu 
i = 0; 
for LAB = LAB_range 
    i = i + 1; 
    theta = acos((D^2 + LAB^2 - LBC^2)/(2*D*LAB)); 
    fi = asin(LAB*sin(theta)/LBC); 
    K = [-cos(theta) cos(fi); sin(theta) sin(fi)]; 
    F = [0 MG]'; 
    T = K\F; 
    T_all(i,:) = T; 
end 
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The program  S04_ weight_supported_by_two_cables generates the plot showing the 
rope forces as functions of the varying length . See Fig. S40. ABL
 

 
Fig. S40. Rope forces 

 
Discussion 
 
Why the values of forces goes to infinity for ?  1AB L

What length of is required to get a minimum force in the rope BC.  ABL
The answer is got from program.  
 
Minimum force TBC for a varying length LAB is 1105.5617 [N] 
This happens for LAB = 3.3 [m] 

 
See the program S04_ weight_supported_by_two_cables.  
 
% S4_ weight_supported_by_two_cables 
% old file name is m_025_weight_supported_by_two_cables_en.m 
clear; format short g; format compact 
D = 6; 
LAB = 3; 
LBC = 5; 
MG = 2000; 
% geometry 
theta = acos((D^2 + LAB^2 - LBC^2)/(2*D*LAB)); 
fi = asin(LAB*sin(theta)/LBC); 
% equilibrium 
K = [-cos(theta) cos(fi); sin(theta) sin(fi)]; 
F = [0 MG]'; 
disp('Rope forces TAB and TBC for given geometry are') 
T = K\F; 
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disp(T) 
  
LAB_min = D - LBC; 
LAB_max = sqrt(D^2 + LBC^2); 
incr = 0.1; 
% to avoid singularity we start to compute 
% the lenght from LAB = LAM_min + incr 
LAB_range = LAB_min + incr : incr : LAB_max; 
i = 0; 
for LAB = LAB_range 
    i = i + 1; 
    theta = acos((D^2 + LAB^2 - LBC^2)/(2*D*LAB)); 
    fi = asin(LAB*sin(theta)/LBC); 
    K = [-cos(theta) cos(fi); sin(theta) sin(fi)]; 
    F = [0 MG]'; 
    T = K\F; 
    T_all(i,:) = T; 
end 
  
figure(1) 
plot(LAB_range,T_all(:,1),'--k',LAB_range,T_all(:,2),'-r','linewidth',2) 
legend('T_{AB}', 'T_{BC}'); xlabel('length L_{AB} [m]', 'fontsize', 16);  
ylabel('rope forces [N]', 'fontsize', 16) 
print -djpeg -r300 f_025_2_en 
  
% find a minimum and its position 
[TBC_min i_min] = min(T_all(:,2)); 
kolik = TBC_min; 
disp(['the minimum force TBC for variable length LAB is ' num2str(kolik) ' [N]']) 
kde = LAB_range(i_min); 
disp(['and occurs for length LAB = ' num2str(kde) ' [m]']) 
  
% end of m_025_weight_supported_by_two_cables_en.m 

 
Example – crankshaft mechanism  
 
In Fig. S41 there is schematically depicted a part of the four-stroke engine with its 
fundamental elements denoted by capital letters. C stands for the crankshaft (crank for short), 
R for the rod (connecting rod), P for the piston. Other parts, as W – cooling water, E – exhaust 
cam shaft, I – intake cam shaft, V – intake and exhaust valves and S – spark, are not important 
for the present analysis. In Fig. S42 the heart of the engine, that is the crankshaft mechanism, 
is even more simplified.  

 
This is what we call a kinematical scheme of that mechanism.  The mechanism has one degree 
of freedom. We intend to determine the moment M, applied on the rod, which is required to 
hold the mechanism in its current position against the force P that acts on the piston. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          Fig. S41. Four stroke engine Fig. S42. Kinematics scheme of a crankshaft mechanism 
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Given: The mechanism with one degree of freedom, 
dimensions, force P.  
Determine: The moment M as a function of a constant 
force P for the crank angle   varying from 0 to 360 
degrees. As a parameter consider different values of 

, that is the ratio of crank radius to the connecting 
rod length. 

lr /

 
The solution is done by solving subsequent equilibrium 
conditions for individual parts of the mechanism. 

Fig. S43. Free body diagram for a piston 
 
Equilibrium of forces acting on the piston is in Fig. S43. 
 
The force from the rod is , the normal reaction is , the force acting on the piston is . 
Equilibrium of forces passing through the gudgeon pin at the point C is  
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There are two ways how to express FBD on a piston 
as shown in Fig. S44. Either as a planar system of 
forces acting on the body, or as a planar system of 
forces passing through a point, i.e. the piston pin. 
The latter approach is a crude simplification whose 
validity should be properly checked.  
 
 
 
 
 
 

 
Fig. S44. Piston reactions 

 
Equilibrium of rod forces according to Fig. S45 is 
 

         
    
 
 
 

 
 

Fig. S45. Rod reactions  
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Equilibrium of crank forces – Fig. S46. 
 
 
 
 
 
 
 
 
 
 
 

Fig. S46. Crank reactions 
 
To satisfy the equilibrium of planar forces acting on the crank, two component type equations 
and one moment type equation are needed  
 

.0sincoscossin:

,0sin:

,0cos:

A

AY

AX









SrSrMM

SRy

SRx

 

 
From the third equation, we get the moment acting on the crank 
 

)sincoscos(sin   SrM .         (a) 
 
The system has one degree of freedom, so all coordinates should be expressed as a function of 
a single variable. For this purpose we have chosen the angle  . 
 
The angle   depends on   by the relation  

 sinsinsinsin
l

r
lr  . 

So the function cos , needed for Eq. (a), could be expressed by 
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The latter formula is better, since it does not require a special treatment of  sign in front of 
the square root as it depends on the varying value of 


  in the range of 2,0 .  See the 

program S05_crank_shaft_mechanism. 
  

The problem is solved by the program S5_crank_shaft_mechanism.  
 
% S05_crank_shaft_mechanism 
% old file name is m_005_klikovy_mechanizmus_c3_en.m  (old k6_c4) 
% program requires function procedure asin_0_2pi(x) 
% crank shaft mechanism - constant force acring on piston 
% find dependence of the crank torque on the angular displacement  

S, May 21, 2018 38



% ratio of crank length to rod length is varying  
clear 
al = 0:pi/16:2*pi; 
as = al*180/pi; 
p = 1000;   % piston force  
r = 0.8;    % crank lenght  
l = 2;      % rod length  
sinal = sin(al); 
cosal = cos(al); 
sinal_half = sin(al/2); 
r_range = 0.1:0.1:0.9;  %range of r/l 
% necessary dimensional requires that   
% 2*r must be less than the rod length l 
% so rkl must be smaller than 1/2 
i = 0; 
for r_var = r_range 
    i = i + 1; r = r_var; rkl = r/l; 
    sinbe = rkl*sinal; 
    beta = asin_0_2pi(rkl*sinal); 
    % cos(beta) = 1 - 2*sin(beta/2)^2 
    beta_half = beta/2; 
    cosbe = 1 - 2 * sin(beta_half).^2; 
    ss = p./cosbe; 
    mm = r*ss.*(cosbe.*sinal + sinbe.*cosal); 
figure(1) 
subplot(3,3,i) 
text = ['r/l = ' num2str(rkl)]; 
plot(as,mm,'-k', 'linewidth', 3);  
title(text, 'fontsize', 16); axis([0 360 -1000 1000]); 
grid; xlabel('angular displacement', 'fontsize', 16);  
ylabel('torque [Nm]', 'fontsize', 16); 
end 
print -djpeg -r300 f_005_1_en 
  
%end of m_005_klikovy_mechanizmus_c3_en.m 
 
function x_asin = asin_0_2pi(x) 
% vypocti asin(x) v rozsahu 0 az 2*pi 
% x musi byt v rozsahu 0 az 2*pi 
y = sin(x); 
if x<0, x_asin = NaN; end 
if (x<=pi/2), x_asin = asin(y); end 
if (x<=3*pi/2), x_asin = -asin(y) + pi; end 
if (x <= 2*pi), x_asin = asin(y) + 2*pi; end 
if (x>2*pi), x_asin = NaN; end 
% end of asin_0_2pi.m 
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Fig. S47 shows the rod moment, considering a constant piston force, as a function of the crank 
angle   for different ratios of the crank radius to the rod length. lr /
 

Fig. S47. Torque as a function of angular displacement 
 
Discussion 
 
One can see that a short stroke crank mechanism, with a small ratio of , provides a small 
moment M with respect to the loading force 

lr /
P , but the function )(fM  has a rather 

regular, almost a sine character. The long stroke engine, having a higher ratio , is more 
‘efficient’ – for a given force we get a higher value of the torque 

lr /
M – however, on the 

expanse of a certain irregularity of the function )(fM  . 
 
The assumption of the constant force P during the rotation of the crank within the range <0, 
2 > is not realistic. Actually, one cycle of a four-stroke engine requires four strokes of the 

piston, that is two complete rotations of the crank, i.e. <0, 4 >.  And only one fourth of it 
corresponds to the expansion part (power stroke) of the cycle. Furthermore, during the 
expansion part the pressure in the cylinder, i.e. the force acting on the piston, is far from being 
constant.  

 
The solution presented above could be considered as the first approximation of the task to be 
refined later on.  But this is the way how we generally proceed when analyzing technical 
problems. Simplifying it as much as possible at first and then gradually taking more and more 
details into consideration. After all, the real appearance of two parts of crank mechanism, i.e. 
the connecting rod and piston, shown in Fig. S48, is quite different from the symbolic 
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representation sketched by a few lines as depicted in the 
schematic picture Fig. S42. There is a long way from the 
oversimplified static analysis to an efficient engineering 
design. 

 
 
 
 
 
Fig. S48. Piston and connecting rod 

Example – simplified truss bridge 
 
The statically determined planar ‘bridge’ composed of seven rods of equal lengths, connected 
by five frictionless joints, see Fig. S49, supported by a joint constraint on the left (number 1) 
and by a rotary sliding joint constraint on the right (number 5), is loaded by a single force Q  
acting in the lower middle joint (number 3). In the figure the assumed directions of the rod 
forces are indicated as well. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. S49. Truss structure 
 
Given: dimensions, force Q . 

Determine: rod forces and reactions . 71 StoS 1098 ,, SSS

 
The task could be solved by expressing equilibrium conditions for individual joints.  
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Joint 5.  
.0sin

,0cos

107
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

SS

SS




 

 
Altogether we have ten equations for ten unknown reaction forces. The following program 

S06_truss_bridge shows how to proceed in Matlab. 
 
% S06_truss_bridge 
% prutovka_stat_urcita_silova_metoda_c1 
clear 
al = pi/3; 
sn = sin(al); 
cs = cos(al); 
% matrix [K] 
K = [ cs  1 0     0   0   0   0 1 0 0; 
      sn  0 0     0   0   0   0 0 1 0; 
     -cs  0 cs    1   0   0   0 0 0 0; 
     -sn  0 -sn   0   0   0   0 0 0 0; 
       0 -1 -cs   0  cs   1   0 0 0 0; 
       0  0  sn   0  sn   0   0 0 0 0; 
       0  0   0  -1 -cs   0  cs 0 0 0; 
       0  0   0   0 -sn   0 -sn 0 0 0; 
       0  0   0   0   0  -1 -cs 0 0 0; 
       0  0   0   0   0   0  sn 0 0 1]; 
 % loading forces   
 F = zeros(10,1); 
 Q = 1000; 
 F(6) = Q; 
 F; 
 % solving the equilibrium conditions we get 
 S = K\F 
 

The rod forces ( ) and reaction forces ( ) are 71 SS  1098 ,, SSS

 
 1 -577.3503 
 2  288.6751 
 3  577.3503 
 4 -577.3503 
 5  577.3503 
 6  288.6751 
 7 -577.3503 
 8    0.0 
 9  500.0000 
10  500.0000 
 
The reader should check the equilibrium conditions. How? 
 
Discussion 
 
If the ‘bridge’ were supported on the right the same way as it is on the left-hand side, then the 
number of dof’s would be equal to . Such a system would be classified as interdetemined. 
The unknown variables could not be determined since their number (4 + 7 = 11 in this case) is 
greater than the number of available equations (still ten only). Later, we will show how the 
tasks of this type are solved by tools of mechanics of deformable bodies.  

1
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Hint – plot truss bridge in Matlab  
 
 
 

 
 
 
 
 
 
 
 

         
 

 Fig. S50. Nodes, trusses, displacements 
 

Matlab could help when the bridge structure, depicted in Fig S50, have to be plotted.  All the 
rods are of the same length. The coordinates of all joints (stored in the array xy) are given. 
The following piece of program shows how to proceed using the Matlab function 
gplot(C,xy).  The array C, called the connectivity matrix, indicates the nodes that have to be 
connected by a line. See the Matlab program S07_plot_a_truss_structure and Fig. S51.  
 
% S07_plot_a_truss_structure 
% old file name is m_008_nakresli_prutovou soustavu.m 
  
clear 
% geometrie 
l = 1; 
alfa = pi/3; % 60 degrees 
ly = l*sin(alfa); 
% nodal coordinates 
xy(1,:) = [0 0]; 
xy(2,:) = [l/2 ly]; 
xy(3,:) = [1 0]; 
xy(4,:) = [3/2 ly]; 
xy(5,:) = [2,0]; 
% conectivity 
C(1,2) = 1; 
C(1,3) = 1; 
C(2,3) = 1; 
C(2,4) = 1; 
C(3,4) = 1; 
C(3,5) = 1; 
C(4,5) = 1; 
figure(1) 
subplot(2,1,1); spy(C); 
title('spy(C)', 'fontsize', 16) 
subplot(2,1,2); gplot(C,xy);  

axis('equal'); axis([-0.1 2.1 -0.1 1])  Fig. S51. Matlab plot 
title('gplot(C,xy)', 'fontsize', 16) 
hold on         % hold for a moment 
for i = 1:5     % and plot the nodes 
    plot(xy(i,1),xy(i,2),'o', 'linewidth', 2) 
end 
hold off        % its all 
print -djpeg -r300 f_008_2 
  
% end of m_008_nakresli_prutovou soustavu.m 
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Example – movable system with one dof 
 
Type of task: find the equilibrium configuration for 
a movable system with one dof. 
Given: In Fig. S52 there is a planar mechanism with 
one degree of freedom. It consists of a sleeve, 
having weight Q, which could move in up or down 
directions along a vertical rod attached to the frame. 
At the point A of the sleeve there is attached a rope 
that is led around the pulley that could rotate around 
the frictionless joint at point S. The other end of the 
rope is loaded by a force Z. Friction effects are 
neglected. 
 

Fig. S52. Pulley and sleeve equilibrium 
Determine: 
For given loads (Q and Z) and for given dimensions find the configuration of the mechanism, 
determined by the coordinate x, in which the equilibrium occurs.  
 
One way to solve the problem is to analyze equilibrium of forces at point A. Two component 
type equations are 
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From geometry considerations, we get the distance x, oriented downwards, as a function of 
the angle   from 
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This way the reactions at joint S are not obtained. But nobody asked for it so far. Show, 
however, how the task might be solved if the reaction force at the joint S is required. 
 
Discussion 
Since the function arcsin appears in the analysis, there is a natural limit for its argument. So, it 
is necessary that . The physical, or rather the geometrical, meaning of this fact 
is that as the ratio  approaches to 

1/1  ZQ
ZQ / 1or1  , then the distance x  goes beyond all limits. 

So, there is an embedded singularity in the solution that might be described by 
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See the Matlab program S08_sleeve_and_pulley.m. The output is in Fig. S53. 
 
% S08_sleeve_and_pulley 
C:\tmp_matlab_2016\rest_123 
% test_123 
clear 
l=2; r = 1; 
Q = -9.9:0.1:9.9; Z = 10; 
alfa = asin(Q/Z); 
  
x = -r*cos(alfa) + (l - r*sin(alfa)).*tan(alfa); 
figure(1) 
subplot(1,3,1); plot(Q,x, 'linewidth', 2); grid; xlabel('Q'); ylabel('x'); ... 
    title('x = f(Q)') 
subplot(1,3,2); plot(Q,alfa*180/pi, 'linewidth', 2); axis([-10 10 -90 90]); ... 
    grid; xlabel('Q'); ylabel('\alpha'); title('\alpha = f(Q)') 
subplot(1,3,3); plot(Q/Z,alfa*180/pi, 'linewidth', 2); xlabel('Q/Z');  ... 
    ylabel('\alpha'); grid; axis([-1 1 -90 90]); title('\alpha = f(Q/Z)') 
  
figure(2) 
subplot(1,2,1); plot(Q/Z,x, 'linewidth', 2); grid; xlabel('Q/Z [1]', 'fontsize' ,16); ... 
    ylabel('x [m]', 'fontsize' ,16); title('x = f_1(Q/Z)', 'fontsize' ,16) 
subplot(1,2,2); plot(Q/Z,alfa*180/pi, 'linewidth', 2); xlabel('Q/Z [1]', 'fontsize' ,16);  ... 
    ylabel('\alpha [degrees]', 'fontsize' ,16); grid; axis([-1 1 -90 90]); ... 
    title('\alpha = f_2(Q/Z)', 'fontsize' ,16) 
  
print -djpeg -r300 rest123_fig_2 

 
 

Fig. S53. Matlab output 
 

S, May 21, 2018 45



Example – system of two connected bodies in plane 
 
Type of task: zero dof’s. 
Given: Dimensions, forces . 32, PP

Determine: All the reactions. 
 
The structure, composed of a rotary bar (3) and a slider (2), connected in a frictionless joint A, 
is depicted in Fig. S54. The corresponding FBD is in Fig S55. 
 
Equations of equilibrium are 
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            Fig. S54. Two bodies 
 
There are six equations for six unknowns, i.e. for . xNRRAA yxyx ,,,,, BB

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. S55. Free body diagrams 
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Hint – why the normal reaction appears to be out of the sleeve 
 
Explain, why the normal reaction between the sleeve with a handle and the rod along which it 
slides, is seemingly out of the contact area as it is indicated in the third subplot of  Fig.  S56.  
 
To secure a smooth motion of the sleeve along the rod, there has to 
be a certain radial gap. When the handle of a sleeve is loaded, then 
the sleeve tilts a little bit and the actual contact occurs at the side 
parts of the sleeve as it is shown in the first two subplots of Fig.  
S56.  
 
The reaction forces  between the collar and the sleeve are 
parallel, perpendicular to the rod, and generally of different 
magnitudes. And the resulting force , being the vector sum of 

, always occurs out of the centre of the sleeve. So, when 

plotting FBD one can use either two unequal forces  or just 
a single force displaced by an unknown distance 

21, NN

N

21, NN

21, NN
N x . In both 

cases, the number of unknowns is two. 
 
 

 
 

Fig. S56. Sleeve reactions – alternatives  
 
In Fig. S57 a task of finding the force , being the resultant of , is shown both by 
graphic and analytical approaches. 

N 21, NN

 
 
 
 
 
 

 
 
 
 

 
Fig. S57. Parallel forces – graphical and numerical approach 
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S9. Friction  
 
Friction is a phenomenon appearing when surfaces of bodies in contact are in relative 
motions. Friction induces forces acting against the motion. The behavior of mechanical 
systems is always accompanied by the occurrence of effects resisting motions, or by other 
words, of forces (and moments) acting against the motion.  
 
These effects are of different nature as the dry friction, fluid friction, internal friction, etc. The 
common property of frictional effects is that they irreversibly dissipate energy.  
 
In the text, we will devote our attention to the phenomenon of dry friction, frequently 
occurring in contact surfaces of bodies. The actual contact surface is often approximated by a 
point. 
 
The mathematical description of dry friction is a subject of tribology and is far from being 
simple9. For our purposes, a simplifying so-called phenomenological approach, known as the 
Coulomb’s  law10, will be used.  
 
There are two distinct regimes of dry friction; they are called kinetic and static frictions, 
respectively. 
 
S9.1. Kinetic friction, frequently called just friction, is defined for sliding bodies. The 
friction force is approximated by the formula 
 

NfF  ,          (S9_1) 
 
where 
 
F is the friction force acting in the contact of sliding bodies. The force lies in the tangent 
plane between the contact surfaces of bodies and its direction is opposite to relative velocities 
of contact surfaces. 
 
N is the normal reaction in the contact of  sliding bodies and 
 
f  is the coefficient of friction. Its value, depending on the type of contacting surfaces, can be 

found in engineering handbooks. Often, the friction coefficient is denoted by the symbol  . 
 

Expressed in words, the Coulomb’s law states that the friction force is proportional to 
the normal force in contact.  

                                                 
9 Neale, Michael J. (1995). The Tribology Handbook (2nd Edition). Elsevier. ISBN 9780750611985. 
10 One has to realize that the Coulomb law is an approximation of real world assuming that the friction 
phenomena are independent of the sliding velocity, magnitude of normal force, temperature, humidity, surface 
structure, etc.  
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A few examples of values of coefficient friction  for different sliding surfaces f
 
Steel – ice   0.02  
Steel – steel  0.15 
Steel – stone  0.30 
Steel – sand  0.40 
 
It is a dimensionless quantity, whose value is obtained experimentally. For more details see 
www.engineershandbook.com/Tables/frictioncoefficients.htm. 
 
S9.2. Static friction – also called adhesion – defined for bodies in contact that are not 
moving relative to each other, is approximated by 
 

aNfF  ,          (S9_2) 

 
where 
 
F is the adhesion force acting in the contact between stationary bodies. The force lies in the 
tangent plane between the contact surfaces and its direction is a priory unknown. 
 
The force is the normal reaction in the contact between the bodies and N
 

af  is the dimensionless adhesion coefficient. Its value, depending on the type of contacting 

materials can be found in tables of engineering textbooks.  
 
The adhesion force can take any value within the interval aa , NfNf  .  

 
Expressed in words, the adhesion force is just what it must be in order to prevent motion 
between the surfaces of contacting bodies.  
 
The adhesion coefficient is usually higher than the coefficient of kinetic friction. 
 
In left-hand side of Fig. S58 there are shown 
reaction forces for a general planar constraint 
contact taking friction phenomenon into 
account. It is assumed that the upper ‘body’ 
moves to the right with velocity . Besides of 
the normal reaction , which is 
perpendicular to the mutual tangent to both 
surfaces, there is the friction force, lying in the 
tangent line and having a direction opposite to 
the relative motion of surfaces.  

v
N

 
         Fig. S58. Friction – adhesion 

 
According to Coulomb’s law, its magnitude is proportional to the normal force , while the 
coefficient of proportionality is just the coefficient of friction .  

N
f
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The resulting reaction is obtained as a vector sum of both vectors, i.e. 22 FNR  . This 
sliding constraint represents one unknown reaction component, i.e. the normal reaction. It is 
of interest that the angle  , sometimes called the friction angle, can be obtained from 

f
N

Nf

N

F
tan , so farctan .      (S9_3) 

 
In the right-hand side of Fig. S58 there are shown reaction forces for a general planar 
constraint contact taking friction phenomenon into account. Now, it is assumed that both 
surfaces are stationary, i.e. . It should be emphasized that in this case, the direction of 
the actual adhesion force is unknown (it could point either to the left or to the right) and the 
magnitude of the adhesion force unknown as well. This stationary constraint represents two 
unknown reaction components, i.e. the normal reaction and the adhesion force . The 

adhesion angle is 

0v

af

N aF

a arctan . 

 
S9.3. Normal and friction forces in a contact between extended surfaces 
 
If a loaded block, shown in Fig. S59 moves to the right, one might be 
wondering where the normal force, acting between the frame and the 
block, should occur. Actually, the normal force, we intend to plot in the 
FBD, is a resultant of generally nonuniform contact pressure (of course, 
multiplied by the magnitude of the surface area) between the block and 
the frame. 
 

      Fig. S59. Position of a normal reaction 
 
The distribution of the pressure along the contact surface is a priory unknown since it depends 
on the actual loading of the block. Since we are only interested in the resultant value, say , 
we might assume that it is located at an unknown distance 

N
x  from the left-hand side of the 

block. The quantities  appearing in FBD are unknown. xN ,
 
The friction force, being by definition NfF  , lies in the contact ‘plane’ and its lateral 
position is immaterial. So, when solving the task to find a force B , needed to pull the block 
with a constant velocity to the right, and knowing the force A  and the coefficient of friction 

, we have to write three equations for the block – two component and one moment type 
equilibrium equations – which would allow to find three unknowns, i.e.  
f

xNB and, .
 
Example – forces acting on a 2D block in plane. 
See Fig. S60.  
Given: The block of weight  lies on an inclined 
plane and is also supported by a pin constraint at 
the point A. It is loaded by forces . 

Q

21,ZZ
Determine: Reactions. 
  
 
 
 
 

Fig. S60. A loaded block 
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Three equations are required to express equilibrium conditions of a body in 2D space.  
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S9.4. Normal and traction forces in a pure rolling contact  
 
In Fig. S61 there is depicted a driven (or braked) round wheel 
on an inclined plane in 2D. Also, the FBD forces and moments 
are indicated. The condition of pure rolling requires that there 
is no slipping between the wheel and the supporting frame. The 
corresponding constraint force, called the traction force , has 
to be smaller than . Writing three equilibrium equations for 

a 2D body and knowing , one can evaluate three 

unknowns i.e. , needed for the wheel to move with a 
constant velocity. 

F
Nf

NF ,,
yx FFmg ,,wheel

M

 
    Fig. S61. Rolling contact 

 
We have to check whether the condition of rolling, i.e. NfF  , is satisfied.  If this condition 
is not satisfied, it means that the initial assumption of pure rolling was wrong. The task has to 
be recomputed under the assumption of slipping, i.e. NfF  . 

 
S10. Rolling resistance 
 
Even if we are dealing with mechanics of rigid (non-deformable) bodies, the phenomenon of 
the rolling resistance can be best explained by a logical sidestep. Imagine that a loaded rigid 
wheel is rolling on a slightly deformable surface (frame). See Fig. S62.  
 Due to the deformed frame 
the normal reaction N  is 
shifted slightly (from the 
ideal contact point) by the 

ance dist   to the right. The 
traction force, which has to 
be smaller than Nf , is 
directed against the motion. 
The resulting reaction is R . 
To simplify the analysis of 
the task and the plotting of 
the FBD we usually shift 

e normal force to the ideal contact point P.  
 

Fig. S62. Rolling resistance  

th
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This artificial shift has to be accompanied by a corresponding moment , whose magnitude 

is 
vM

N  .  
 
The coefficient   goes under the name of the coefficient of rolling resistance. Its value for 
different contacting surfaces can be found in engineering textbooks.  
             
 
S11. Principle of virtual work (PVW) 
 
The virtual work is mechanical work produced by forces exerted during their virtual 
displacements. By the term virtual 
displacement we understand any 
infinitesimal displacements and rotations, 
satisfying the prescribed constraint 
conditions. For virtual quantities Lagrange 
introduced the symbol δ , to emphasize the 
virtual, i.e. the fictional or apparent, 
character of these quantities. We assume 
that while the body is being transferred to a 
new, infinitesimally close position, the 
acting forces do not change their magnitudes 
and directions and simultaneously that the 
time is frozen. The difference between the 
virtual and differential quantity can be 
explained observing Fig.  S63.   

Fig. S63. Variation vs. derivative 
 
Let the function )(xfy   represents the relation between two quantities, say the 

displacement and time. Let’s have another function )(xfy   and let it be defined as the 
virtual variation of the original function. According to rules of infinitesimal calculus, there is 
a unique correspondence between differential increments   and  depending on the 
function . Contrary to the differential increment , the virtual increment is defined as 

xd yd
)(xf yd

yyy  .  More about the subject can be found in books devoted to variational calculus. See 
[4].  
 
In mechanics of deformable bodies (strength of material) the principle of virtual work states 
that the virtual work of internal forces , say U , is equal to the virtual work of external 
forces, say W , so 
 

UW δδ  .          (S11_1) 
 
In mechanics of rigid bodies the deformations of loaded bodies are neglected, so the work 
done by internal forces is assumed to be identically equal to zero, thus  
 

0δ W .          (S11_2) 
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It can be proved that zero work of forces acting during the virtual displacement corresponds to 
the equilibrium condition stating that the sum of forces and moments acting on a body is 
equal to zero.  
 
At the first sight the conclusion, that the zero resulting force produces zero work, seems to be 
trivial. But, the resulting zero is a sum of non-zero contributions of works produced by virtual 
displacements of individual forces. We will show that the strength of the principle is based on 
the fact that it has to be valid for an arbitrary virtual displacement.  
 
When balancing individual work contributions we rely on the fact that in mechanics of rigid 
bodies the internal forces – when the resistance effects are neglected – ‘do not work’. 
Furthermore, according to action and reaction principle, they are equal but of different 
directions. The principle allows advantageous solving static tasks without the necessity to 
evaluate all the reaction forces. The principle of virtual work loses its simplicity when 
resistance forces are taken into account.  
 
Example – work done by a force acting on a spring 
 
Given: A linear spring with stiffness  is gradually loaded by the force . See Fig. S64. Its 
magnitude is linearly increasing from zero to the 
maximum value . The deflection is 

proportional to the applied force, thus 

k P

maxP

kyP  , 
where  is the spring stiffness. Consequently, 
the spring deflection 

k
y  goes from zero to .  maxy

Determine: The work W exerted by the applied 
force during the loading process.  P
 

2
max

00 2

1
ddy

maxmax

kyykyPW
yy

  . 

 

We could express the stiffness as 
max

max

y

P
k   and 

substitute it into the previous equation and obtain 
 

.
2

1
maxmax yPW   

F
  

           Fig. S64. Work done by a constant force acting on a linear spring 
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Example – crankshaft mechanism 
 
Type of task: mechanism with 1 dof , no friction considered. 
Given: dimensions, force , see Fig. S65.  P
Determine: moment M needed for mechanism to stay in the shown configuration using PVW. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. S65. Principle of virtual work applied to a crankshaft mechanism 

 
The principle of virtual work requires that for an infinitesimal change of the current position 
of the mechanism, the sum of the virtual work of the moment M and of the virtual work of 
the force P  has to be zero. Since the mechanism has just one dof, there exists a single 
coordinate uniquely determining its position. Opting for the crank angular coordinate, say , 
as the primary coordinate, the piston displacement  depends on it and has to be expressed as 
a function of 

z
 . Similarly for z . 

 
Observing Fig. S65 one can write 
 

crz  sin . 
 
Using Pythagoras theorem gives  
 

2222 cos lcr   222 cosrlc  .  
 
So, the piston position depends on the crank angle   by 
 

 222 cossin srlrz  .        (a) 
 
Considering the clockwise orientation of the angle as  positive, the virtual increment δ  is 
positive in the clockwise direction as well. One can observe that increasing angle   by a 
positive increment δ leads to an increase of  by a positive value of  . So, the principle 
of virtual work states that  

z zδ

 
0δδ  zPMW  .         (b) 
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Note: The minus sign by the second term is due to the fact that the force P , as it is plotted in 
FBD, acts against the positive virtual increment of z . 
 
The relation between δ,δz  can be found by differentiating Eq. (a).   
 







222

2

cos2

)sin(cos2
cos

rl

r
r

z




 .        (c) 

 
This can also be done by the program S09_crank_virt_work_c1.m 
 
% S09_crank_virt_work_c1 
% original file name is crank_virt_work_c1 
clear 
syms r l alfa z z1 z2 
z1 = r*sin(alfa);  
z2 = sqrt(l^2 - r^2*cos(alfa)^2); 
z = z1 + z2; 
dz1_to_dalfa = diff(z1,alfa); 
dz2_to_dalfa = diff(z2,alfa); 
dz_to_dalfa = dz1_to_dalfa + dz2_to_dalfa; 
pretty(dz_to_dalfa) 

 
Executing it we get 
   
                                    2 
                                   r  cos(alfa) sin(alfa) 
                     r cos(alfa) + -----------------------. 
                                     2    2          2 1/2 
                                   (l  - r  cos(alfa) ) 

 
 
And similarly for virtual increments 
 




 222

2

cos2

)sin(cos2
cos

δ

rl

r
r

z




 . 

 
The virtual displacement of the piston z depends on the virtual rotational increment  by 
 



 δ

cos

cossin
cosδ

222

2













rl

r
rz . 

 
Substituting into (b) and factoring out   we get 
 

0
cos

cossin
cos

222

2





























rl

r
rPM .       (d) 

 
And now, comes the most important logical step for the understanding the principle of virtual 
work. The last relation consists of a product of two terms that are equal to zero. That is the 
virtual displacement δ  and the rest of the relation, which is contained in braces. The 
mathematical condition for the product (d) to be equal to zero for any value of δ  requires 
that the contents of the bracket has to be equal to zero. And what is inside the braces 
corresponds to equilibrium condition.  
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Thus 
 















222

2

cos

cossin
cos

rl

r
rPM . 

 
This way we found the required relationship between the forces needed for the equilibrium of 
the mechanism without a necessity to determine reactions and internal forces. The beauty and 
the simplicity of the task would be lost if passive resistance effects were taken into account. 
 
Example – compare FBD and PVW solutions 
 
Type of task: 1dof system. 
Given: Dimensions. A sleeve of the weight G can move 
up and down along a vertical frictionless rod. The sleeve 
is also attached to the frame by a linear massless spring 
whose initial (unstretched) lenght  is equal to b and its 

stiffness is . See Fig. S66. 
0l

c
 

 
 

Fig. S66. Sleeve and spring equilibrium  
 

Determine: For the given weight  find the equilibrium position indicated by G x  coordinate. 
Compare the classical solution, obtained by FBD technique, and that obtained by the principle 
of virtual work. 
 
1) FBD solution 
 
The condition of equilibrium of forces passing through a single point in a plane requires 
writing two equations.  
 

.0sin

,0cos




GS

NS




          (a,b) 

 
Since the spring is assumed linear, then the force in the spring  is proportional to the 
elongation 

S
 , and thus the constitutive equation is 

 
cS  ,           (c) 

 
where c  is the stiffness of the spring. 
 
The relations between the distance x , elongation  and the angle  come from geometry. 

,sin
0 





l

x
          (d) 

  .222
0 xbl            (e) 
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Knowing and  and using the above five equations we can determine five unknowns, i.e. G
x,

c
NS ,,,  . To take into account the friction effects would not complicate the solution at all. 

Only the Eq. (b) would be changed to 0sin  GNfS  . 
 
2) PVW solution 
 
In this case, the condition of zero virtual work of active forces is 

 
0δδ   SxGW .       

 
Why does the minus sign appear at the term denoting the virtual work of the spring force? 
This is due to the fact that the spring force acts against the positive virtual displacement   
which increases with the increase of  . Of course, the normal force  does not work since 
it is perpendicular to the motion of the sleeve. 

xδ N

 
Since we deal with a mechanism with one degree of freedom, whose position is described by 
a single parameter, say x , we have to start by finding how the variable   depends on x . 
 

From  we get   222
0 xbl  22

0 xbl  . 

 
The derivative of the previous relation with respect to x  and the corresponding variations are 
 

x
xb

x

xb

x

xb

x

x
δδ

2

2
222222 







 



. 

 
Substituting the constitutive relation cS   into 0δδ  SxG we subsequently get 
 

0δδ  cxG , 

0δδ
22




 x
xb

x
cxG  , 

  0δδ
22

22
0 


 x

xb

x
xblcxG , 

  0δ
22

22
0 










 x

xb

x
xblcG . 

 
The above relation has to be valid for any virtual displacement . From it follows that the 
outer bracket of the previous relation has to be equal to zero, so  

xδ

 

 
22

22
0

xb

x
xblcG


 . 

 
We wanted to find how the displacement x  depends on the sleeve weight . Instead, we 
obtained the relation . This function could be readily evaluated by Matlab for 
varying values of 

G
)(xfG 

x . The inverse function )(Ggx  , we were actually looking for, is then 
obtained graphically. This way, we circumvent rather cumbersome extraction of x  form the 
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resulting formula above. To take into account the friction effects requires solving the task by 
the FBD procedure first. This would, however, completely disqualify the simplicity of PVW 
procedure.  See the program S10_spring_sleeve.m. 
 
% S10_spring_sleeve 
% original file name is mtl_002_pruzina_objimka 
clear 
b = 1; c = 1000; l0 = 0.8; G = 100; 
  
x_range = 0:0.1:1; 
ksi = -l0 + sqrt(b^2 + x_range.^2) 
  
nom = x_range; 
denom = sqrt(b^2 + x_range.^2); 
  
dksi_to_dx = nom./denom; 
  
figure(1) 
subplot(2,2,1); plot(x_range, ksi, 'linewidth', 2) 
title('ksi as a function of x') 
xlabel('x [m]');  ylabel('[m]') 
subplot(2,2,2); plot(x_range, dksi_to_dx, 'linewidth', 2) 
title('dksi to dx as a function of x') 
xlabel('x [m]'); ylabel('[1]') 
  
i = 0; 
for x = x_range 
    i = i + 1; 
    G(i) = c*x*(-l0 + sqrt(b^2  + x^2))/sqrt(b^2 + x^2); 
end 
  
subplot(2,2,3); plot(x_range, G, 'linewidth', 2) 
title('G as a function of x') 
xlabel('x [m]'); ylabel('[N]') 
  
subplot(2,2,4); plot(G, x_range, 'linewidth', 2) 
title('x as a function of G') 
xlabel('G [N]'); ylabel('[m]') 
  
print -r300 -djpeg mtl_002_pruzina_objimka 
 
Graphical output is in Fig S67. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. S67.  Matlab output 
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Example – using PVW find the equilibrium position of a 1 dof system depicted in Fig. S68 
 
Type of task: 1dof system. 
Given: Dimensions, spring stiffness k . 
Initial length of spring is . Force  0l .Q

Determine: Using PVW, find the 
equilibrium position. 
 
 
 
 
 
 

               Fig. S68. Principle of virtual work 
 
The condition of zero virtual work due to virtual displacements of the mechanism is 
 

0δδ   SxQW .          (a) 
 
Note: The axial force in the rotating rod ‘does not work’ since it is always perpendicular to 
the trajectory of its end joint where the massless spring is attached. The spring is linear so the 
spring force kS  .  
 
The system has one dof. So, the positional coordinates   and the angle  can be uniquely 
expressed as functions of a single coordinate, say x . 
 
For this, we use the law of cosines 
 

     cos2 0
22

00 aalaall  .       (b)  

 
The angle  is a function of x as well. It is obvious that   
 

2

1cossin 







a

x

a

x  .  

 
Only the plus sign is valid in this case, so 
 

    )(12 1

2

0
22

00 xf
a

x
aalaall 






 .     (c) 

 
The notation  is used for further development. )(1 xf
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The derivative of (3) with respect to x  is 
 

 

   

 

   
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

                … (d) 
The notation  is used for further development. Substituting (c) and (d) into (a) and 
exploiting the spring linearity 

)(2 xf
kS   we get 

 

)()(
δ

δ

δ

δ
21 xfxfk

x
k

x
SQ 


.        (e) 

 
We can evaluate for varying values of )(xfQ  x  variable. The Matlab program 

S11_principle_of_virtual_work.m produces Fig. S69.  

Fig. S69. Matlab output 
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This Matlab program shows a few nonstandard graphical tricks as well. Just for fun and future 
convenience. 
 
% S11_principle_of_virtual_work 
% original_file name is St_princip_virtualnich_praci_priklad_P11 
% program requires functions f1 and f2 
clear 
l0 = 1; a = 2; k = 1500;        % dimensions and spring stiffness 
x = 0:0.1:1; 
ksi = f1(x,l0,a);               % my function f1 
dksi_to_dx = f2(x,l0,a);        % my function f2 
figure(1) 
subplot(1,3,1) 
% markersize should be in multiples of 6 
h1 = plot(x,ksi,'-o', 'linewidth', 2, 'markersize',6, ...  
    'markeredgecolor', 'r', 'markerfacecolor', 'y')       
title('ksi vs. x') 
xlabel('x in [m]');  
ylabel('ksi in [m]') 
subplot(1,3,2) 
h2 = plot(x,dksi_to_dx,'-.', 'linewidth', 1.5) 
title('dksi to dx vs. x') 
xlabel('x in [m]');  
Q = k*ksi.*dksi_to_dx; 
subplot(1,3,3) 
h3 = plot(x,Q) 
a3 = get(h3); 
title('Q vs. x -- in italics', 'color', 'r', 'fontangle', 'italic');     
% color and fonttype for title 
txt = ['a = ' num2str(a) ', l_0 = ' num2str(l0)]; 
text(0.1,900,txt, 'color', [0.5 0.5 0.5], 'fontsize', 12);   
% color (gray) and fontsize (14) of text 
xlabel('x in [m]','Color','y');         % color of xlabels 
% xtick distribution, could be non-uniform 
set(gca, 'xtick', [0 0.2 0.5 0.8 1]);    
set(gca, 'xcolor', 'm');                % magenta for x axis line and ticks 
ylabel('Q in [m]','Color','r');         % color of ylabel 
% GCA means Get handle to current axis. 
set(gca, 'ytick', [0:250:1000]);        % tick distribution 
set(h3, 'linewidth', 3, 'color', 'g')   %linewidth and color for plotted curve 
print -djpeg -r300 priklad_P11_fig3 
 
function ksi = f1(x,l0,a) 
% it belongs to St_princip_virtualnich_praci_priklad_P11.m 
% compute the elongation of spring ksi as a function of x 
aa = a^2; 
l0pa = l0 + a; 
xx = (1 - x.^2/aa).^(0.5); 
ksi = -l0 + ((l0pa)^2 + aa - 2*(l0pa)*a*xx).^(0.5); 
 
function dksi_to_dx = f2(x,l0,a) 
% it belongs to St_princip_virtualnich_praci_priklad_P11.m 
% compute the derivative of ksi with respect to x 
aa = a^2; 
l0pa = l0 + a; 
cit1 = l0pa*x/a; 
jm1 = (1 - x.^2/aa).^0.5; 
cit = cit1./jm1; 
xx = (1 - x.^2/aa).^(0.5); 
jm = (l0pa^2 + aa - 2*l0pa*a*xx).^(0.5); 
dksi_to_dx = cit./jm; 
 

 
S12. Internal forces 
 
In rigid body mechanics, we are trying to find the state of equilibrium of external and reaction 
forces acting on bodies regardless of their strength, reliability, durability, etc. The considered 
bodies are by definition perfectly rigid, that is infinitely stiff, they the do not deform due to 
the applied forces, and are theoretically indestructible. So, one might naively deduce that what 
happens inside bodies is generally out of our interest. This would, however, be a shortsighted 
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approach from the engineering point of view. We know that in practice the bodies break due 
to applied forces and this evidently happens due to a failure of the weakest part of the internal 
structure of bodies. What the loading bodies can safely withstand and under what conditions 
they break is the crucial part of engineering reasoning and is fully treated in mechanics of 
deformable bodies – that is in chapters devoted to the strength of material. 
 
In statics of rigid bodies, we are capable to determine the internal forces in a chosen part of a 
body. Here we explain the procedure how to do it. The presented procedure, based on the 
principles of rigid body mechanics, will become a fundamental step for answering the 
structural strength tasks in the subject of the strength of material. 
 
The procedure for finding internal forces can be explained studying a simply supported beam 
of the length l  loaded by single force F as depicted in Fig. S70. 
 
Generally, we proceed in three steps. 
 

1. Using FBD we plot the applied and reaction forces. 
2. Writing equilibrium conditions and solving them we 

determine reaction forces. 
3. We mentally cut the body in the place of interest, then 

apply the FBD technique again and determine the 
internal forces in the cut area by expressing the 
equivalence of internal forces with those imagined on 
a chosen side of the cut. Both left- and right-hand part 
of the body could be alternatively used – both 
approaches lead to same results. 

 
In this particular case, there are three force effects satisfying 
the equilibrium of individual parts of the beam. Force T  
represents the tensional force in the cross sectional section of 
the beam. This force tries to tear the beam at that place apart. 

 
 Fig. S70. Internal forces at a cross section 

 
Force  is normal to the beam axis and represents the shear force. Finally, the moment N M  
tries to bend the beam – it is called a bending moment. 
 
The magnitudes of internal forces acting on divided parts are the same; their directions – in 
agreement with the principle of action and reaction – are, however, opposite. Of course, the 
internal forces cancel out when both artificially divided parts are put together. From outside, 
these forces are not visible – they are internal. Still, to satisfy the engineering requirements 
concerning the strength of material an observer has to ‘immerge’ inside the body to find out 
where are the structural limits of a body to withstand the applied loading. The subject will be 
treated in more detail in chapters devoted to the strength of material. 
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Here is the procedure for finding the internal forces in detail. 
 
1. FBD: Applied and reaction forces (in agreement with the fixed joint constraint on the left 
and the sliding joint constraint on the right) are indicated in the upper part of Fig. S70. 
 
2. The equations of equilibrium written for the whole body are 
 

.0sin:
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Solving the system of equations for unknowns we get 
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3a. Equivalence of internal forces to known forces on the left-hand side of the beam 
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Notice that the moment of forces about the ‘cut’ point is evaluated. No other point can be 
chosen for this purpose. 
 
3b. Equivalence of internal forces to the known forces on the right hand-side of the beam 
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Of course, the result has to be same regardless of what the part of the body is analyzed. The 
magnitudes of internal forces computed with respect to the left and right parts of the body are 
identical, their directions, indicated by vector arrows, are opposite. 
 
Usually, we treat that part of the body, which requires less menial, algebraic and numerical 
effort. 
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Example – internal forces for a simply supported beam 
 
Given: Dimensions, . xMQQQ ,,,, 321

Determine: Internal forces of the beam 
in the I-I cross-section depicted in Fig. 
S71.   
 
 
 
 

 
 
 

Fig. S71. Simply supported beam  
 
The equilibrium equations for finding reactions are 
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Internal forces at the cross-section I-I, which is located at the 
distance x from the support A, are obtained by summing up 
forces and moments along one side of the section. See Fig. 
S72.  First, take the left part of the beam and write the 
equivalence equations for establishing normal and shear forces 

and the bending moment . TN , oM
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Fig. S72. Internal forces in the I-I cross section  
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Varying the distance x  
from zero to , 
the following diagram for 
the distribution of the 
shear force T  and the 

bending moment  

as functions of the 
longitudinal variable 

)

)x

( fba 

)(x

(0M

x  
can be obtained. See Fig. 
S73.  
 
This subject will be more 
closely analyzed in 
chapters devoted to the 
mechanics of deformable 
bodies. 
 

 
 
 

Fig. S73. Shear forces and bending moments along the beam 
 
Example – internal forces along a cantilever 
beam. See Fig. S74.  
 
Given: Cantilever beam loaded by two 
forces . 21, FF
Determine: Shear force and bending moment as 
functions of longitudinal variable x . 
 
The equilibrium conditions based on the FBD are 
 

00   ... there are no forces in this direction, 

.0

,0

21A

21A




lFaFM

FFR
 

 
There are only two reaction forces in this case, i.e. 
 

.

,0

21A

21A

lFaFM

FFR




 

 
 
 
 
 
 
Fig, S74.  Cantilever beam – internal forces 
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Area I for .  ax 0
 
Considering right-hand forces – counterclockwise 
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Considering left-hand side forces – clockwise 
 

xRMxM AAI )(  . 
 

Area II, for , counterclockwise lxa 
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axxa  33  .     

 
The results have to be same regardless of the considered 
part being treated. Varying x , we can plot the distribution 
of the shear force and the bending moment  as 
functions of 

)(xT )(xM
x  as shown in Fig. S74. 

 
Example – internal forces due to continuous loading 
 
Given: Simply supported beam, continuous loading – 

. See Fig. S75. max1,, qql

Determine: Reactions and bending moment and shear force 
as functions of the longitudinal variable x . 
 
By the continuous loading we understand the cumulative 
weight effect of a homogeneous layer of a loose 
aggregation of substances as sand, snow, gravel, etc. In Fig. 
S75 there are indicated two layers; the lower one, which is 
of constant ‘height’ and the upper one, which has a 
triangular shape.  

 
Fig. S75. Internal forces in a continuously loaded beam 
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In 2D cases the ‘loading density’ is expressed by quantities measured in  N/m . 
 
For purposes of rigid body mechanics, the effect of continuous loading is replaced by an 
equivalent resulting force, which acts in the centre of gravity of the graphical representation 
of the continuous loading. In our case we have two layers to which two equivalent forces, say 

, are assigned.  21,QQ
 

Observing FBD reasoning we can write 
 

lqQ 11  , 

lqQ max2 2

1
 . 

 
First, evaluate the reaction forces. The equations of equilibrium are 
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Solving them gives the unknown reaction forces 
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Now, assume that we intend to express the internal forces as functions of longitudinal 
coordinate, say x . The partial equivalents of equivalent loading within the interval x,0 are 

 

.
2

1

2

1

,

2max
max2

11

x
l

q

l

x
xqQ

xqQ

x

x




 

 
Observing the acting forces and moments along the interval x,0 and assigning them to the 

sought-after internal forces we get distributions of the normal force, the shear force and the 
bending moment as functions of time. 
 

1. Axial force   0)( xN . 

2. Shear force   
l

x
qxqRxT

2

max1 2

1
)(   . 

3. Bending moment  
l

x
qxqxRxM

3

max
2

1 3

1

2

1
)(   . 

 
Note: The magnitudes of are already known.  BA , RR
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S13. Centre of gravity, centre of mass and static moment of area 
 
The centre of gravity of a body is a point where the resultant force of gravity (weight) forces 
of individual body’s elements is located. We could also define the centre of gravity as a point 
around which the resultant moment of gravity (weight) forces of all the individual body’s 
elements is identically equal to zero.  

Another point of view. The centre of gravity is a point in which the overall effect of the 
resultant gravity force is the same as the effect of gravitational forces acting on individual 
body’s elements. If the body has to be suspended or supported, at a single point, then the so- 
called axis of centre of gravity has to pass through the centre of gravity and the suspension or 
supporting point. 

The centre of mass is a more general term. It is associated only with the body’s geometrical 
shape and with the density distribution. The location of the centre of mass is independent of 
the surrounding gravitational field. Furthermore, the centre of mass, in contradistinction of the 
centre of gravity, does not depend on the fact whether the body ‘lives’ in the inertial or non-
inertial system.  

In a pseudo inertial frame of reference – in the vicinity of the Earth’s surface – where the 
gravitational field is considered to be uniformly distributed, the centre of mass is practically 
identical with that of gravity. 

In deep space, where no gravity could be assumed, the term centre of gravity loses its 
meaning.  

Realizing the subtle differences, we might use both terms interchangeably. In the text, 
however, the term centre of mass is preferred.   

It should be reminded that matter has different properties – among them weight and mass. 
 
Weight   …     … mass mgG    gravitational acceleration. 

Mass     …   zyxVVm dddd   … density volume. 

Volume ...       … for example area SlV   length. 
 
If the density of a body is considered constant, then the location of the centre of mass could be 
computed using mass, weight or volumetric approach. Also, the so called static moments of 
area or volume might help. 
 
Location of the centre of gravity of a planar object using the static moments of area 
 
Observing Fig. S76 we define  

x dx

y

dy dxdy

S

Ty

T

Tx

 
 
 
 
 
 
                             Fig. S76. Centre of mass 
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In general, we define the static moments of area about coordinate axes by 
 

  SyVymyM x d...d...d … mass, volumetric and area static moments about x  axis, 

  SxVxmxM y d...d...d  …  mass, volumetric and area static moments about y axis.  

... (S13_2) 
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1
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. 

... (S13_3) 
 
So, the determination of the location of the centre of mass is based on the statement that the 
static moment of the whole body is equal to the sum of static moment of individual parts. For 
the computation, we can use mass, weight, volumetric or area elements. If the gravitational 
field is uniform and the density homogeneous, then all the mentioned approaches lead to the 
same result. 
 
Example – centre of mass coordinates 
 
Given: Quarter of a circle.  
Determine:  The coordinates of the centre of mass 
for a quarter circle depicted in Fig. S77.  
 
The area of a quarter circle is  
 

4/2RM  . 
 
The static moment of the quarter circle about the x  
axis is considered as the integral sum of moments of 
its infinitesimal areas defined by . So, dydx
 

Fig. S77. Quarter circle – centre of mass  
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It is convenient to evaluate the integral by means of polar coordinates. The change of 
variables behind the integral operator requires taking the coordinate transformation and the 
corresponding Jacobian into account.  
  
So, Jacobian...,sin,cos rJryrx   . 
 

 
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3

dsin
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Since the static moment of the whole body is equal to the sum of static moments of individual 
infinitesimal elements, we can express the coordinate of the centre of mass from y

 3

4

4/

3/
2

3
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M

M
yMyM x

Tx  . 

The object is symmetrical so, the  coordinate is the same. Tx
 
Alternatively, the static moment could evaluated from ‘elementary slices’ as 
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y

xyM x d
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d 2  and since we can rewrite it into 222 xRy 

 

 
33

2

2

1

32

1
d

2

1 3
3

0

3
2

0

22 R
R

x
xRxxRM

RR

x 







  . 

 
Example – centre of mass coordinates of a blade 
 
Given: The left boundary of the blade is formed by a line defined by , the right 

boundary is a parabola defined by . The upper boundary is formed by a constant line 

. For given values and for the prescribed value b we get reference dimensions 

 and 

xky 1
2

2xky 
by 

/ba 
21,kk

1k 2/ kbc  , respectively. See Fig. 78. The input values have to be carefully 

chosen in such a way that the  b  value is ‘below’ the intersection of both curves. See Fig. 79.  
Determine: The coordinates of the centre of mass. 
 

 
 
 
 

 
 
 
 
 
 
 
 

     Fig. S78. Blade – centre of mass                     Fig. 79. Solution limits 
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In this case, the blade area the can be evaluated as  
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And the static moment about the x  axis is 
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Example – volume of sphere 
 
Given: A sphere is depicted in Fig. S80.  
Determine: The volume of a sphere. Everybody knows the 
answer by heart, but do it anyway in order to recal how the 
transformation into spherical coordinates is provided.  
 
The volume of a body R with properly defined limits is 
 

   zyxV ddd . 

Fig. S80. Sphere 
 
Often, it is convenient to solve the tasks using the transformation of coordinates into the polar 
coordinate system. See Fig. S81. In this case the 
transformation has the form  
 

.sinsin

,cos
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




rz

ry
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



 

 
When the change of variables behind the integral sign is 
carried out, the Jacobian of the transformation has to be 
added. In this case . sin2rJ 
 

Fig. S81. Spherical coordinates 
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To simplify the computation we could evaluate the volume of a sphere as the 
eight-multiple of the volume of one eighth of the sphere in the first quadrant. 
See Fig. S82. 
                  

 
Fig. S82. One eighth 
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Example – just for fun – plot one eighth of sphere in Matlab. See Fig. S83. 
 
% one_eighth 
clear 
[X,Y,Z] = sphere; 
figure(1) 
surf(X,Y,Z); axis equal; axis off 
  
szX = size(X); 
for i = 1:21 
    for j = 1:21 
        if X(i,j) < 0, X(i,j) = 0; end    
 %      if Y(i,j) < 0, Y(i,j) = 0; end  
        if Z(i,j) < 0, Z(i,j) = 0; end  
    end 
end 
  
figure(2) 
surf(X,Y,Z); axis square; axis equal; xlabel('x'); ylabel('y') 
  
figure(3) 
x = [0 1]; y = [0 0]; z = [0 0]; 
plot3(x,y,z,'k'); axis square; axis equal;  
xlabel('x'); ylabel('y'); grid; zlabel('z'); axis off 
az = 120; el = 30; view(az,el) 
hold on 
  
x1 = [0 0]; y1 = [0 1]; z1 = [0 0]; 
plot3(x1,y1,z1,'k'); hold on 
  
phi = 0:pi/32:pi/2; d = length(phi); r = 1; 
x2 = r*sin(phi); y2 = r*cos(phi); z2 = r*zeros(1,d); 
plot3(x2,y2,z2,'k'); hold on 
  
plot3(z2,x2,y2,'k'); hold on 
  
plot3(y2,z2,x2,'k'); hold on 
  
x3 = [0 0]; y3 = [0 0]; z3 = [0 1]; 
plot3(x3,y3,z3,'k'); hold off 

 
Fig. S83.
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Kinematics 
 
Scope 

1. Introduction to kinematics 
2. Motion of particles 
3. Rotary and translatory motion of bodies 
4. Acceleration components appearing in a non-inertial frame of reference 
5. Generic motion of bodies in two-dimensional space 
6. References 

 
K1. Introduction to kinematics 

 
Kinematics is a subject of classical mechanics which deals with quantities describing the 
motions of particles and bodies, without considering the causes that induce the motion. These 
quantities, i.e. displacement, velocity (time rate of displacement) and acceleration (time rate 
of velocity), are measured in  ]  and in  respectively. Kinematics tools, 
together with those of statics, are necessary instruments for solving problems of dynamics. A 
reader is recommended to enlarge his views studying the textbooks listed in References.  

]m[ , s/m[ ]s/[m 2

 
K2. Motion of particles 
 
K2.1. Motion along a straight line 
 
In this case, a single spatial variable, say x , suffices for a unique determination of the particle 
position. We say that this case has one degree of freedom.  
 
Knowing the location or the displacement measured from a certain origin, as a function of 
time 
 

)(txx  ,          (K_1) 
 
then we define the immediate, or the current velocity as a time rate of displacement, or by 
other words, as the first derivative of displacement with respect time 
 

t

x
xv

d

d
  .          (K_2) 

 
The instantaneous velocity should be distinguished from the average velocity, say , which 

is obtained as a sum of the velocity  measured at the time ,  plus the velocity  

measured at the time , and divided by the corresponding time interval . So, 

avgv

B

Ev Et Bv

Bt E ttt 
 

t

vv
v


BE

avg


  .          (K_3) 

 
Generally, when the term velocity is used, it is understood  that the immediate velocity is 
meant.         
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Acceleration (again, the immediate acceleration or the acceleration right now) is defined as 
the first derivative of velocity with respect to time or as the second derivative of displacement 
with respect to time. 
 

t

v
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d

d
  ,          (K_4) 
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Eliminating time variable from (K_4) and (K_5) we get 
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vv
a

d2

d

d

d 2
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The motion of a particle moving along a straight line might be classified as follows 
 
K2.1.1. Motion with constant velocity –  constv  .  
 

If  then cconstv  0
d

d
 a

t

v
. 

 
For initial conditions, , we get 00 , xxtt  )( 00 ttcxx  .   (K_7) 

 
K2.1.2. Motion with a constant acceleration – consta  . 
 
Let ; then for initial conditions kconsta  000 ,, vvxxtt  , we get 

 
)( 00 ttkvv  ,     for zero initial conditions we get atv  ,  (K_8a) 

 2
0000 2

1
)( ttkttvxx   , for zero initial conditions we get 2

2

1
atx  . (K_8b) 

 
Example  – uniformly  accelerating motion 
 
Given: A motion of a particle with a constant acceleration along the straight line is assumed. 
Determine: Derive formulas for velocity and acceleration. For given initial conditions plot the 
distributions of displacement, velocity and acceleration as functions of time.   

The velocity distribution is obtained by integrating the relation  consta
t

v


d

d
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)( 00 ttavv  , 

)( 00 ttavv  .         (K_9) 

 

The displacement distribution is obtained by integrating the relation v
t

s


d

d
 . 
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btained by integrating the relation  

 
.  

 
Fig. K01. Displacements and

.       (K_10) 

 
Defining initial conditions by  
 
t0 = 1; t = t0:0.1:2; a = 5; v0 = 3; s0 = 1;  
 

we can write 
 
v = v0 + a*(t-t0); 
s = s0 + v .* (t-t0) + 0.5*a*(t-t0).^2; 
 
 

Eliminating time variable from Eqs. 
(K_9) and (K_10) we get the 
velocity as a function  
d

)(2 0
2
0

2 ssav  . v

 
The same result can be alternatively
o

sav d22 d
 

 velocities for uniform acceleration 
 
See the program K01_uniformly_accelerating_motion and its graphical output Fig. K01.  
 
% K01_uniformly_accelerating_motion  
% old file name is m_007_rovnomerne zrychleny_pohyb po primce_en.m  
% constant acceleration a 
  
clear 
t0 = 1; t = t0:0.1:2;       % time range 
a = 5; v0 = 3; s0 = 1;      % given acceleration and initial conditions  
v = v0 + a*(t-t0);          % velocity as a function of time 
s = s0 + v .* (t-t0) + 0.5*a*(t-t0).^2; % displacement as a function of time 
  
v1 = sqrt(v0^2 + 2*a*(s-s0));   % velocity as a function of displacement 
  
figure(1) 
subplot(1,3,1); plot(t,v, 'linewidth',2);  
ylabel('velocity [m/s]', 'fontsize', 16);  
xlabel('time [s]', 'fontsize', 16); grid 
subplot(1,3,2); plot(t,s, 'linewidth',2);  
title('uniformly accelerating motion', 'fontsize', 16) 
ylabel('displacement [m]', 'fontsize', 16);  
xlabel('time [s]', 'fontsize', 16); grid; 
subplot(1,3,3); plot(s,v1, 'linewidth',2);  
ylabel('velocity [m/s]', 'fontsize', 16); grid;  
xlabel('displacement [m]', 'fontsize', 16); 
  
print -djpeg -r300 f_007_1_en 
  
% end of m_007_rovnomerne zrychleny_pohyb po primce_en.m  
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Example – motion with cubic increase of displacement 
 
Given: , where  are constants. 3

0)( ktxtx  0, xk

Determine: . )(),(),(),(),( vsasavtatv
 

3
0)( ktxtxx  ,          (a) 

23)( kttvv  ,          (b) 
kttaa 6)(  .          (c) 

 
The functional dependence of individual quantities on time is not always explicitly stated. 
Often, we simplify the notation by writing )(txx  , etc. 

Eliminating the time variable from the last equation, i.e. 
k

a
t

6
 , and substituting it into the 

last but one equation we get the formula for the velocity as a function of time in the form 

k

a
v

12

2

 . 

 
Similarly, we could obtain the displacement as a function of acceleration 

2

3

033

3

0 2166 k

a
x

k

a
kxx  . 

And finally, eliminating the time variable from Eq. (b) 
k

v
t

3
 and substituting it into (a) we 

get  

k

v
x

k

v
kxx

2727

3

03

3

0  . 

 
Example – the motion with decreasing velocity 
 
Given: , , initial velocity . kvaa  0 constka ,0 0v

Determine: The distance , where the current velocity reaches just the half of initial velocity, 

i.e. . 
sx

2/0v

 
kvaa  0 ,           (a) 

kva
x

vv
 0d

d
,          (b) 

 



s0

0 0

2/

0

dxd
xv

v

v
kva

v
.         (c)

      
It should be reminded that 
 

)lg(
d

x
x

x
 , 

)lg(
1d

x
kkx

x
    ... multiplication constant, 
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)lg( xa
xa

dx


   … substitution xzxaz dd,  , 

 

)lg(
1d

xa
bbxa

x


   …  substitution zxbbxaz dd,  . 

 

The integral can be evaluated by the ‘per partes’ rulexx d)lg(
vu . In our cas

1 according to 

  uvvu e, 

 

.
1

,

),lg(,1

x
vxu

xvu




 

a
 
nd so, 

.)lg(d
1

)lg(d)lg( xxxx
x

xxxxx    

 
heck. Knowing that the derivative of a product is vuvuuv )( , we have C

 

)lg(1
1

)lg(1))lg((
d

d
x

x
xxxxx

x
 . 

 
imilarly,  S

 

   

  .)lg()lg(1)lg()(
1

1)lg(
1

/dd,dd,(substitucipod)lg(

xbxax
b

a
bxa

b

a
bxabxa

b

zz
b

bzxzxbzbxaxbxa



 

 

 
nother case A

 

 
x

bxa

x
d  by per partes rule    vuuvvu  gives 

 

.1),lg(
1

,,
1








vbxa
b

u

xv
bxa

u
 

                                                 
1 Also called integration by parts 
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  .)lg(1)lg(

)lg()lg(

)lg(
1

)lg(

d)lg(
1

)lg(d

222

22

b

x
bxa

b

a

b

x

b

a
bxa

b

a

b

x

b

a
bxa

b

x

b

a
bxa

b

x

x
b

a
bxax

b

a

b
bxa

b

x

xbxa
b

bxa
b

x
x

bxa

x


















 
















 


 

 

 
Check. The derivative of the result gives the initial term 
 

 
bxa

x

bxab

bxaa

bbxab

a

bbxa

b

b

a

b

x
bxa

b

a

x 

















 

)(

111
)lg(1

d

d
22 . 

 
Matlab provides the result differing by an integration constant only 
 
y1 = x/(a+b*x) 
int_y1 = 1/b*x-a/b^2*log(a+b*x) 
 
>> pretty(int_y1) 
  
                                   a log(a + b x) 

                             x/b - -------------- ... )lg(2 bxa
b

a

b

x
 . 

  2 
       b 
      
Another check. 
 
>> diff(int_y1,x) 

ans = -a/b/(a+b*x)+1/b ... 
bxa

x

bxab

abxa

bxab

ab

b 









)()(

1
2 . 

 
Now we can come back to our initial task 
 
Integrating Eq. (c)  
 
clear 
syms a0 k v v0 
y1 = v/(a0 + k*v); 
int_y1 = int(y1,v) 
upper = subs(int_y1,v,v0/2) 
lower = subs(int_y1,v,v0) 
res1 = upper - lower; 
pretty(res1) 

 
we get the unknown distance in the form 
 
                   v0    a0 log(a0 + 1/2 k v0)   a0 log(a0 + k v0) 
            - 1/2 ---- - --------------------- + -----------------  . 
                   k               2                     2 
                                  k                     k 
 
  

K, May 21, 2018  6



Example – a falling particle influenced by air resistance 
 
Given : , we assume that . 0,vh 2kvga 
The acceleration of a particle falling in the vicinity of the 
Earth’s surface can be approximated by an experimentally 
obtained relation, namely that the acceleration proportionally 
decreases with respect to the square of immediate velocity. 
This is actually a dynamic task, treated by a so-called 
phenomenological approach based on results of observation. 
See Fig. K02. 
Determine: Hit velocity and time to hit the ground, i.e. kv T . 
 
 

 
 

 
Fig. K02. A falling particle in the air 

 
The velocity as a function of the distance )(svv   is obtained by the following procedure 
 

2

d

d
kvg

s

vv
 , s

kvg

vv
d

d
2 

,   


sv

s
kvg

vv

00
2 d

d
.    

   
Matlab helps again 
 
int(v/(g-k*v^2),v)= 
 
                                               2 
                                   log(-g + k v ) 
                             - 1/2 -------------- 
                                         k 

So, 
 

 s
k

kvg
v








 


0

2

2

)lg(
, s

k

g

k

kvg








 



2

)lg(

2

)lg( 2

, , ksgkvg 2)lg()lg(  2

 

ks
g

kvg
2lg

2





,  ks

g

kvg 2
2

e



, , . ksgkvg 22 e   )e1(e 222 ksks gggkv 

 
And finally, we get the velocity as a function of the distance 
 

 ks

k

g
v 2e1  . 

 
The velocity as a function of time )(tvv  is obtained from 
 

2

d

d
kvg

t

v
 , 
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t
kvg

v
d

d
2 

, 

 

 

v t

t
kvg

v

0 0
2 d

d
. 

 
Matlab gives int(1/(g-k*v^2),v)= 1/(g*k)^(1/2)*atanh(k*v/(g*k)^(1/2)). 
 
 
So, on the left hand of the equation we have  
 

gk

gk

kv

kvg

v
harctan

d
2


 . 

 
Example – a particle in gravitational field 
 
Given: . The Newton’s gravitational law states that the 

gravitational acceleration at a distance 

kvhR ,,, 0

x  from the centre of the Earth 
is inversely proportional to the square of that distance 

2x

k
a  .               (a) 

Determine: The velocity of a particle being shot upwards, from a 
location at the height  above the surface, by velocity , as a 

function of the distance s , which is measured from the surface of the 
Earth. See Fig. K03.  

h 0v

 
Integrating (a)       
 

2x

k

dx

vdv
 , 

 
Fig. K03. A particle in gravitational field 

 





v

v

sR

hR x

x
kvv

0

2

d
d , 

sR

hR

v

v
x

k
v
















 1

2
0

2

,   















hRsR
kvv

11
22

0
2 . 

 
So 
 

 













hRsR
kvv

11
22

0 . 
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Example – minimization task 
 
Given: .There are two locations A 
and B. See Fig. K04. The 

21,,, ccbh
x  axis represents a 

paved road. One can travel along that road by 
the velocity . Outside of the road there is a 
rough terrain where one can ride more slowly 
by the velocity .  

1c

c 12 c
 

 
 

Fig. K04. Road field trip 
   

Determine: The location x , where one should leave to road, and then proceed directly, by a 
straight line, to the point B in order to minimize the travel time between A and B. 
 
Assuming that both velocities are constant, one can write 
 

 
2

22

1
21 c

xbh

c

x
ttt


 . 

 
To find the extremum we compute a derivative of the above relation with respect to x  
 

22
21 )(

)1)((2

2

111

d

d

xbh

xb

ccx

t




  

 
and then equal it to zero 
 

0
)(

)(11
22

21







xbh

xb

cc
. 

 
Solving it for x  we get two roots with opposite signs. Taking the positive value only we get 
 

2
2

2
1

2

cc

hc
bx


  . 

 
It should be reminded that the above formulas are valid under two limiting conditions, 

namely, c  and  21 c
2
2

2
1

2

cc

c

h

b


 . 

Choosing we might obtain the following table of km2 hb x  values (expressed in [km]) 

for different combinations of velocities in [km/hour] needed to minimize the total travel 
time. 

21,cc
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      c2 
          10    20       30  40    50        60         70 
--------------------------------------------------------------------------------   

20    0.8453       *         *         *         *         *         * 
30    1.2929    0.2111       *         *         *         *         * 
40    1.4836    0.8453       *         *         *         *         * 
50    1.5918    1.1271    0.5000       *         *         *         * 

c1 60    1.6619    1.2929    0.8453    0.2111       *         *         * 
70    1.7113    1.4037    1.0513    0.6074       *         *         * 
80    1.7480    1.4836    1.1910    0.8453    0.3987       *         * 
90    1.7764    1.5442    1.2929    1.0077    0.6637    0.2111       * 
100   1.7990    1.5918    1.3710    1.1271    0.8453    0.5000    0.0396 

 
The overall time to destination [in hours] for different combinations of velocities is 21,cc
 
      c2 
              10      20    30   40     50       60   70 
---------------------------------------------------------------------------------       
     20 0.2732       *         *         *         *        *         *          
     30 0.2552    0.1412       *         *         *        *         *         
     40  0.2436    0.1366       *         *         *        *         *          
     50 0.2360    0.1317    0.0933       *         *        *         *          
c1   60 0.2305    0.1276    0.0911    0.0706       *        *         *          
     70 0.2265    0.1244    0.0888    0.0696       *        *         *         
     80 0.2234    0.1218    0.0868    0.0683    0.0562      *         *         
     90 0.2210    0.1197    0.0851    0.0670    0.0555    0.0471      *          
     100 0.2190    0.1180    0.0836    0.0658    0.0546    0.0467    0.0404          
 
       

See the program K02_time_to_destination. 
 
%K02_time_to destination 
clear 
 
z = zeros(10,10); 
t = zeros(10,10); 
c1_to_c2 = zeros(10,10); 
  
c1 = 10:10:100; 
c2 = 10:10:100; 
b = 2; h = 2; 
for i = 1:10 
  for j = 1:i-1 
    if (c1(i) > c2(j)),  

c1_to_c2(i,j) = 1;  
    end 
    b_to_h(i,j) = c2(i)/sqrt(c1(i)^2 - c2(j)^2); 
% distance x     
    z(i,j)= b - c2(j)*h/sqrt(c1(i)^2 - c2(j)^2); 
% compute time to destination 
    t(i,j) = z(i,j)/c1(i) + sqrt(h^2 + (b - z(i,j))^2)/c2(j); 
  end 
end 
   
sz_z = size(z) 
sz_t = size(t) 
  
% take only positive members of z 
for i=1:10 
  for j=1:10 
    if z(i,j)<0, z(i,j)=0; end; 
    if t(i,j)<0, t(i,j)=0; end; 
  end 
 end 
  
z; 
t; 
b_to_h 
c1_to_c2 
  
%%%%%%%%%%%%%%%%%%%%%% 
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b = 2; h = 2; cc1 = 20; cc2 = 10; 
  
bb_to_hh = cc2/sqrt(cc1^2 - cc2^2); 
xx = b - cc2*h/sqrt(cc1^2 - cc2^2) 
disp([cc1 cc2]) 
z 
  
figure(1);  
map=[0.8 0.8 0.8]; 
colormap(map); 
subplot(1,2,1); surf(c1,c2,z); ; grid; view(30,30) 
subplot(1,2,2); surf(c1,c2,t);  
view(30,30);xlabel('velocity c2'); 
ylabel('velocity c1'); title('distance x'); grid 
print -djpeg -r300 fig_k4_c1 
  
% end of k4_c2 

 
The contribution of high velocities is small. This can also be documented on a trivial example. 
Consider a distance composed of two identical parts, say , and assume that a car travels the 
first part by velocity  while the second part by velocity . The time for the first part is 

. For the second part it is 

s

1v 2v

11 / vst  22 / vst  . The overall time to destination is 21 ttt  . 
Then, the corresponding average velocity is 
 

21

21

2121
avg

2

//

22

vv

vv

vsvs

s

tt

s
v








 . 

 
So, for  km/h and km/h we get 1.9802 km/h. 1001 v 12 v
 
K2.2. Motion along a curve 
 
In Fig. K05 the particle L (sometimes we say 
the point L) is constrained to the spatial curve 

. We say that the particle follows the 

curve with the velocity . Presently, it has 
the  acceleration . The velocity vector lies in 
the tangent line, the acceleration vector is 
confined to the plane formed by tangent and 
normal lines. The curve  is called a 
trajectory of the particle L. The tangent line , 
the normal line n  and the binormal 
line determine the immediate basic 
kinematic orientation of the particle L.  

Lk

Lk v


a


Lk
t

b

 
 

 
Fig. K05. Triple of normals 

 
The motion of the particle is determined by its radius vector whose dependence on time is 
known. 
 

)(trr


 .          (K_11) 
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The velocity and acceleration are 
 

t

r
v

d

d



 , 

t

v
a

d

d



 .        (K_12, 13) 

 
The motion of a particle is then described either in the vector notation by 
 

kzjyixr 


         (K_14) 
 
or in the scalar notation (scalar equations actually represents parametrical equations of the 
trajectory) by 
 

)(),(),( tzztyytxx  .       (K_15) 
 
Arc length, measured from the initial position of the particle at 0tt  , is 

 

tzyxs
t

t

d
0

222   .        (K_16) 

 
Velocity 
 

)(),(),( tzvtyvtxv zyx    … velocity components,    (K_17) 

222
zyx vvvvv 


   … magnitude of velocity, speed,   (K_18a) 

kvjvivv zyx


    … velocity vector.      (K_18b) 

 
Acceleration 
 

)(),(),( tvatvatva zzyyxx    … acceleration components,    (K_19) 

222
zyx aaaaa 


  … magnitude of acceleration,  (K_20) 

kajaiaa zyx


    … acceleration vector.    (K_21) 

 
Acceleration lies in the osculating plane being formed by normal and tangent lines. It could 
also be decomposed into normal and tangent components. For magnitudes we write 
 

22
nt aaa  , 

 
where 
 

s

v

s

vv
svat d2

)d(

d

d 2

    ... tangential acceleration,    (K_22) 



2v
an      ... normal or centripetal acceleration,     (K_23) 
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      ... curvature radius.     (K_24) 
 
We could also write 
 

x

vv

x

v
xva xxx

xx d

d

d2

d 2

  ,        (K_25) 

 

y

vv

y

v
yva yyy

yy d

d

d2

d 2

  ,        (K_26) 

 

z

vv

z

v
zva zzz

zz d

d

d2

d 2

  .        (K_27) 

 
 
Example – motion along an ellipse 
 
Given: The motion is expressed by tyytxx  sin,cos 00  , where   is so-called angular 

frequency. 
Determine: Velocity and acceleration components. 
 

tyytxx  cos,sin 00   , 

tyytxx  sin,cos 2
0

2
0   . 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. K06. Displacement, velocity and acceleration 

 
See the program K03_motion of a particle along an ellipse and Fig. K06. 
 
% K03_motion of a particle along an ellipse 
% original file name is Edu_UL_2013_KI_02_01 
clear 
omt = 0:pi/36:2*pi; 
omega = 1.5; 
x0 = 2; y0 = 1; 
x = x0*cos(omt); y = y0*sin(omt); 
xdot = -x0*omega*sin(omt); ydot = y0*omega*cos(omt); 
x2dot = -x0*omega^2*cos(omt); y2dot =  -y0*omega^2*sin(omt);  
figure(1) 
plot(x,y,'k-', xdot,ydot,'k:', x2dot,y2dot,'k-.', 'linewidth', 2) 
title('Edu UL 2013 KI 02 01', 'fontsize', 16) 
legend('displacement', 'velocity', 'acceleration', 'fontsize', 16) 
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xlabel('x, xdot, x2dot', 'fontsize', 16);  
ylabel('y, ydot, y2dot', 'fontsize', 16); 
print -djpeg -r300 fig_KI_02_01 

 
Example – particle motion composed of rotation and translation 
 
Given: The rod, see Fig. K07, rotates at a 
constant angular velocity  . Along the 
rod, a sleeve – simplified as a particle M – 
slides by a constant velocity c .  
Determine: The particle’s displacement, 
velocity and acceleration of the point M as 
functions of time. At the beginning the rod 
was coincident with x  axis, i.e. 0 , 
and the initial location of M was defined 
by the distance  from the origin O.  l
 

 
 
 
 

Fig K07. The sleeve on a rotating rod 
The coordinates of the point M are  
 

.sin)(,cos)(   lylx  
 
Due to our assumptions concerning constant velocities we get  
 

tct   , . 
 
So 
 

.sin)(,cos)( tctlytctlx    
 
Velocity 

tctltctctltcx
t

x
vx  sin)(cos)sin()(cos

d

d
  , 

tctltctctltcy
t

y
vy  cos)(sincos)(sin

d

d
  . 

 
Acceleration 

tctltctctltctcxv
t

v
a x

x
x  cos)(sin2cos)(sinsin

d

d 22   , 

tctltctctltctcyv
t

v
a y

y
y  sin)(cos2sin)(coscos

d

d 22   . 
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Fig, K08. Displacements, velocities and accelerations 
 
See the program K03_rotation and translation.m and Fig. K08. 
 
% K03_rotation and translation 
% original file name is Edu_UL_2013_KI_02_02 
clear 
l = 1; om = 2; c = 3; 
t = 0:pi/64:pi; 
len = length(t); 
t_ones = ones(1,len); 
x = (l*t_ones + c*t).*cos(om*t); 
y = (l*t_ones + c*t).*sin(om*t); 
vx = c*cos(om*t) - om*(l*t_ones + c*t).*sin(om*t); 
vy = c*sin(om*t) + om*(l*t_ones + c*t).*cos(om*t); 
ax = -2*c*om*sin(om*t) - om^2*(l*t_ones + c*t).*cos(om*t); 
ay =  2*c*om*cos(om*t) - om^2*(l*t_ones + c*t).*sin(om*t); 
figure(1) 
plot(x,y,'k-', vx,vy,'k:', ax,ay,'k-.', 'linewidth', 2); 
grid; axis('equal') 
legend('disp', 'vel', 'acc',3) 
xlabel('x, vx, ax', 'fontsize', 16) 
ylabel('y, vy, ay', 'fontsize', 16) 
title('KI 02 02') 
print -djpeg -r300 fig_KI_02_02 
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K3. Rotary and translatory motion of bodies 
 
K3.1. Rotary motion of a body 
 
K3.1.1. Scalar approach 
 
The body is subjected to a rotary motion if one of its material lines (such a line is called the 
axis of rotation or the rotation axis) always stays in rest. The trajectories of all the body’s 
particles are circles lying in planes perpendicular to the axis of rotation and having their 
centers at the axis of rotation.  

 
Fig. K09. Rotation 

 
When solving planar problems, the axis of rotation appears to be a single point viewed from 
above.  The rotary motion can be identified by an angle, say  , between the radius vector of 
an arbitrary point and a line being firmly connected to the rigid frame. See Fig. K09. The 
angle of rotation is usually expressed as a function of time 
 

)(t  .          (K_28) 
 
Then, the angular velocity is defined as the time rate of the rotation angle.  
 

t
t

d

d
)(

  .          (K_29) 

 
And the angular acceleration is the time rate of angular velocity. 
 

 






d

d

2d

d

d

d

d

d
)(

2

2

2


tt

t .       (K_30) 

 
The angle   is usually measured in radians . So, the angular velocity and acceleration are 

measured in  and . Since the radian, as the measure of an angular 

distance, is a dimensionless value, the above units are frequently expressed by  and 

]1[

]s/radians[ ]s/radians[ 2

 s/1 
 2s/1 , respectively. 
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Rotary ‘speed’ is often measured by counting the number of revolutions per minute, known 
under the abbreviation R.P.M. Realizing that one revolution equals the angle of 2 and that 
there are 60 seconds into one minute, one can simply deduce that  
 

]minuteper  srevolution[30/]s/1[ n  ,      (K_31) 
 
where we denoted the quantity revolutions per minute by a symbol  . n
 
K3.1.2. Vector approach is more general 
 
The angular velocity and angular acceleration are actually vectors, denoted 


,


, whose lines 

of actions are identical with the axis of rotation, say o , defined by angles  ,, . See Fig. 
K10. One can write 
 

kji kyxzyx


 


,     ... (K_32a) 

kji kyxzyx   .               ... (K_32b) 

 

Denoting unit vectors by kji


,,  we can express the 
velocity of a generic point, say L, by the vector product 
 

zyx

kji

rv zyx 




 .   (K_33) 

 
The acceleration of the point L is obtained by the 
derivative of the above relation with respect to time 
 

Fig. K10. Vectors of velocities and accelerations 
 

 
 

nt aa

vr
t

rd
r

t

d

t

r
a













 

ddd

d
.     (K_34) 

 
 
The acceleration components are known as  
 
the tangent acceleration    rat


   and    (K_35) 

the normal, or centripetal, acceleration rvan


  .  (K_36) 

 
Decomposing the relation  

nt aa

vra



   into Cartesian components we get 

yzzyzyx vvyza   ,        (K_37a) 

zxxzxzy vvzxa   ,        (K_37b) 

xyyxyxz vvxya   .        (K_37c) 
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It is of interest to analyze a special case, i.e. the motion of the point, say L, along a circle with 
the radius r .  
 
The immediate Cartesian coordinates of the point L can be expressed by  
 

cosrx  , sinry  ,        (K_38) 
 
where the angle  , indicating the immediate angular position of the point L, is a function of 
time and is measured from the x  axis counterclockwise. 
 
Generally, the angle   depends on the angular velocity and the angular velocity depends on 
time, namely )(), tgf  (  .  To express the Cartesian components of velocity and 
acceleration of the point L as functions of time, we have to evaluate the first and second 
derivatives of Eq. (K_38). Thus  

 
yrvx   sin ,        (K_38a) 

xrvy   cos .        (K_39b) 

 
yxrrax   22 sincos ,      (K_40a) 

xyrray   22 cossin .      (K_40b) 

 
The above relations are simplified if const , because it that case 0 . 
 
Often, the analysis is provided using not Cartesian but polar components, that are defined in 
tangent (t) and normal (n) directions. For magnitudes vector quantities av


, we could write 

 
rs     ... arc displacement measured along the circle,   (K_41) 
rv     ... velocity which has always the tangential direction, (K_42) 
ra t   ... tangential component of acceleration,    (K_43) 

2
n ra    ... normal, or centripetal, component of acceleration, (K_44) 

24   ra . … magnitude of resulting acceleration nt aaa


 .  (K_45) 

K, May 21, 2018  18



K3.2. Harmonic motion 
 
The term harmonic motion is frequently used in mechanics. Imagine that you project a radius 
vector r


, rotating counterclockwise by a constant angular velocity  , into the vertical 

coordinate axis and then subsequently register the obtained values as a function of time.   
See Fig. K11 , the program  K04_harmonic_motion and Fig. K12. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

         Fig. K11. Rotating radius               Fig. K12. Harmonic motion 
 
 
% K04_harmonic_motion 
clear; omega1 = 2; omega2 = 6; t = 0:pi/124:pi; t0 = pi/15; 
y1 = sin(omega1*t + t0); y2 = sin(omega2*t); 
figure(1) 
plot(t,y1, 'linewidth', 2); print -djpeg -r300 fig_harmonic_motion 
figure(2) 
plot(y1,y2, 'linewidth', 2); axis([-1.1 1.1 -1.1 1.1]) 
print -djpeg -r300 fig_lissajouse_motion 

 
The harmonic function is most frequently described by a sine or cosine functions of time. In 
this case, we can write  
 

 0sin   trx ,         (K_46) 

 
where we define 
 
r    amplitude of motion, 
x    immediate displacement, 
    angular frequency,  
t    independent variable, usually time, 

0    initial angle, phase. 
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Note: Composing harmonic motions 
occurring in two perpendicular directions 
we get so-called Lissajouse curves. An 
example for motions, whose frequencies 
are in the ratio 1:2, we get Fig. K13.  
 
 
 
 
 
 
 
 
 

Fig. K13. Lissajouse curve 
K3.3. Translatory motion of a body 
 
The body is subjected to a translatory motion if at least two of its nonparallel lines do not 
change their angles during the rotation. In that case, all the particles of the body move along 
identical curves. At a given moment the velocities and accelerations of all the body’s particles 
are the same. Of course, in another moment they are different with respect to the previous 
one.   
 
When analyzing any translatory motion of a body, regardless of considering the motion along 
a line, or along a planar, or spatial, curves, it suffices to study the motion of a single particle. 
 
Example – translatory motion 
Given: The body is attached to the ground by 
two parallelogram links. See Fig. K14. The 
members 2 and 4, having the length r , are 
accelerating with a constant angular 
acceleration k .    
Determine: The trajectory, velocity and 
acceleration of the point T. 

   
                                                                                Fig. K14. Translatory motion 

 
Since the body 3 is subjected to a translatory motion, all the particles follow the same 
trajectory, i.e. the same circles, as the particle A.  
 
Assuming the initial conditions as 0,0,0  t , the velocity of the particle A is the same 
as that of other particles of that body. So, the magnitudes of velocities are 
 

rktrvvv  AT ,  
 
and consequently  
 

ktt   . 
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Magnitudes of normal components of all the points is .  22
nAnTn ktrraaa  

Magnitudes of tangential components of all the points is  rkraaa  tAtTt . 

Magnitudes of the resulting accelerations is 422
n

2
t 1 tkrkaaa  .  

Of course, the directions of all the vectors vary, as they travel along the circles. 
 
K4. Acceleration of a particle in a non-inertial frame of reference 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. K15. Kinematics of relative motions 

 
Consider an inertial coordinate system  labeled 1 in Fig. K15. In this coordinate system, 
there is another system

),( yx
),(  , labeled 2. The position of the origin  of the system O ),(   is 

determined by the vector . The origin  has the velocity Or


O Ov


. The system ),(   moves 

with respect to the system  and also rotates around the origin O  with the angular 
velocity 

), yx(



 and with the angular acceleration 


. The point A, lying in the coordinate system 
),(  , moves as well. Its position with respect to the coordinate system  is defined by 

the vector 
), y(x

r


, while the position with respect to the system ),(  is defined by the vector r 


. 
The coordinate system ),(   is obviously non-inertial. 
 
The time derivative of the angular velocity


, i.e. the angular acceleration 


, is independent 

of the choice of the coordinate system. So 
 

21
2

21

1

21

d

d

d

d  












tt
.        (K_47) 

 
For the positional vectors we can write 
 

rrr O 


.        (K_48) 
1r


2r


r




 
The time derivative of a positional vector r


 is defined as a vector having the 

direction of the trajectory of the motion of a point the positional vector is 
pointing to. See Fig. K16. In the limit, we have 

           Fig. K16. Time derivative of a vector  
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So, the time derivative of a vector is the velocity of its end point. The velocity of a point A, 
with respect to the coordinate system 1, is given by the time derivative of the positional vector 
r


 in that system, i.e. , which has to be equal to the sum of time derivatives of vectors 

in the same system, thus 
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rcarrierrelativecarrier vvvv


 .        (K_50) 

 
Let’s define  

rvv O  21carrier

   – carrier velocity and  
2

r d

d




 


t

r
v




– relative velocity. 

 
The acceleration of a point A can be derived similarly. We start with  
 

.21rA rvvv O 
 

        
(K_51) 

 
Observing the rules for derivatives of products we arrive at 
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So, the acceleration of the point A is 
 

  









Coriolis

r21

cenripetal

2121

tangential

21

relative

A 2 vrraaa rO   .   (K_53) 

 
In conclusion, we have derived the acceleration components of a point, subjected to a motion 
in the non-inertial coordinate system. Evidently, the centrifugal acceleration – incorrectly 
mentioned in certain textbooks – does not exist. See [1], [3], [5]. 
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K5. Generic motion of bodies in two-dimensional space 
 
In this case, the trajectories, velocities, and accelerations of individual points of the moving 
body are generally different. However, all the points, lying in lines perpendicular to the plane 
in which the body lives, have identical trajectories, velocities and acceleration. This is our 2D 
assumption. 
 
The procedure for analyzing this type of body motion consists of the decomposition of the 
motion into two parts, named carrier and relative motions, respectively. 
 
Two methods, called the basic decomposition and the Coriolis decompositions, might 
alternatively be used. 
 
K5.1. Basic decomposition – the carrier motion is of translatory nature 
 
We start by choosing a suitable reference point – usually, it is a point whose kinematic 
properties are known. This point becomes an origin of a new coordinate system – we call it a 
carrier system. Then we make a thought experiment assuming that overall motion of the body 
is composed of translatory motion of the carrier system with respect to the fixed frame of 
reference plus the relative rotary motion with respect to the carrier system.  
  
The basic frame (Fig. K17) is defined by axes yx, . The carrier frame  ,  has its origin at the 
point . Then, the velocity of the point L is Ω
 

LΩΩL:L vvv


 ,  
 
where its components are 
 

Ωv


  carrier velocity, which is same as the velocity of the reference point , 
because we assume that the body is temporarily subjected to a translatory 
motion only. It is assumed that this velocity is known, 

Ω

LΩv


  relative velocity of L with respect to the reference point  due to the rotary 
nature of this part of motion. 

Ω

 
Similarly for the acceleration of the point L. 
 
 . LΩΩL:L aaa




 
 
 
 
 
 
 

 
 
 
 
Fig. K17. Decomposition of motions 

K, May 21, 2018  23



Now, the basic decomposition in more detail. 
 
The location of an arbitrary point L of a body, subjected to a general motion in plane, see Fig. 
K18, can be described by   
 

ΩLΩL rrr


 ,          (K_54) 
 
where  
 

Lr


 … location of  L with respect to the basic frame  yx, , 

LΩr


 … location of  L with respect to the carrier frame   , ,  

Ωr


 …location of the reference point with respect to the basic frame. Ω
 
The velocity of the point L is 
 

ΩLΩL vvv


 ,     (K_55)      
     
where  
 

LΩLΩ rv


   … relative velocity,  

Ωv


   … carrier velocity. 
  

The acceleration of the point L is 
 

ΩLΩL aaa


 ,    (K_56) 
 
where  is the carrier component  Ωa



 
and the relative acceleration could be 
decomposed into tangential and normal 
components as   

LΩa


Fig. K18. Basic decomposition 
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
nt

LΩLΩLΩ

aa

vra   .        (K_57) 

The overall angular velocity and overall angular acceleration are identical with the relative 
angular velocity and with the relative angular acceleration 
 
 rel  , rel  .         (K_58) 

 
The magnitude of the relative velocity is  
 

LΩLΩ rv  ,           (K_59) 
 
where the magnitudes of above vectors are  LΩLΩ vv


 , LΩLΩ rr


 .   (K_60) 
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Summary for the basic decomposition. See Fig. K19.  
 
The carrier motion is of translatory nature, so all the points of the considered body have the 
same velocity and acceleration as the reference point. 
 
The relative motion is of rotary nature. The whole body rotates around the reference point. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. K19. Basic decomposition 

 
Example – crankshaft mechanism – basic decomposition 
 
Given: The crank mechanism. 
Determine: The velocity and the acceleration of the point B belonging to the connecting rod.  
Use the basic decomposition depicted in Fig. K20. 
 
The motion (3:1) of the connecting rod (3) with respect to the frame (1) is mentally 
decomposed into the relative motion (3:5) of the rod (3) with respect to the reference frame 
(5) plus the translatory motion (5:1) of the reference frame (5) with respect to the basic 
frame(1). Sometimes, we simply write 513531  . 
 
 

 
 

Fig. K20. Basic decomposition for a crankshaft mechanism 
 

The velocity of the point B is 
 
B: 513531 vvv


 ,  

 
The arrow means that only the direction is known, the underlining means that both direction 
and magnitude is known. 
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So,  
 

 the direction of 31v


is known, its magnitude is unknown,  

 the direction of 35v


is known, its magnitude is unknown,  

 the velocity A51 vv


  is completely known, since the relative motion is of translatory 

nature. 
 
The acceleration of the point B is 
 
B: 513531 aaa


 , 

 
where 
 

31a



  … the direction is known, 

35a  … the normal component is known completely, since  

 , kde 2
35n ABa

AB
35v

 ,  

… while for the tangent component  only the direction is known, 35ta

51a


  … completely known since A51 aa


 . 

 
So, if a graphic approach were used, the velocity and acceleration could be found easily.  
 
K5.2. Coriolis decomposition – the carrier motion is of rotary nature 
  
Again, we start by choosing a suitable reference point – usually it is a point whose kinematic 
properties are known. This point becomes an origin of a new coordinate system – we call it 
the carrier system. Then we make a thought experiment assuming that overall motion of the 
body is composed of rotary motion of the carrier system with respect to the fixed frame plus 
the relative motion of the body with respect to the carrier system.  
 
Example– crankshaft mechanism – Coriolis decomposition 
Given: The crank mechanism 
Determine: The velocity and the acceleration of the point B belonging to the connecting rod. 
Use the Coriolis decomposition depicted in Fig. K21.   
 
The motion (3:1) of the connecting rod (3) with respect to the frame (1) is mentally 
decomposed into the relative motion (3:2) of the rod (3) with respect to the crank (2) plus the 
rotary motion (2:1) of the crank (2) with respect to the basic frame (1). Sometimes, we simply 
write 31 . 2132 
 
 
 
 
 
 
 

Fig. K21. Coriolis decomposition 
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The velocity of  B is  
 
B:   213231 vvv






, where the magnitude 2121 OB v  is known. 

 
The acceleration of  B is  

   Cor

0

21

n

3231 aaaa
tnt






, where the magnitudes are 
BA

2
32

n32

v
a  , 

BO

2
21

21

v
a   and 3221Cor 2 va  . 
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Dynamics 
 
Scope 

1. Introduction to dynamics 
2. Dynamics of a particle subjected to a straight line motion  
3. Dynamics of a particle subjected to a motion along a curve 
4. Dynamics of a particle subjected to a circular motion  
5. Newton’s and d’Alembert’s formulations of equations of motion  
6. Vibrations 
7. Moments of inertia and deviatoric moments  
8. Dynamics of rigid bodies 

o Translatory motion 
o Rotary motion 

 Planar rotary motion 
 Spatial rotary motion about an axis 

o Planar general motion 
o Summary to dynamics of rigid bodies 

9. References  
 
D1. Introduction to dynamics 
 
The text is devoted to Newtonian mechanics that is valid for small velocities – small with 
respect to the speed of light. Under these conditions, the mass of a moving body is 
independent of its speed. In the theory of relativity, attributed to Albert Einstein, it is not so. It 
is assumed that the current mass  depends on the rest mass  by the formula m 0m

 

22

0

/1 cv

m
m


 ,         (D1_1) 

 
where v  is the current velocity of a moving body and  is the speed of light. c
 
It is known that the velocity of the Earth, when it moves along its elliptic orbit, is 
approximately 30 km/s. In this particular case, the initial rest mass of 1 kg will change to 
1.000000005000000 kg. Thus, for most of the earthbound tasks, we could safely accept the 
statement that the mass is of a body is independent of its velocity. 
 
D1.1. Newtonian mechanics 
 
Dynamics is focused on the determination of the motion of bodies with respect to forces and 
moments that are applied to them. Generally, the problems in dynamics lead to ordinary 
differential solutions requiring solving them in order to find displacements, velocities, and 
accelerations as functions of time. Consequently, the forces and moments are also functions of 
time. Recall, that in statics the problems led to solving the system of algebraic equations. 
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Newton described force as the ability to cause a body to accelerate. His three laws can be 
summarized as follows.  
 
First law: If there is no net force on a body, then its velocity is constant. The body is either in 
rest (if its velocity is equal to zero), or it moves at constant speed in a straight line1.  
 
Second law: The time rate of momentum2 , i.e, vmp


 , of a particle is equal to the acting 

force F


, i.e., Ftp


d/d . 
 

Third law: When a first body exerts a force 1F


 on a second body, the second body 

simultaneously exerts a force 12 FF


  on the first body. This means that forces 1F


 and 2F


 are 
equal in magnitudes and opposite in directions. 
 
In this simple formulation, Newton's laws of motion are valid only in inertial frames of 
reference. That is in frames that are not subjected to acceleration or by other words in frames 
that are either stationary or move (without rotation) with a constant velocity. 

 
Newton’s second law, written for a particle of mass m, states that the time rate of momentum 
is proportional to the external force  
 

Fm
t

v
v

t

m
F

t

vm

t

p 



d

d

d

d

d

)(d

d

d
.      (D1_2) 

 
If the mass of the particle does not change in time, i.e. konstm  , then the most frequently 
used formulation of Newton’s law is 
 

FamFm
t

v 


d

d
.        (D1_3) 

 
Another available formulation 
 

tFvm d)(d


 ,           (D1_4) 
 
stating that the time rate of momentum  is equal to the impulse of external force, is convenient 
for cases when the mass quantity depends on time. A starting rocket, consuming its fuel at 
high rates, is a good example. 
 
Example – time rate of momentum equals the pulse of external force  
 
Given:  A loose freight car of mass  has initial velocity . Assume that the overall 

resistance effects are approximated by a force which is  and acts against the motion.  

m 0v

200/mg
Determine: Time interval after which the car stops. 
 
 

                                                 
1This law was initially deduced by Galileo. Before him, in agreement with Aristotelian mechanics, it was firmly 
believed that objects that are not being pushed or pulled have a tendency to stop.  
2 By momentum, sometimes linear momentum, is understood the product of mass and velocity. 
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For a freight car considered as the particle in the straight line motion, we can write 
 

tPvm dd   
 
or 


k

z

d)(zk

t

t

ttPmvmv ,  

 
where 
 
...  are velocities at the end and at the beginning of the observed phenomenon, zk ,vv

...   are times corresponding to the end and to the beginning of time interval.  zk ,tt
 
Considering a force whose time distribution is constant we have 
 

  tPttPttPmvmv
t

t

  zkzk

k

z

d)( ,       (a) 

where  
 

 zk ttt    ... is the corresponding time interval.  
 
Using Eq. (a) and assuming that the resistance force is constant we get  
 

g

200

200
0 z

z

v
tt

mg
mv  . 

 
Discussion. 
In this simplified case the time to stop is independent of the mass of the freight car. What are 
the limits of the accepted simplification? 
 
D1.2. Important definitions to remember 
 
Force – the cause of the change of motion. 
Matter commonly exists in four states (or phases), i.e. solid, liquid, gas, and plasma. It has 
many properties as volume, density, color, temperature, mass and also the weight. 

Mass – the measure of the unwillingness of matter to change its state of motion. It is 
independent of gravitational field. It is measured in [kg]. 
Weight – one of the matter properties. It depends on the gravitational field. It is 
measured in [N]. 

 
D1.3. SI metric system  
 
of units is the standard that is commonly used in this textbook.  In the SI system the quantities 
as mass, length and time are considered as basic mechanical units, in contradistinction to the 
old technical system of units in which force, length and time were taken as the basic ones. 
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SI metric system of units    Old technical system of units  
     

Basic units  
 

mass     … kilogram   force       … kilopond ]kg[ ]kp[
length    … meter   length   … meter ]m[ ]m[
time    … second     time   … second   ]s[ ]s[

 
Derived units 
 

force   … newton  mass     … has no name ][kgm/sN][ 2 /m]s [kp 2

 
D1.4. Work, energy, power and corresponding units 
 
D1.4.1. Work 
 
Work = force   displacement. This simple statement is valid only if both vector components 
are constant and have the same line of action. Otherwise, an incremental approach has to be 
used. 
 

The increment of work is cosddd sFsFL 


, where   is the angle between F


and s


. 
 
Example – increment of work      
 
Given: A perfectly flexible rope of the length  hangs vertically in the gravitational field. The 
‘longitudinal density’, that is the mass of one meter of the rope, is 

l
 kg/m][ . 

Determine: The work needed to wind up the full length of the rope at its upper end. 
  
The mass of the rope element , whose distance from the its upper end is xd x , is xdm d . 
The elementary work needed for its raising by x  is  
 

xxgmxgL ddd  , where g  is gravitational acceleration. 
 
The cumulative effort for the task is obtained by integration  
 

2

0 2

1
d glxxgL

l

   . Dimensional check: JNmm
s

m
kgm

s

m

m

kg
2

2
2

 . Stimmt. 

 
Note: The weight of the rope of the length l  is lg . The work needed to raise the whole rope 

by the distance , without the winding, is . By the above reasoning, we came to one half 
of it, only. Why? This is due to the fact that by subsequent winding a shorter and shorter 
length of the rope is being raised.  

l 2gl
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D1.4.2. Energy 
 
SI system     Old technical system  
 

NmJ  , Joule = Newton   meter  ,      kp kpm   meter 
kpm102,0J1      J9,81kpm1    

Recall also     kpm4271kcal cal, 2,343kpm1   

 
D1.4.3. Power 
  
is the rate of work, i.e. work exerted per unit of time. It is measured in SI watts  or in old- 
fashioned horsepowers [hp]. One has to distinguish the metric horsepower, denoted 

 and the British or imperial horsepower , respectively. 

]W[

]hp[hp metric ][hpimperial

 
s/JW       kpm/s75hp 1hp 1 metric   

W7,7451hp W,735,5hp 1 imperialmetric   … )3 hp736,0kW1      

JWs    
kpm000 367J103,6kWh1 6   

 
D1.4.4. Potential and kinetic energies  
 
Generally, we say that the energy is an ability to work. 
 
If the body of mass m , in the Earth gravitational field, is raised (or lifted) to the height , 
then the work required (or the work done) is  

h

 
mghEW  p . 

 
This way, the body being raised gains the potential energy .  pE

 
If the body is released (with zero initial velocity) from the elevated position, defined by the 
height , it hits the initial position (ground) by velocity v , which might be determined from 
the following equation of motion 

h

 
mgma  , 

g
x

v


d2

d 2

, 

 
hv

dxgv
00

2 2d , 

g

v
hghv

2
2

2
2  . 

 
 

                                                 
3 For a detailed explanation see https://en.wikipedia.org/wiki/Horsepower#British_horsepower. 
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Work exerted (gained) by the falling body from the height  is also , so h mgh
 

mghW  . 

Substituting 
g

v
h

2

2

  into the previous equation we get the kinetic energy in the form  

2
k 2

1
mvmghE  . 

The sum of potential and kinetic energy, at any moment, is constant. 
 
For the rate of kinetic energy (for a mass particle), using the vector notation, we can write 
 

 it
m F

v

d

d
, 

rFr
v

dd
d

d  it
m , but , so  tdd vr 

rFvv dd  im , 

  rFvv
v

v

dd
0

im , 

  Wm  2
0

2 v
2

1
v , 

WEE  k0k . 

 
The change of kinetic energy is equal to the work done by exerting (applied) forces. 
 
Since the work is defined as power time, we might use the formula tPW Δ 4. Similarly, the 
power could be defined as the time rate of energy, so 
 

P
t

dE
tPdE 

d
d k

k . 

 
The time rate of kinetic energy is equal to the power of applied forces.  
 
Example – difference of kinetic energies equals the work done by exerting forces 
 
Given: A particle in the gravitational field of the Earth, having mass , is released with zero 
initial velocity from the height . After a free fall of the vertical distance 

m
h H  the particle hits 

a non-linear spring which resists the consequent motion of the particle by a force , 
where  is the spring stiffness and 

3kyS 
k y  is the immediate deflection measured downwards from 

the undeformed length of the spring. It is assumed that the spring is massless. 
Determine: The maximum deflection of the spring, say , due to the motion of the particle 

together with the spring. 
maxy

 

                                                 
4 The formula is valid the power is constant during the time interval . P tΔ
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The difference of the final kinetic energy (which, at the moment of the maximum spring 
deflection, is zero) and the initial kinetic energy (which is zero due to the zero initial velocity 
as well) is equal to the work exerted by external forces, i.e. by work done by the spring force 
and by the force of gravity, so 
 

 
 maxmax

0

3

0

dd00
yyH

ykyymg ,   max
4
maxmax 4

1
0 ykyyHmg  . 

 
Example – difference of kinetic energies equals the work of exerting forces  

  
Given: To a crane truck is attached a vertically positioned rope of 
the length  that could freely swing.  At the end of the rope there is 
a particle of mass m .  Assume, that the truck suddenly stops.  

l

Determine: After the truck stops, find the maximum horizontal 
distance x  to which the load is displaced.  
 
From Fig. D01 one sees the geometrical relation between x  and h  
coordinates.  
  

   hlhhllx  222  

 
Fig. D01. Crane truck suddenly stops 

 

After the crane truck is stopped the initial kinetic energy of the particle 2

2

1
mv  is transferred 

into its potential energy . So,  mgh
 

g

v
hmghmv

22

1 2
2  . 

 
Rearranging and substituting we get 
 











g

v
l

g

v
x

2
2

2

22

. 

 
Example – energy conservation 
 
Given: A circular pulley (radius r , mass , moment of inertia 

with respect to its centre ) turns with constant angular velocity 
2m

SJ

  about the axis passing through the joint S. A massless rope is 
wound around the pulley. At the end of rope, there is attached a 
load of mass m . See Fig. D02. At the beginning of the observed 
situation the driving torque applied to the pulley is suddenly 
stopped. Due to inertia the load  for a moment still goes up 
before it stops.        

1

1m

Fig. D02. The weight moves upwards due to inertia 
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Determine: The necessary initial angular velocity   needed for the load to continue in its 
upward motion and to stop at the distance . We have learned that in the absence of 
resistance the change of kinetic energy equals the change of potential energy, so 

h

 
WK  , 

 
or  
 

ebeb WWKK    ... indices b and e indicate the beginning and the end of the observed 

situation. 
 
In our case  
 

2
z1

2
z 2

1

2

1
vmJK Sb   , , 0e K

0b W  ,   . mghW e

 
The kinematic relations are 
 

zz rv  . 
 
Substituting we get  
 

)(00
2

1

2

1 2
z

2
1

2
z mghrmJS    ... the minus sign indicates that the work is consumed, 

 
 . 

 
D1.4.5. Potential forces 
 
By potential forces are understood the forces whose directions and magnitudes depend on 
their positions only. As examples, the gravitational forces or the spring forces could be 
mentioned. 
 
Example – exerted work does not depend on the trajectory  
 
A particle of mass  with initial 
velocity  slides along the 

frictionless trajectory depicted in 
Fig. D03. 

m

0v

 
 
 
 
 

Fig. D03. Motion in gravitational field 
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Given: . 0,,,, 0  fhRvm

Determine:  
a) The height h  needed for the normal reaction between the particle and the circular part 

of the trajectory to have the reaction magnitude at the point A equal to mgN
2

1
A  . 

b) The position s , where the particle loses it contact with the circular part of the 
trajectory if the particle is released from the height Rh  . 

 
Add a) 
The equation of motion written at A in the normal direction is  
 

mgNma  An .          (a) 
 
The normal acceleration at the point A is  
 

R

2
A

n

v
a  .           (b) 

 
The required ‘half-value’ condition is 
 

 mgN
2

1
A  .           (c) 

 
So,  
 

mgmgmgma
2

3

2

1
n   ga

2

3
n  .       (d) 

 
The velocity satisfying the condition (c) is obtained by comparing Eqs. (b) a (d), thus 
 

Rgv
2

32
A  .           (e) 

 
The difference of kinetic energies is equal to the work exerted by external forces,  
 

 sPmvmv d
2

1

2

1 2
0

2
A . 

 
No resistance forces are considered, so the only working force is the force of gravity i.e. the 
weight. Since the gravitational force is of potential nature, then the work done by the weight 
force does not depend on the trajectory but on a difference of potential levels only. So 
 

)(
2

1

2

1 2
0

2
A Rhmgmvmv  .         (f) 

 
It is obvious that RhRhmg  0)(  and that the result does not depend on the mass of 
the considered body.  
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The unknown height h  is obtained from Eq. (f), so 
 

R
g

vv
h 




2

2
0

2
A . 

 
Add b) 
In a generic position, denoted by so far unknown angle  , we can write the equation of 
motion for the normal direction in the form 
 

sinmgNman  . 

The normal acceleration is given by 
R

v
a

2
A

n  . 

 
The loss of contact is given by the condition of zero contact force, thus 
 

0N . 
 
From it follows that the release velocity has to be  
  

 sinsin 2
2

Rgvg
R

v
 . 

 
Again, the difference of kinetic energies is equal to the work exerted by external forces 
between two potential levels. that is sinRhs  . Thus  
 

mgsmvmv  2
0

2

2

1

2

1
, 

  sin
2

1
sin

2

1 2
0 RhgvRg  , 

Rg

hgv

3

2
sin

2
0 

 . 

 
The condition of the existence of the release point within the first quadrant, i.e. 2/0   ,  
requires  
 

hRgv
Rg

hgv 


 23(01
3

2
0 0

2
0 . 

 

Alternatively, if hR  , then for 2/   the initial velocity has to be hgv  20 . 

 
D1.4.6. Momentum, sometimes linear momentum 
 
Momentum for a particle is the product of mass and its velocity, i.e. vmp


 .  

 
 
 

D, 21 May 2018 10



 

 

D1.4.7. Angular momentum, sometimes moment of momentum or rotational momentum 
 
Angular momentum for a particle is the cross product pr


 , where r


 is the particle’s 

position vector relative to a specified origin. 
 
D1.4.8. Velocity and speed 
 
These terms are often distinguished. In this text it is understood that velocity is a vector and 
that the speed is just its magnitude. In this sense, we might write vv


 . 

 
D2. Dynamics of a particle subjected to a straight line motion  
 
In this case, one can write 
 

 
 


n

i

m

j
ji amRP

1 1


,          (D2_1) 

 
meaning that external forces plus reaction forces are equal to the inertial force. 
 
If the motion is assumed in the direction of the x  coordinate axis only, then the scalar 
notation yields  
 

   ,: xxjxi maRPx  

 

   ,0: yjyi RPy         (D2_2) 

 
     .0: zjzi RPz

 
Example – particle on an inclined plane 
 
Given: A particle of ma  m , having the 
initial v city 0v , moves downward an 

inclined plane defined by the angle 

ss
elo

  and the 
length l . See Fig. D04. When the particle 
reaches the point 1, then continues to move 
along the straight horizontal line. Friction 
phenomena are characterized by the 



0v

x

l

?s

av,

N

mg

0

1 2

y

coefficient of friction f . 
Determine: The distance , indicated by the 
point 2, where the particle stops.  

s

Fig_D04. The particle on a slope 
 
It is convenient to choose a suitably defined coordinate system – at first, the positive direction 
of x  axis should be introduced in the assumed direction of the particle motion. Also, the 
analyzed particle should be considered at a generic position, defined by the indicated x  
distance – not at the beginning, nor at the end. It is also a good habit to set the unknown 
positive direction of acceleration in the directions of positive coordinate axes. 
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As in statics, a free body diagram approach is used. In this case, the external forces acting on 
the particle consist of the normal force, the gravity force and the friction force. And according 
to Newton’s law, the vector sum of these forces has to be equal to the vector of inertia force.  
Instead of equilibrium equations, as in statics, we write the equations of motion. Their scalar 
form, for the situation between points 1 and 2, is 
 

maNfmgx sin: , 
0cos:  mgNy . 

 
Extracting the normal force from the second equation and substituting it into the first one we 
get 
 

  mafmg   cossin . 
 
Observing this equation of motion we deduce that the solution is independent of the mass of 
the particle since the equation can be reduced by a factor of .  Thus, the quantity  is 
constant, so the particle moves with a constant acceleration. But for the assumed downward 
motion this acceleration has to be positive, so the condition of the task solvability is 

m a

 

  

 tan

cos

sin
,0cossin  ff . 

Known kinematic relation, i.e. 
x

vv
a

d

d
 , allows expressing the equation of motion in term of 

velocity, i.e. 
 

 
x

vv
fg

d

d
cossin   . 

 
Integrating the last equation, between points 0 and 1, gives 
 

   
1

0

ddcossin
0

v

v

l

vvxfg  , 

 
2

cossin
2
0

2
1 vv

fgl


  . 

 
So, the velocity at the end of the inclined plane, i.e. at the point 1, is  
 

  2
01 cossin2 vfglv   . 

 
What happens next? The final velocity of the first part of the motion becomes a starting 
velocity for the second part of the motion. Denoting new kinematic quantities and the new 
coordinate system by primes, we have a new equation of motion, which is valid between 
points 1 and 2. It has the form  
 

ammgf  , 

.
d

d

x

vv
gf




          (a) 
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Initial conditions are  
 

0t 0x  and . 1vx 
 
When the particle stops, its final velocity is equal to zero. So, integrating Eq. (a) within the 
proper limits gives 
 

 
0

0 1

d
v

s

vvxdgf     

 
and we get the answer in the form 
 

  
gf

v
s

v
gfs

22

2
1

2
1  , 

 
where the velocity at point 1 was found earlier as 
 

  2
01 cossin2 vfglv   . 
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D3. Dynamics of a particle subjected to a motion along a curve  
 
is explained using a simple example. 
 
Example – oblique throw in plane 
 
Given: A projectile, considered as a particle of mass , is shot (thrown) from the origin of 
the coordinate system with initial velocity  under an angle 

m

0v  . The air resistance is 

neglected. The ‘terrain’ is idealized by a straight line originating at the origin and defined by 
the angle  . It is assumed that   . See Fig. D05.  
Determine: The trajectory of the projectile, the hit point coordinates, and the hit velocity.   
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. D05. Oblique shot 
 
Again, we start with a particle being considered at a generic position defined by x  and y  
coordinates. The positive directions of acceleration components are assumed in positive 
directions of coordinate axes. The only external force, the weight of the particle, points 
downwards. A particle in the plane has two degrees of freedom. Thus, two scalar equations of 
motion are written in x and y  directions respectively, and consequently integrated within the 
proper limits, i.e. from the beginning ( 0t ) to the current position at the time t , 
characterized by x  and y  coordinates and by generic values of velocities and accelerations. 
 

.sin,cos

,dd,0d

,
d

d
,0

d

d

,,0

00

sin 0cos 00

gtvvvv

tgvv

g
t

v

t

v

mgmama

yx

v

v

t

y

v

v

x

yx

yx

yx









 




 

 
The above result shows that the x  component of velocity is constant, while the y  component 
is a linear function of time. Another integration gives the parametric components of the 
trajectory in the form 
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2
00 2

1
sin,cos gttvytvx   . 

 
To get the trajectory of the motion in another form, i.e. )(xfy  , we have to extract time t  
from the first equation  
  

cos0v

x
t             (a) 

 
and substitute it into the second equation. Thus, the trajectory of the particle is described by a 
parabolic function 
 

2
22

0

2
22

00

0

cos2
tan

cos2cos

sin
x

v

g
xx

v

g
x

v

v
y







 .     (b) 

 
We have defined the ‘terrain’ by the equation 
 
  tanxy  .          (c) 
 
The hit point coordinates, say  , can be obtained by equaling DD,yx y coordinates in Eqs. (b) 
and (c). So,     
 

2
D22

0
DD cos2

tantan x
v

g
xx


  , 

D22
0 cos2

tantan x
v

g


   , 

 
g

v
x

 22
0

D

costantan2 
   and consequently tanDD xy  . 

 
The time to hit, obtained from Eq. (a), is 
 

cos0
D v

x
t D . 

 
The components and the magnitude of the hit velocity are 
 

cos0D vv x  , 

D0D sin gtvv y   , 

2
D

2
D yDx vvv  . 

 
Check that the magnitude of the hit velocity, in the absence of the air resistance, is the same 
as that of the initial velocity. 
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Fig. D06. Hit point coordinates Fig. D06. Hit point coordinates 
  

See the program D01_oblique_throw.m and Fig. D06. See the program D01_oblique_throw.m and Fig. D06. 
  
% D01_oblique_throw % D01_oblique_throw 
% original file name is edu_UL_2013_DY_02_01_sikmy_vrh % original file name is edu_UL_2013_DY_02_01_sikmy_vrh 
clear clear 
m = 5; v0 = 250; alf = 45; bet = 20; g = 9.81; m = 5; v0 = 250; alf = 45; bet = 20; g = 9.81; 
alfa = alf*pi/180; beta = bet*pi/180; alfa = alf*pi/180; beta = bet*pi/180; 
x_range = 0:1:6000; x_range = 0:1:6000; 
% projectile trajectory % projectile trajectory 
yp = x_range*tan(alfa) - x_range.*x_range*g/(2*v0^2*cos(alfa)^2); yp = x_range*tan(alfa) - x_range.*x_range*g/(2*v0^2*cos(alfa)^2); 
% surface % surface 
ys = x_range*tan(beta'); ys = x_range*tan(beta'); 
% hit point % hit point 
xD = 2*(tan(alfa) - tan(beta))*v0^2*cos(alfa)^2/g; xD = 2*(tan(alfa) - tan(beta))*v0^2*cos(alfa)^2/g; 
yD = xD*tan(beta); yD = xD*tan(beta); 
% hit time % hit time 
tD = xD/(v0*cos(alfa)); tD = xD/(v0*cos(alfa)); 
% hit velocity % hit velocity 
vDx = v0*cos(alfa); vDx = v0*cos(alfa); 
vDy = v0*sin(alfa) - g*tD; vDy = v0*sin(alfa) - g*tD; 
vD = sqrt(vDx^2 + vDy^2); vD = sqrt(vDx^2 + vDy^2); 
figure(1) figure(1) 
plot(x_range,yp,'k-', x_range,ys,'k--', xD,yD,'o', 'linewidth', 2, 'markersize', 10);  plot(x_range,yp,'k-', x_range,ys,'k--', xD,yD,'o', 'linewidth', 2, 'markersize', 10);  
axis('square'); axis('equal') axis('square'); axis('equal') 
title('DY 002 01', 'fontsize', 16) title('DY 002 01', 'fontsize', 16) 
txt1 = ['v_0 = ' num2str(v0) ', alpha = ' int2str(alf) ', beta = ' int2str(bet)]; txt1 = ['v_0 = ' num2str(v0) ', alpha = ' int2str(alf) ', beta = ' int2str(bet)]; 
txt2 = ['x_D = ' num2str(xD), ', y_D = ' num2str(yD) ', v_D = ' num2str(vD)]; txt2 = ['x_D = ' num2str(xD), ', y_D = ' num2str(yD) ', v_D = ' num2str(vD)]; 
legend('projectile trajectory', 'surface', 'hit point', 2) legend('projectile trajectory', 'surface', 'hit point', 2) 
text(500,-250, txt1) text(500,-250, txt1) 
text(500,-500, txt2) text(500,-500, txt2) 
xlabel('horizontal distance [m]', 'fontsize', 16); ylabel('[m]', 'fontsize', 16) xlabel('horizontal distance [m]', 'fontsize', 16); ylabel('[m]', 'fontsize', 16) 
print -djpeg -r300 fig_DY_02_01_02 print -djpeg -r300 fig_DY_02_01_02 
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Example – long jump record, a theoretical limit 
 
Determine: The theoretical maximum length of a long jump record, assuming that the 
contestant, immediately before the recoil, has the velocity, corresponding to the average 
velocity of Usain Bolt during his world record on 100 m. Assume the recoil angle of 20 
degrees.  The jumper is considered as a mass particle and the air resistance is neglected. The 
world record holder on 100 m (2014) is Usain Bolt and his time is 9.58 s.  
 
Compare the computed long jump result with the present (2014) record which, is 8.95 m and 
is attributed to Mike Powell. Consider other recoil angles for comparison. 
 
Hint: Use the relations derived in the previous example, where the parametric equations of the 
trajectory were obtained in the form  
 

2
00 2

1
sin,cos gttvytvx   . 

 
Eliminating the time variable from the first equation 
 

cos0v

x
t             (a) 

 
and substituting it into the second equation, we get an alternative form  in the form )(xfy 
 

2
22

0

2
22

00

0

cos2
tan

cos2cos

sin
x

v

g
xx

v

g
x

v

v
y







 .     (b) 

 
Equation of the surface was defined by  tanxy  .     (c) 
 
Now, the ‘terrain’ is a straight line again, but defined by 0 . 
 
Impact point, with coordinates , is obtained by equaling y-coordinates in equations (b) 
and (c), respectively. Thus 

 DD,yx 

    
2
D22

0
DD cos2

tantan x
v

g
xx


  , 

D22
0 cos2

tantan x
v

g


  .  

 
Impact coordinates are 
 

 
g

v
x

 22
0

D

costantan2 
 , tanDD xy  , but in this case 0 . 

 
See the program D02_long_jump.m, which we obtain as a slight modification of 
D01_oblique throw.m. The program solves the task for a single initial velocity, but for three 
different recoil angles, i.e. 20, 20.844 and 45 degrees respectively. The respective long jump 
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‘records’ are 7.12, 8.95 a 11.11 m respectively. The middle recoil value was chosen in such a 
way that it corresponds to Powell’s world record. The results are in Fig. D07. 
 
Analysis  
The length of the jump is generally longer for a greater initial velocity and a greater recoil 
angle as well. The maximum theoretical value for any initial velocity is obtained for the recoil 
angle of 45 degrees. In this case, the jumper would have to reach the height of almost three 
meters. It is obvious that such a value is physiologically unattainable. 
 

 
Fig. D07. Long jump limit 

 

Program D02_long_jump_c1.m  
 
% D02_long_jump_c1.m  
% original file name is edu_UL_2013_DY_02_01_long_jump_c1 
% find the theoretical value of the long jump 
% assume that the initial speed is given by Usain Bolt record for 100 m 
% three values of recoil angle are consiered 
clear 
time_Usain_Bolt = 9.58;     % [s/100 m] ... time for the world record 
velocity_U_B = 100/time_Usain_Bolt;    % ... velocity in m/s 
v0 =  velocity_U_B; 
m = 5; alf = 25; bet = 0; g = 9.81; beta = bet*pi/180; 
alf_all = [20 26.844 45];                % try three different recoil angles 
alfa_range = alf_all*pi/180;  
x_range = 0:0.1:12; 
% projectile 
i = 0 
for alfa = alfa_range 
    i = i + 1; 
    % trajectory  
    yp(:,i) = x_range*tan(alfa) - x_range.*x_range*g/(2*v0^2*cos(alfa)^2); 
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% surface idealized by a straight line  
    ys(:,i) = x_range*tan(beta'); 
% hit point 
    xD(i) = 2*(tan(alfa) - tan(beta))*v0^2*cos(alfa)^2/g; 
    yD(i) = xD(i)*tan(beta); 
% hit time 
    tD(i) = xD(i)/(v0*cos(alfa)); 
% hit velocity 
    vDx(i) = v0*cos(alfa); 
    vDy(i) = v0*sin(alfa) - g*tD(i); 
    vD(i) = sqrt(vDx(i)^2 + vDy(i)^2); 
end 
%     
xD_Mike_Powell = 8.95; % long jump world record in [m] 
yD = 0; 
% 
figure(1) 
  
plot(x_range,yp, 'linewidth', 2);  
hold on  
plot(x_range,ys,'k-','linewidth', 1); 
axis('square'); axis('equal') 
title('DY 02 01 long jump c1', 'fontsize', 16) 
txt1 = ['Circle denotes the value of the world record by Mike Powell, ie. 8,95 m']; 
txt2 = ['Starting velocity corresponds Usain Bolt record, ie. 9.58s/100m']; 
txt3 = ['Three different recoil angles, measured in degrees, are considered']; 
lab1 = ['alf1 = ' num2str(alf_all(1)) ';          jump1 = ' num2str(xD(1))]; 
lab2 = ['alf2 = ' num2str(alf_all(2)) ';    jump2 = ' num2str(xD(2))]; 
lab3 = ['alf3 = ' num2str(alf_all(3)) ';          jump3 = ' num2str(xD(3))]; 
legend(lab1, lab2, lab3, 3) 
text(0.2,-1, txt1) 
text(0.2,-1.5, txt2) 
text(0.2,-2, txt3) 
  
plot(xD_Mike_Powell, yD, 'ok', 'linewidth', 2, 'markersize', 10) 
hold off 
  
xlabel('horizontal coordinate [m]', 'fontsize', 16);  
ylabel('vertical coordinate [m]', 'fontsize', 16) 
print -djpeg -r300 fig_DY_02_01_02_long_jump_c1 
 

Example – moon landing  
 
Given: mHv ,,,, 0 . A moon probe of the mass m  is 

presently at the height H  above the Moon surface. 
The moon gravity is considered as 6/m gg  . See Fig. 
D08.  
Determine: The magnitude of the braking force F,  
sufficient for decreasing the initial velocity v , in such 

a way that the vertical direction of the landing velocity 
is zero.  

0

 
 
                
 

 
 

Fig. D08. Moon landing 
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Equations of motion and their consecutive integrations give  
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Simultaneous satisfaction of two conditions is required. After traveling the vertical distance 
H , the vertical component of the landing velocity should be zero. Using Eqs. (b) and (d) we 
get 
 

t
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These two equations allow to determine the time to landing  and the magnitude of the 
braking force .  Excluding time from Eq. (e)  
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This leads to a quadratic equation for the variable  in the form F
 

02  cbFaF , 
 
where 
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 , 

m
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From the relation 
a

acbb
F

2

42 
  only a positive root is meaningful. You might check 

that the vertical component of the landing velocity is really equal to zero. But, a more detail 
analysis of the solution reveals that the horizontal component is generally non zero. So, the 
above conditions are not sufficient for a successful landing.  
 
See the program D03_moon_landing.m and Fig. D09.  
 

 
Fig. D09. Moon landing – the results we are not satisfied with 
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% D03_moon_landing 
clear 
H = 5000;         % height in metres 
alfa_d = 10; beta_d = 10; % angles in degrees 
alfa = pi*alfa_d/180; beta = pi*beta_d/180; 
m = 1000;      % mass of lunar modul 
g = 9.81;      % gravitional acceleration at earth 
v0 = 100;      % initial modul velocity 
tmax = 120;    % maximum time     
  
% find the braking force 
a = H*cos(beta)^2/m^2; 
b = -2*g*H*cos(beta)/(6*m) - v0^2*cos(alfa)^2*cos(beta)/m + ... 
    v0^2*cos(beta)*cos(alfa)^2/(2*m); 
c = g^2*H/36 + g*v0^2*cos(alfa)^2/6 - g*v0^2*cos(alfa)^2/12; 
FF1 = (-b + sqrt(b^2 - 4*a*c))/(2*a); 
F = FF1; 
 
incr_t = 1; 
t = 0:incr_t:tmax;  
len_t = length(t); 
t_ones = ones(1,len_t); 
vx = v0*sin(alfa)*t_ones - F*t*sin(beta)/m; 
vy = v0*cos(alfa)*t_ones + (g/6 - F*cos(beta)/m)*t; 
sx = v0*sin(alfa)*t - 0.5*F*t.^2*sin(beta)/m; 
sy = v0*cos(alfa)*t + 0.5*(g/6 - F*cos(beta)/m)*t.^2; 
td = v0*cos(alfa)/(F*cos(beta)/m - g/6)         % time of landing 
F_krit = m*g/(6*cos(beta)); 
vx_d = v0*sin(alfa) - F*td*sin(beta)/m          % vx velocity at landing 
sx_d = v0*sin(alfa)*td - 0.5*F*td^2*sin(beta)/m % x coor of landing 
  
figure(1) 
xx1 = [0 tmax]; yy1 = [H H]; 
xx2 = [td td]; yy2 = [-v0 v0]; yy3 = [-1.1*H 1.1*H]; 
yy4 = [0 0]; 
subplot(2,1,1) 
plot(t,vx,'k-.', t,vy,'k-', td,0,'o', td,vx_d,'s', 'linewidth',2.5, 'markersize',10);  
title('DY 03 01 lunar landing ', 'fontsize', 16) 
ylabel('velocities [m/s]', 'fontsize', 16) 
txt1 = ['vxd = ' num2str(vx_d) ' [m/s]']; text(81,-70,txt1, 'fontsize', 14) 
hold on 
plot(xx2, yy2, 'k', xx1,yy4, 'k') 
hold off 
legend('v_x', 'v_y', 'at this time v_y = 0', 'at this time v_x \neq 0', 3);% grid 
  
subplot(2,1,2) 
plot(t,sx,'k-.', t,H-sy,'k-', td,0,'o', 'linewidth',2.5, 'markersize',10); 
ylabel('height [m]', 'fontsize', 16)  
legend('s_x', 's_y', 'at this time the modul hits the surface', 3); % grid 
xlabel('time [s]', 'fontsize', 16) 
hold on 
plot(xx1,yy1,'k', xx2,yy3,'k', xx1,yy4, 'k') 
hold off 
print -djpeg -r300 fig_DY_03_01_03 
% the end of edu_UL_2013_DY_03_01_moon_landing 
 
Not being happy with the above result we have to add another condition to satisfy the third 
requirement, namely that the horizontal component of the landing velocity has to equal to zero 
as well.  So, 
 

 sinsin0 0 m

Ft
v  . 

 
This equation, together with Eqs. (e) and (f), suffices for the determination of three 
unknowns, i.e.  ,, Ft . The system of equations is, however, nonlinear. The solution is 
lengthier, but not difficult. 
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The correct value   could also be found by a trial and error approach as shown in the 
program D03_moon_landing.m.   For  75.3  the vertical component of the landing 
velocity is very small as indicated in Fig. D10.  
 

Fig. D10. Moon landing – improved 
 
D4. Dynamics of a particle subjected to a circular motion 
 
Let’s remind what kinematics says about the motion of a particle along the circle with a radius 
r . If the current angular displacement is  , then the Cartesian coordinates of a generic point 
can be expressed by  
 

cosrx  , sinry  ,        (D4_1) 
 
where the angle   is generally a function of time. It is convenient to measure it from a 
suitably chosen axis counterclockwise. 
 
Generally, the angle   depends on the angular velocity while the angular velocity depends on 
time, namely )(tgf  ),(  .  To express the Cartesian components of velocity and 
acceleration of the point L as functions of time we have to evaluate the first and second 
derivatives of Eq. (D4_1). Thus  
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yrvx   sin , 

xrvy   cos .         ... (D4_2) 

 
yxrrax   22 sincos , 

xyrray   22 cossin .       ... (D4_3) 

 
The above relations are simplified if const , because it that case 0 . 
 
Often, the analysis is provided using not Cartesian but polar coordinates, that are defined in 
the tangent (t) and the normal (n) directions. For magnitudes of vector quantities av


,  we 

could write 
 

rv     ... velocity which has always the tangential direction, 
ra t   ... tangential component of acceleration, 

2
n ra    ... normal, or centripetal, component of acceleration, 

24   ra  … magnitude of resulting acceleration nt aaa


 . 

 
Example – a particle moving along a circular trajectory 
 
Given: . At the 
beginning, i.e. for 

21,,, ffmR
0 , the 

particle has an initial tangent 
velocity . Assume that there 

is a different coefficient of 
friction between the particle 
and cylindrical wall, say ( ) 
and between the particle and 
the horizontal support, say 
( ). Consider the 
counterclockwise motion. See 
Fig. D11.  

0v

1f

2f

Determine: The location, where 
the particle stops. 
 
 
 
 
 
 
 

Fig. D11. A particle moving along a circular trajectory 
 
Cylindrical coordinates are considered. Recall that the particle has a zero radius, so all the 
forces actually act within a single ‘contact’ point. The equations of motion are written in the 
direction of the tangent , and in directions of two normals, i.e. in directions of and  )t( )n( )b( .
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2211:t fNfNmat  , 

1:n Nman  , 

mgN  20:b . 
 
Kinematic relations for tangent and normal accelerations are  
 

 RRa  t ,   R
R

v
RRa 

2
2

n . 

The angular acceleration can be expressed as 


d2

d 2

 . 

 
Using the above kinematic relations, extracting the reaction forces and substituting them into 
the equation of motion, written for the tangent direction, we get  
 

21n mgffmamat  , 

 

21
2 gffRR   , 

 

21
2

2

d2

d
f

R

g
f  




. 

 
We are looking such a value of angular coordinate, say c , where the particle stops, i.e. for 

the moment when the angular velocity reaches the zero value, i.e. 0 . Integrating the last 
equation in proper limits we get  
 

 


0

0
21

2

2

0

c

d2
d










f
R

g
f

, 

 

c

0

21
2

1

2ln
1

0


















  f

R

g
f

f
, 

 

1

1

f c2
1

21
2
0 2ln

1
ln  





















  f

R

g

f
f

R

g
f , 

 












 1ln

2

1
ln

2

1

2

1
2
0

1
2

21
2
0

1
c gf

Rf

ff
R

g

f
R

g
f

f


  , where 

R
0

0  v
, so 









 1ln

2

1

2

1
2
0

1
c Rgf

fv

f
 . 
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Example – from the motion along an outer surface of a cylinder to the first cosmic velocity  
 
Given: . A particle of mass , being at the 

beginning on the top of a cylinder of the radius 
0,, vmr m

r , 
is released with horizontal velocity . Friction is 

neglected. See Fig. D12. 
0v

Determine: The release and hit points. 
 
The equations of motion for the first part, i.e. 
from initial position to the point K, where the 
particle loses its contact with the cylinder, written 
for a generic position denoted by angle  , are 
written in the direction of tangent and normal 
directions, respectively 
 

sin:t t mgma  ,    (a) 


K

0v

K
r

x

y

Kv

xa

ya

Nmgma  cos:n n .   (b) 
 

         Fig. D12. Motion along a cylinder surface and consecutive oblique throw  
 
Eq. (a) indicates that the tangential component of acceleration is independent of the particle 
mass. 
        
Kinematic relations are 

ra t , , 2
n ra 



d2

d 2

 .      (c) 

 
Rearranging Eq. (a) we get 
 





sin
d2

d 2

gr  .         (d) 

 

We start with 0  and with initial angular velocity 
r

v0
0  . Let the release point is 

indicated by so far unknown angle k  – the corresponding angular velocity is k . Integrating 
Eq. (d) we get 
 

 
k

2

2 0

2 dsin
2

d





r

gk

o

, 

  k
0

2
0

2
k cos

2 
r

g
 , 

 k
2
0

2
k cos1

2  
r

g
, 

 

 k
2
0

2
k cos1

2  
r

g  .        (c) 
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So far we know neither kk nor  . The relation between them is obtained from Eq. (b). Also, 
we know that in the moment of release the normal reaction  should attain the zero value. 
So, 

N

 

kkn cos)( mgam  , where  2
kn )( kra 

 
and consequently   
 

k
2
k cos

r

g
 .         (d) 

 
Substituting (d) into (c) we get 
 

 k
2
0k cos1

2
cos  

r

g

r

g
, 

 
The cosine of the release angle is 
 

3

2

3
cos

2
0

k 
g

r . 

 
We know that rv /00  , so  

 

3

2

3
cos

2
0

k 
rg

v .         (e) 

 
Solvability condition. The angle k  have to be a real number, so the argument of arcus cosine 
function have to be less or equal to one. On the edge of solvability we have  
 

1
3

2

3

2
0 
rg

v
.          (f) 

        
Considering for a moment the quantity r  to be the Earth radius, i.e. , and 

taking the gravitational acceleration as , we get  

m6378000r
2m/s81.g 9

 

km/s91,70  rgv . 

 
On the verge of solvability, we surprisingly obtained the first cosmic velocity – the initial 
horizontal velocity needed for a particle to circle the Earth and never fell to the ground.   
 
And now, back to our task. 
 
For the zero initial velocity, there will be no motion. For infinitesimally small velocity the 
particle starts to move ‘downward’. The release point then will be computed from Eq. (e). We 
get  
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0.7297 
3

2
arcsin

3

2
cos kk   . This, expressed in degrees, is 45.0280. 

 
The corresponding tangent velocity at the point K would be KK rv  . Using the relation (d) 
we obtain 
 

KK cosrgv  . 

 
From now on, we can solve the standard ballistic problem for a particle being shot from point 
K with the initial velocity  and look for the impact or contact point D. Kv
 
The magnitude of initial velocity is KK rv   –  its direction is in a tangent line at the point K 
to the surface. The initial location has the coordinates  
 

K0 sinrx  , 

K0 cosry  . 

 
The components of initial velocity are 
 

KK0 cosvv x  , 

KK0 sinvv y  . 

 
Equations of motion and their solution 
 

0xma ,    mgmay  , 

0
d

d


t

vx ,    g
t

vy 
d

d
, 

 
x

x

v

v

xv
0

0d ,    ,  



y

y

v

v

t

y tgv
0 0

dd

constvvv xx  KK0 cos ,  gtvgtvv yy  KK0 sin , 

x
x v
t

s


d

d
,    y

y v
t

s


d

d
, 

 
t

x

s

x

x tvs
x

0

dd
0

,    ,   tgtvtvs
tt

y

s

y

y

y

ddd
0

0y

00

 

tvtvxs xxx 00  ,   2
00 2

1
gttvys yy  . 

 
Parametric equations of the particle trajectory are 
 

tvxs xx 00  ,    2
00 2

1
gttvys yy  . 
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The impact point is determined from the condition that 0ys . So 

0
2

1 2
00  gttvy y  

 
and finally 
 

00

22

2,1 ,,
2

where,
2

4
ycvb

g
a

a

acbb
t y 


 . 

 
Only the positive root is meaningful.  
 
For details see the program D04_circular_orbit. The results are graphically depicted in 
Fig. D13.  
 
% D04_circular_orbit 
 mtl_DY_02_04 
clear 
r = 2; v0 = 5; g = 9.81;    % input data 
omega = v0/r;               % initial angular velocity 
arg = omega^2/(3*g) + 2/3; 
fik = acos(arg); fik_deg = fik*180/pi;      % release angle 
xk = r*sin(fik); yk = r*cos(fik);           % point of release 
omegak = omega^2 + 2*g*(1 - cos(fik))/r;    % release angular velocity 
vk = r*omegak;                              % release tangential velocity 
t_range = 0:0.05:0.25;                      % time range 
 
% initial conditions for the second part of motion 
x0 = r*sin(fik);        y0 = r*cos(fik); 
v0x = vk*cos(fik);      v0y = vk*sin(fik); 
  
% the second part of the motion  
% trajectory of the free fall with prescribed initial conditions 
it = 0; 
for t = t_range 
    it = it + 1; 
    sx(it) = x0 + v0x*t;                        % (a) 
    sy(it) = y0 - v0y*t - 0.5*g*t^2;            % (b) 
end 
  
% hit point is defined by sy = 0; 
% express t from (b), which leads to quadratic equation 
% only plus root is applicable in this case 
a = 0.5*g; b = v0y; c = -y0; 
td = (-b + sqrt(b^2 - 4*a*c))/(2*a); 
% alternatively, use matlab roots function 
rr = roots([a,b,c]);        % the second root has no meaning 
% and substitute it into (a) 
sxd = x0 + v0x*td; 
sxd2 = x0 + v0x*rr(1);      % imaginary hit point 
  
% plot it 
txt1 = ['v0 = ' num2str(v0) ' m/s  \phi_K = ' num2str(fik_deg) ' deg']; 
txt2 = ['sxd = ' num2str(sxd) ' m'];    txt3 = ('\phi_K'); 
% auxiliary lines 
xx1 = [-r 4.2];  yy1 = [0 0]; 
xx2 = [0 0];  yy2 = [0 r]; 
xx3 = [0 xk]; yy3 = [0 yk];  
figure(1) 
fi = 0:pi/90:2*pi; 
x = r*sin(fi); y = r*cos(fi); 
plot(x,y,'k-', xk,yk,'ko', sx,sy,'k--', xx1,yy1,'k-.', xx2,yy2,'k:', ...  
    xx3,yy3,'k:', sxd,0, 'sk', ... 
    'linewidth', 2, 'markersize', 10) 
legend('circle', 'release point', 'free fall trajectory', 'ground', ... 
   'line1', 'line2', 'hit point', 3) 
axis('equal'); title('DY 02 04') 
text(1.7,-1.8,txt1); text(1.7,-2,txt2); text(0.15,1,txt3) 
print -djpeg -r300 fig_DY_02_04_02 
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Fig. D13. Matlab output 

 
D5. Newton’s and d’Alembert’s formulations of equations of motion 
 
The fact that the product , describing the inertia force, has the dimension of force, was 
used by d’Alembert for introducing so-called apparent inertia force in the form 

am

 
aD m .          (D5_1) 

 
This allows rewriting the Newton equation of motion  im Fa into the form  

 

  0iFD .          (D5_2) 

 
So-called d’Alembert’s principle states that the apparent inertia forces and other acting forces 
are in the state of  ‘dynamic equilibrium’.   
 
This is, however, an apparent equilibrium characterized by the fact that time in our minds is 
temporally frozen. For a given moment we might consider the solved task as an apparent 
‘equilibrium’ case. In the following moment we also have an apparent equilibrium, but a 
different one. In an inertial frame of reference, the d’Alembert formulation is just a simple 
mathematical reformulation of the classical Newton’s formulation of the equation of motion 
requiring to take inertia force and shift it to the other side of the equation with an opposite 
sign and call it the apparent inertia force.  In a non-inertial frame of reference, it is not so 
simple. We will show that it is the observer’s point of view that plays a crucial role.  
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Inertial and non-inertial frames (systems) of reference 
 
The inertial system is a useful engineering approximation defined by the assumption that it is 
a system which is stationary with respect to fixed stars5. The non-inertial system moves with 
acceleration with respect to an inertia system. In many engineering application, an observer 
might safely consider the Mother Earth as an inertial system. A coordinate system firmly 
connected to a rotating merry-go-round is a good example of a non-stationary system of 
reference. 
 
An example, which might shed light on the difference 
 
Let us examine a simple example. Consider a stone being whirled around on a string, in a 
horizontal plane. The effect of gravity is neglected here. There are two alternative and 
equivalent ways how to tackle the problem – using either Newton’s or d’Alembert’s 
formulations. See Fig. D14.  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. D14. Observer’s view – Newton and d'Alembert 
 
Newton’s formulation, i.e. the equation of motion in the form Sma c , with  being the 

normal or centripetal acceleration, is applicable for an observer in an inertial frame of 
reference, for somebody who is located at a fixed point of the Universe. Newton’s second law 
has a form of equivalence of forces. For a mass particle, it states that a product of mass and 
acceleration is equal to the sum of acting forces. Newton calls the force on the left-hand side 
of the equation, i.e., , the inertial force, while the constraint force, the force in the string, 

i.e. , he denotes by the term centripetal force. We have to pull on the string to keep the 
stone in the circle. In this case, both forces have the same direction and the same magnitude, 
but they are not identical. They are of different origins.  

ca

cma

S

 
D'Alembert’s formulation is applicable for an observer in the non-inertial frame of reference, 
for somebody, who is sitting on the rotating particle. D'Alembert showed that one can write 
equations of motion by means of equivalent, seemingly static, equilibrium equations, by 
adding the so-called apparent6 inertial force. Generally, the apparent inertial force is a 
product of mass and negative acceleration. See [1], [2]. 

                                                 
5 Of course, we know that the Universe is expanding and constantly accelerating. So, there are no fixed stars 
available and generally, no inertial frame of reference exists. Nevertheless, the Earth can be for many 
engineering applications approximately considered as the inertial frame of reference since its orbital 
accelerations, due to Earth's daily and annual rotations are small. 
6 Other terms used for the adjective ‘apparent’ are d’Alembert, fictitious and pseudo-force. See [1]. 
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To use Newton’s law correctly in a non-inertial frame, the apparent inertial force must be 

added. In this case, the apparent force is the centrifugal force , where camC



2

cc raa 


 is the magnitude of the centripetal acceleration. See [2], [3]. D´Alembert’s 

formulation has a form of the equilibrium of forces – meaning that the sum of all forces is 
equal to zero. In scalar notation, where arrows indicate the direction of accelerations and 
forces, we might write,  is the magnitude of the centrifugal 

force. See Fig. D14. Notice that the centrifugal force C

2where,0 mrCCS 


, as a vector, has an opposite sign with 
respect to the vector of centripetal acceleration ca


. The corresponding scalar equation 

 comes from the idea of the free-body-diagram reasoning, which is based on the 
idea of replacing the effects of constraints by equivalent forces – in this case, the string is 
mentally cut and replaced by an equivalent force, say . To an observer sitting on the rotating 
particle, the centrifugal force appears to be the external force – not ‘apparent’ at all

0CS

S
7.  

 
Newton’s and d´Alembert’s formulations, written in scalar notations with directions of forces 
indicated by arrows in Fig. D14, are 
 

2
ccc ,where,0:Alembertd'and:Newton ramaCCSSma  . 

 
Equations describing the motion, lead to same conclusions, are seemingly identical but have a 
completely different background, so 
 

022   mrSSmr . 
 
To summarize briefly: 
In Newton’s formulation, the term is the inertial force. In d’Alembert’s formulation, the 

variable  is the centrifugal force. In both formulations, the term  is the normal or 

centripetal acceleration and the constraint force, denoted  , is the force in the string. 

cma

C ca

S
 
To summarize at length:  
For an observer in the inertial frame of reference, who is using Newton’s formulation, the 
product of mass and acceleration should be called the inertial force. Calling it the centripetal 
force is misleading because this term is usually reserved for the constraint force. It should be 
emphasized that for an observer in the inertial frame of reference the term centrifugal force 
has no meaning.  
 
An observer in the non-inertial frame of reference, who is using the d’Alembert’s formulation, 
and writes dynamical equations of equilibrium, has to add apparent inertial forces to 
existing external forces. Apparent inertial forces are defined as a product of mass and negative 
acceleration of the non-inertial frame. These apparent inertial forces seemingly arise out of 
nothing – yet they do have a sound origin based on the transformation of coordinates between 
the stationary (inertial) and accelerating (non-inertial) frames of reference. In our example 
with the rotating particle, the role of the apparent inertial force is played by the centrifugal 

                                                 
7 The problem is a little bit obscured by two contradictory meanings of the adjective 'apparent'. In the Webster 
dictionary, you might find two sentences with opposite explanations. In the first sentence 'He is apparently rich' 
it is understood that his richness is obvious, clearly visible, nobody doubts it. In another example, the term 
'apparent horizon' is used as an antonym to the 'real horizon'. 
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force, while the external force is the constraint force in the string. The term apparent is used 
by stationary observers. For observers in the accelerating frame of reference, the centrifugal 
force can be felt and could be measured and appears not apparent but quite real. This might be 
a source of confusion.  
 
One of the reasons leading to this confusion of tongues is due to the ambiguous terminology 
used for the description of the rotation of bodies in mechanics. Not only are the same terms 
often used for different kind of forces, sometimes different terms describe identical forces.  In 
addition, confusion might also arise because of two possible observation points. These are 
either from the stationary inertial frame of reference or from the accelerating – i.e. the non-
inertial – frame of reference. Newton’s and d’Alembert’s formulations are proper tools 
corresponding to these two viewpoints and lead to identical results.  
 
Generally, there are other apparent forces, such as Euler, centrifugal and Coriolis forces 
which are proportional to negative tangential, centripetal and Coriolis accelerations 
respectively that were thoroughly treated and explained in kinematics. 
 
To be clear and consistent, we should distinguish the terms inertial force and apparent 
inertial force. The inertial force is a product of mass and acceleration. The apparent 
inertial force is a product of mass and negative acceleration. Not many authors observe 
this simple terminological rule and in the latter case, the adjective apparent is often dropped. 
Regrettably, the term inertial force is used for whatever meaning a particular author finds 
suitable. Compare [2] and [6]. 
 
In Newton’s Principia the term centripetal force is reserved for the external forces, which 
might be of different origins – a constraint force, gravitational force, magnetic force, etc. In 
this respect, most publications follow that lead, but at the same time they often claim that the 
centrifugal force is . According to Newton’s terminology, the product of mass and 

acceleration  is the inertial force, not the centrifugal force. The inertial force and the 

centripetal (constraint) force have the same size and direction but are distinct in nature 
and not identical. 

cma

cma

 
Example – mathematical pendulum 
 
For a mathematical pendulum, see Fig. D15, consisting of a 
particle of mass , swinging on the rope of  length , the 
equations of motion, written into tangent and normal 
directions, are 

m l

0sint  mgD , 

0cosn  SmgD  . 
 

Fig. D15. Mathematical pendulum – FBD 
 
The rope force is denoted , while the apparent tangential inertia force, whose direction is 
opposite to the assumed positive tangential acceleration, is   

S

 
 mlmlmaD  tt . 

 

D, 21 May 2018 33



 

 

The apparent normal force, also called the centrifugal force, is denoted O. Its direction is 
opposite the assumed positive normal (centripetal) acceleration  
 

22
nn  mlmlmaOD  . 

 
D’Alembert’s formulation states that the vector sum of all the forces is equal to zero. In the 
scalar notation, we have 
 

0sin   mgml  , 

0cos2  Smgml  . 
 
These non-linear equations are frequently linearized for small displacement angles, i.e. for 

 5 , assuming that   
 

1cos,sin   . 
 
Then, we have two linear ordinary differential equations of the second order with constant 
coefficients, instead.  The first equation is then rewritten into 
 

0  gl  , 

0 
l

g
 , 

l

g
where,02     is so-called angular frequency. 

 

It should be reminded that 
T

f
 2

2  , where  is the circular frequency having 

dimension   which is also denoted . The quantity  is called period. 

]s/1[f

T]s/1[ ]Hz[ ]s[

What is the period of a one-meter pendulum? It comes from the relation 
g

l
T 2 . 

From Matlab we get 
  
>> l = 1; g = 9.81; T = 2*pi*sqrt(l/g); T = 2.0061.  

 
The result is in seconds. 
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Example – pendulum in accelerating lift, a steady state solution. 
 
Imagine a pendulum in the lift which is ascending with a 
constant acceleration . In this case the positive 

direction of acceleration  goes against the positive 

direction of the gravitational acceleration 

va

va

g .  See Fig. 
D16.  
 
Two scalar component equations of motion, written in 
tangent and normal accelerations, are 
 

0sin)(: v  agmTt , 

0cos)(: v  agmSOn . 

 
Kinematics relations are 
 

   , . 
 
The apparent inertia forces, i.e. the tangential and normal 
(centrifugal) forces, are  
 

mlT  , . 2mlO 
 
 

Fig. D16. Pendulum in an ascending lift 
 
The equation of motion could be alternatively obtained by writing a moment equation of 
motion about the centre of rotation.  Thus, 

 
0sin)(  lagmTl v . 

 
Rearranging we get 
 

0sin)(2   lagmml v , 

0sin)(2   lagmml v ,    

0sin 


 
l

ag v , 

0sin2   Ω . 
 
For small angular displacements, we approximately assume  sin  and thus 
 

02   Ω . 

The period of vibration is 
vag

l

Ω
T . 


 

2
2
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Discussion for pendulum clocks using a pendulum, as the timekeeping element. 
 

 Increasing the value of the acceleration va , the period of vibration decreases. The 

corresponding pendulum clock in the lift gains time.  
 If the lift is descending with acceleration 0v a , the period of vibration increases and 

the pendulum clock in the lift loses time.   
 In the falling lift, i.e. for ga v , the period of vibrations increases above all limits – 

the pendulum actually, stops.   
 
Conclusion: A pendulum clock in the falling lift is not a suitable time keeping device.  
 
 
Example – ascending lift, a transient solution      
      
Again, consider an ascending lift with a 
constant acceleration . But in this case, 

we intend to analyze not a steady state as 
before, described by , but a 

transient process. That is what happens 
when the lift starts to accelerate from zero 
initial conditions until it reaches steady 
state conditions. See Fig. D17.  

va

a constv

 
Imagine a person, whose mass is 

, standing on a bathroom spring 
scale. We usually, and rather imprecisely, 
say that the mass of a body is measured by 
weighing. On spring scales we actually 
measure not the mass but the weight of the 
body, balancing it against a force in the 
spring which is damped.  

kg80m

 
 
     Fig. D17. Vibrating scale in an ascending lift 

 
What is actually measured is the spring deflection and knowing the spring stiffness and the 
local value of gravitational acceleration, we can associate the deflection with the force and 
then to assign the force in the spring to the mass value by a process of linear calibration. So, 
using a spring balance we are actually measuring the gravitational force of a body in newtons 
but are observing the dials calibrated in mass units in kilograms instead. Everything works 
well if the weighing process is carried out in a stationary frame of reference. But the 
accelerating lift is a typical example of a non-stationary frame of reference. 
 
When the lift is stationary, the person’s rest weight is mg . You should not be confused by the 
fact that the balance is calibrated not in [N] but in [kg].  After the lift starts to accelerate 
upward the person’s actual weight (this is what the spring balance actually measures) for a 
short time temporally increases and then it subsequently returns to a certain stationary value. 
Of course, its mass of our person does not change at all. 
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 In this example, the stiffness of our spring balances  is chosen in such a way that  k

mgk stat , where stat is a static deflection of the spring due to the loading by the person’s 

weight mg  in a stationary lift. 
 
The spring balance is idealized by a vibrating system with one degree of freedom consisting 
of the particle of mass , the spring with stiffness and of the linear damper, characterized 
by a parameter b . See Fig. D17. The equation of motion for our simplified system in a 
stationary frame of reference, i.e. in the lift which stays in rest or moves with a constant 
velocity, is described by the ordinary differential equation of the second order with constant 
coefficients in the form 

m k

 
mgkbm    .         (a) 

 
For a lift ascending upwards with acceleration we have to add an apparent inertia force 

whose magnitude is 
va

vmaD   and is directed downwards. See arrows in Fig. D17,  so 

 

vmamgkbm    .        (b) 

 
Rearranging we get 
 

vag
m

k

m

b
   .        (c) 

 
To find out what would be the weight of a person standing on the spring balance in the 
accelerating lift we have to evaluate the deflection  , relate it to k , which is actually related 
to the current weight. These quantities are evidently functions of time. To solve for them the 
differential equation (b) has to be integrated. 
 
For this purpose, Matlab integration procedures will be utilized. They require that the 
differential equation to be solved have the form of the first order differential equations.  
 
We start by introducing  
 

zz    . 
 
Then, the Eq. (c) becomes 
 

vag
m

k
z

m

b
z   . 

 
Also, we introduce 
 

  11 yy  , 

zyzy  22  . 
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So, instead of one differential equation of the second order, we have two differential 
equations of the first order in the form  
 

21 yy   , 

v122 agy
m

k
y

m

b
y  . 

 
See the program D05_accelerating_lift_transient_solution, and its output presented 
in Fig. D18. 
.  

 
    Fig. D18. Matlab output – vibrating bathroom scale in an accelerating lift 

 
 
D05_accelerating_lift_transient_solution 
% original file name is edu_UL_2013_DY_03_vaha_ve_vytahu_en 
% 
% program requires procedure function dy = vaha(t,y) 
%  
clear 
global av k m g B; 
av = 5;                     % upward acceleration 
k = 80000;                  % spring stiffness 
m = 80;                     % mass of person standing on balances 
g = 9.81;                   % gravitational acceleration  
b = 1000;                   % damping coefficient 
omega = sqrt(k/m);          % frequency 
B = b/m; 
T =2*pi/omega;              % period 
ksi_stat = m*g/k;           % static deflection 
ksi_dyn_ust = m*(av + g);   % steady-state level 
t_span = [0 0.6];           % time span 
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y0 = [-ksi_stat 0];         % initial conditions 
  
b_krit = 2*m*sqrt(k/m)      % critical damping 
  
[t,y] = ode23('vaha', t_span, y0); 
  
ksi = y(:,1); 
S = k*ksi; 
  
xx = [0 0.6]; 
yy = [ksi_stat ksi_stat]; 
yyy = [m*g m*g]; 
yyyy = [ksi_dyn_ust ksi_dyn_ust]; 
  
figure(1)  
subplot(3,1,1) 
plot(t,y(:,1), xx,yy,'linewidth', 2)  
legend('dynamic spring deflection [m]', 'static spring deflection [m]', 4) 
lab = ['alift = ' num2str(av), ', T = ' num2str(T) ', b = ', num2str(b), ', bcrit = ' 
num2str(b_krit)]; 
title(lab, 'fontsize', 16); axis([0 0.6 -0.01 0.03]);  
xlabel('time [s]', 'fontsize', 16); ylabel('deflection [m]', 'fontsize', 16) 
subplot(3,1,2) 
plot(t,y(:,2),'linewidth', 2) 
legend('velocity [m/s]'); axis([0 0.6 -0.4 0.6]) 
xlabel('time [s]', 'fontsize', 16); ylabel('velocity [m/s]', 'fontsize', 16) 
subplot(3,1,3) 
plot(t,S, xx,yyy,'k--', xx,yyyy,'k:','linewidth', 2) 
ylabel('spring force [N]', 'fontsize', 16) 
xlabel('time [t]', 'fontsize', 16); axis([0 0.6 -1000 2500]) 
legend('spring force [N]', 'static ''weight'' [N]', 'steady state value [N]', 4) 
print -djpeg -r300 fig_vaha_ve_vytahu_en 
% end of edu_UL_2013_DY_03_vaha_ve_vytahu_en 
 
function dy = vaha(t,y) 
global av k m g B; 
dy = zeros(2,1); 
dy(1) = y(2); 
dy(2) = -B*y(2)-k*y(1)/m + av + g;  
% end  

 
One sees, that the transient solution converges to the stationary one. This is reminded by the 
following example.  
 
Example – ascending lift, a steady state solution 
 
Given: A person, considered as a particle 
of mass m , stands on the spring balances 
firmly connected to a lift, which ascends 
by a constant acceleration .  va

Determine: The normal reaction  from 
the balances to the person. See Fig. D19.  

N

 
Equation of motion is  
 

 .mN

const,,

,0

v

v

ga

amaD

mgND

v





 

         Fig. D19. Weighing a person in a lift 
 
The normal force  represents the value of the ‘apparent weight’ in an ascending lift. Of 
course, the mass is not changed at all.  If the lift falls down (i.e.

N
ga v ), then the force 
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acting between the person and the balances is equal to zero and the state of weightlessness, or 
the absence of weight, is felt. 
  
Extended Example A1 – the same phenomenon as viewed by inertial and non-inertial 
observers 
 

Newton's law, in its simple form, i.e. amF


 , is only applicable to a particle in a so-called 
inertial frame of reference. In older textbooks, the term inertial frame reference was nicely 
defined as a system which is attached to fixed stars. Such a system can be either absolutely 
still or moving with a constant velocity with respect to fixed stars. A non-inertial frame of 
reference is a frame which undergoes acceleration with respect to an inertial frame. 
 
Since the Universe is expanding and constantly accelerating, there are no fixed stars available 
and generally, no inertial frame of reference exists. Nevertheless, the Earth can be – for many 
(but not all8) engineering applications – approximately considered as the inertial frame of 
reference since its orbital accelerations, due to Earth's daily and annual rotations are small. 
 
Consider a simple task where the Earth is considered as the inertial frame of reference while 
the streetcar, accelerating on tracks laid on the flat Earth's surface, serves as an example of a 
non-inertial frame. 
 
Let the coordinate system yx,  represent our approximate inertial reference system, firmly 
connected to the Earth. Our task is to analyze the trajectory of a particle having the mass , 
being propelled by a constant force (imagine a small rocket engine attached to the particle), 
which resides in the street car moving in x-direction with constant acceleration  along a 
straight horizontal track, while the non-inertial system of reference, i.e. , is firmly 
connected to the accelerating streetcar. See Fig. D20. The initial velocities of the particle with 
respect to the street car are known. Only the planar motion is considered and also the Earth's 
gravity is taken into account.  

m
F

a
yx ,

 
Using Newton’s formulation, the equations 
of motion, relative to the Earth, are 
 

mgFymFxm   sin,cos  .  (A1_1) 

.sin,cos g
m

F
y

m

F
x     

 
 

Fig. D20. A particle in an accelerating streetcar 
 
Initial conditions of the streetcar. 
At the time the axes and coincide, while there is a constant distance h between the 
axes  and 

0t y y
x x . The street car’s initial velocity is zero. 

 
 

                                                 
8 Foucault’s pendulum or the South-North oriented rivers or the trade winds are examples, where the Earth’s 
cannot be considered as an inertial frame of reference, since its rotation and consequent acceleration cannot be 
neglected. 
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Initial conditions of the particle.  
At the beginning, the particle resides at the origin of yx ,  system and its initial velocity 

components are .  0000 , yyxx vvvv  
 
Taking into account the prescribed initial conditions, the double integration of Eqs. (A1_1), 
with respect to time, gives the particle velocities and the particle coordinates as functions of 
time, as seen by an outside observer. 
 

gt
m

Ft
vv

m

Ft
vv yyxx   sin,cos 00 .     (A1_2a) 

2
2

0

2

0 2

1
sin

2
,cos

2
gt

m

Ft
tvy

m

Ft
tvx yx   .     (A1_2b) 

 
Due to the prescribed constant acceleration of the streetcar, the transformation of the 
coordinates, between the Earth coordinate system and the streetcar’s coordinate system, is as 
follows. 

consthhyyatssxx  ,,
2

1
, 2 .      (A1_3) 

The velocities belong to the particle. Hence 00 , yx vv 

 
assxx   , . 
yyaxx   , .         (A1_4) 

 
Substituting the last relation of Eqs. (A1_4) into Eqs. (A1_1) gives the equations of motion of 
the particle relative to the accelerating street car 
 

mgFymmaFxm   sin,cos  .      (A1_5) 
 
The equations (A1_5) have the form of the equivalence of forces. The left-hand side force (the 
inertial force) is equal to the sum of right-hand side, i.e. external, forces. Using the 
d'Alembert's principle we might write the equations of motion in an alternative form 
 

0sin,0cos   FmgymFmaxm  .    (A1_6) 
 
Now, the equations of motion (A1_6) are expressed in the form of an equilibrium of forces. 
The sum of all forces is equal to zero. Of course, it is not the proper ‘static’ equilibrium; it is a 
sort of virtual equilibrium, expressed for a moment frozen in time. 
 
An additional force i.e.  appears on the right-hand side of equations of motion, in Eq. 
(A1_6), written for the non-inertial frame of reference. Cornelius Lancozs [2], calls it an 
apparent force or d’Alembert force, which – for an observer attached to the Earth – seemingly 
emerges out of nothing

ma

9. Evidently, it is the acceleration of the moving frame of reference 
which is responsible for the existence of that force. 
 

                                                 
9 In literature one can find other terms for this kind of force, as pseudo-force or fictitious force. 

D, 21 May 2018 41



 

 

This force might be considered fictitious only for outside observers, who are firmly standing 
on the Earth and build up their reasoning without knowing that the particle is in the 
accelerating streetcar, which leads them to Eq. (A1_1).  
 
For the inside observer that force – being often paradoxically called fictitious – is almost real 
since it could be physically felt and experimentally measured. So the currently used term, i.e. 
fictitious, might appear rather misleading to observers living in a non-inertial frame of 
reference, i.e. in the accelerating street car.  
 
Such contradictory terminology appears frequently. For example, Dare A. Wells in [6] states 
that we shall, throughout the book, refer to the product (mass) (acceleration) as an ‘inertial 
force’, while for C. Lancozs in [2] the inertial force is ma . These two authors, as well as 
many others, are using the same term, i.e. inertial force, for two forces of the same magnitude 
differing, however, by a plus or minus sign. 
 
Double integration of Eqs. (A1_6) with respect time, gives the velocity and coordinate 
distribution as functions of time with respect the accelerating street car – the distributions 
seen by an inside observer. 
 

gt
m

Ft
vvat

m

Ft
vv yyxx    sin,cos 00 .    (A1_7a) 

2
2

0
2

2

0 2

1
sin

2
,

2

1
cos

2
gt

m

Ft
tvyat

m

Ft
tvx yx    .   (A1_7b)

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. D21. The trajectory of a particle as viewed by two observers 
 
In the upper subplot of Fig. D21 there is a trajectory (see Eq. (A1_2b)) of the particle, fired 
from the accelerating street car with prescribed initial velocities, as seen by an outside 
observer. In order to compare the results with those of a simple oblique shot case, the value of 
the rocket force was temporarily set to zero. The data in the lower subplot of Fig. D21 
show the trajectory as seen by the inside observer. The curve, plotted according to Eq. 

F
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(A1_7b), is intentionally shifted to the right by the distance the car had traveled during the 
period of the time being considered so that one can see that the coordinates of the ‘hit’ point, 
are identical for both observers. Of course, the time that elapses before the ‘time to hit’ is 
identical for both observers too. 
 
Extended Example A2 – equatorial express 
 
Imagine a train running on the track with a constant speed 
around the equator of the Earth in the opposite direction to 
the Earth’s rotation, i.e. clockwise. A simplified sketch is 
in Fig. D22. The train, represented by a sleeve, is denoted 
by the number 3. The equatorial track, firmly connected to 
the Earth, depicted as a part of the circle, is denoted by the 
number 2. The number 1 is a fixed point in the Universe – 
an inertial frame of reference.  
 
 
     

Fig. D22. Velocities and accelerations 
 
Given: The radius of the Earth is r , the speed of the train with respect to the track is 

3232 vv


 , the angular velocity of the Earth for its counterclockwise rotation is defined by a 

vector of angular velocity 21


 pointing up vertically out of the picture plane. Its scalar 

magnitude is 2121   . The corresponding surface speed of a point on the equator, say A, is 

2121 rv  . The situation is schematically depicted in Fig. D22, where the directions of the 
speeds are indicated as well. The mass of the train  is concentrated at the point A. m
 
Determine: Evaluate the force reaction between the track and the train – i.e. the actual weight 
of the train – as a function of its relative speed with respect to the Earth.  
 
Simplifying assumptions 
 
Since the relative differences in the actual weight of the train, depending on its location and 
speed, are of the order of a fraction of one percent, the precise simplifying assumptions have 
to be carefully listed.  
 

 The Earth is assumed to be a perfect sphere with a constant radius; km 6378 . r
 The gravitational acceleration on the Earth’s surface is constant and equal to 

2m/s81. . 9g

 The Earth’s angular velocity is approximated by 1/s
606024

2




 .  

 The orbit of Earth around the Sun is disregarded.  
 The actual weight of an object depends on its location on the Earth.  When weighing 

the object of mass m  by a spring balance on the pole, the balance shows the value of 
mg . Using the same spring balance and the same object at the equator the weight is 
diminished (due to the Earth rotation) by the value of the centrifugal force, i.e. by 

D, 21 May 2018 43



 

 

2mr . The relative difference of these two values is 0.0034. The same object, 
measured at the equator would be lighter. Its actual weight would be mg0.9966 .  

 The actual weight also depends on its velocity with respect to the surface of the Earth. 
 Resistance and friction phenomena are not considered. 
 In Newtonian mechanics, the mass of an object is considered independent of its speed. 

 
Kinematics 
 
The train moves with respect to the Earth, which simultaneously rotates underneath the train.  
In this particular case, the decomposition of motions could be expressed by a symbolic 
notation in the form 
 
31 = 32 + 21.            (A2_1) 
 
This means that  

 the absolute motion of the train 3 with respect to inertial frame 1 is composed of   
 the relative motion of the train 3 with respect the track 2 plus  
 the motion of the track 2 with respect to the inertial frame 1. 

 
For velocities, we can write 
 

2132 v


31 vv


 .          (A2_2) 

 
The speed (the magnitude of velocity) of the train 3232 vv


  is constant and known. The speed 

of the surface point just below the train is constant as well 
 

, where 2121 


 .       (A2_3) rvv21 


2121 
 
The resulting acceleration [9] with respect to the inertial frame is expressed by 
 

cor213231 aaaa


 .         (A2_4) 

 
Generally, the acceleration vectors  and 32a


21a


 have both tangential and normal components. 

In our case, both the rotation of the Earth and the velocity of the train with respect to the track 
are considered constant, so the tangential components of these accelerations are identically 
equal to zero, i.e.  
 

0t21t32  aa .         (A2_5) 

 
What remains are normal (centripetal) components of accelerations. Their magnitudes are  
 

rva /2
32n32   and ,       (A2_6) rva /2

21n21 
 
while their directions are indicated by arrows in Fig. D22.  
 
The Coriolis acceleration is defined as a vector product of the angular velocity of rotation and 
the relative velocity. In our case 
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3221cor 2 va


  .         (A2_7) 

 
Since the vectors  and are perpendicular, the magnitude of the resulting vector 21


32v


cora


 is 

 
rvvva /22 32213221cor   .        (A2_8) 

 
For the accepted clockwise train rotation the vector cora


 points out of the centre of rotation as 

indicated in Fig. D22. In this case, it is in the opposite direction with respect to directions of 
normal acceleration vectors  and . The vector n32a n21a cora


would have the same magnitude 

but an opposite direction if the train rotation were considered counterclockwise. So the 
magnitude of the resulting radial acceleration with respect to the inertial frame is 
 

rvmvrmvrmva /2// 2132
2
21

2
3231  .       (A2_9) 

 
Evaluating Eq. (A2_9), for the train speed varying from zero to , we obtain the 

resulting normal acceleration of the train as a function of its speed.  Its normalized value, 
related to the gravitational acceleration, i.e. , as a function of the normalized relative 

speed 

32v

a /31

212v

g

2132 / vv , is plotted on the left-hand side of  Fig. D24. 

 
Dynamics 
 
The forces acting upon the mass particle, act along a single 
line connecting the center of rotation and the point A, at 
which the mass particle, representing the train, is located. See 
Fig. D23. Hence, in the subsequent analysis, it suffices to 
express the equilibrium of forces in the scalar form.  
 
 
 
 

Fig. D23. Forces 
 
Sitting on the train, we write the equations of motion using the d’Alembert approach [2] 
requiring us to consider the apparent inertia forces. Each apparent inertial force is defined as a 
product of the mass and the appropriate negative accelerations as follows 
 

rmvO /2
3232  – centrifugal force due to the relative motion 32 with centripetal acceleration , n32a

rmvO /2
2121  – centrifugal force due to the carrier rotation 21 with centripetal acceleration , n21a

rvmvF /2 2132cor  – Coriolis force due to the carrier rotation 21  and the relative speed . 32v

 
Furthermore, due to Newton's gravitational law, there are the reaction force R , between the 
track and the train, and the train's actual weight W , which also has to be taken into account. 
Forces and their directions are shown in Fig. D23. 
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The equation of motion of the train (considered as a particle) has a form of ’dynamic’ 
equilibrium  
 

02132  corFWOOR .        (A2_10)

  
So the reaction force is 
 

rmvrmvrvmvmgOOFWR C ///2 2
21

2
3221322132  .   (A2_11) 

 
The reaction force between the track and the trains corresponds to the train’s actual weight. Its 
relative value, i.e. , as a function of the absolute value of the relative speed mgR / 2132 / vv , is 

plotted in the right-hand side of Fig. D24. 
 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-3

Train speed related to surface speed

Relative normal acceleration ... a31/g

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1
Actual weight related to 'correct' weight ... R/(mg)

Train speed related to surface speed

 

 

accelaration as a function of speed

 value for v32 = 0
value for v32 = v21

value for v32 = 2*v21

weight as a function of speed

value for v32 = 0
value for v32 = v21

value for v32 = 2*v21

Fig. D24. The normal acceleration and the actual weight of a train circling the equator 
clockwise as functions of relative speed. 

 
Now, a few singular cases are discussed in detail. 
 
Case 1 – stationary train at the pole, i.e. 02132  vv . 

If a stationary object (train) is weighed at the Earth’s pole using a spring balance we would 
get the value of its weight (the force of gravity) which is influenced neither by the Earth’s 
rotation nor by the object’s speed. Under these conditions the reaction between the object and 
the Earth is . This location might serve for the definition of the value of the ‘correct’ 
weight. 

mgR 

 
Case 2 – stationary train at the equator, i.e. 032 v . 

The train is stationary with respect to the Earth, so 032 v

mv2
2121 

2

. In this case, the ‘correct’ weight of 

the train is diminished by the centrifugal force O  due to the rotation of the Earth.  

Thus, the actual value of the weight is . 

r/

mrmgR 
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Case 3 – the train circling the equator clockwise with 2132 vv


 . 

The train runs on the track around the equator in the opposite direction to the Earth’s rotation. 
For velocity vectors we have 2132 vv


 . Their magnitudes, called speeds, are identical, i.e. 

. The resulting velocity of the train 2132 vvv  31v


, with respect to fixed stars, is identically 

equal to zero, which directly comes from Eq. (A2_2).  
 
The resulting acceleration , with respect to fixed stars, according to the rearranged Eq. 

(A2_9), is 
31a


 
0/2// 22

31  rmvvrmvrmva  

 
and is equal to zero as well.  
 
So, the outside observer, firmly attached to the fixed stars, i.e. to the inertial frame of 
reference, sees the train as a stationary object with zero velocity  and with zero 

acceleration .  
31v


31a


 
In the inertial frame of reference, the train is stationary and is subjected to no acceleration. As 
a result, there are no inertial forces and there is no need to talk about dynamics. The only 
forces acting on the train are the reaction force R  between the track and the train and its 
weight resulting from Newton’s gravitational law. Applying the static conditions of 
equilibrium leads to . So, in this case, the actual weight of the train, circling the 

equator clockwise with , is the same as that measured on the pole. 

W
mgR 

32 vv


 21



 
What about the inside observer, travelling on the equatorial train? Of course, he/she uses the 
same equation (A2_4) as far as the acceleration is concerned, but his/her attention is 
concentrated on the right-hand side of the equation. The resulting zero on the left-hand side is 
composed of three non-zero components. And according to d’Alembert’s principle, each 
acceleration component is complemented by a corresponding apparent (fictitious) inertial 
force, defined as a product of mass and negative acceleration, in agreement with Eq. (A2_11). 
So in this case, we have 
 

rmvrmvrmvmgOOFWR ///2 222
2132cor  . 

 
The Coriolis force and the two centrifugal forces cancel themselves out and thus the reaction 
force is 
 

mgR  . 
 
We have obtained the same result both for inertial and non-inertial observers independently of 
the method of observation. This is rewarding. 
 
Finally, what is the speed of the train with respect to the Earth satisfying the conditions of 

Case 3? As far as the magnitudes of vectors are concerned we have 
32v
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km/h1670m/s463.8
606024

2
6378000212132 




rvvv . 

 
This is a high value, but not excessively so. At the expense of this relatively high relative 
speed, needed for satisfying Case 3 conditions, we get the same weight as that measured on 
the pole. With respect to the weight of the stationary train (Case 2, 032 v ), the train traveling 

clockwise, with 2132 vv


 , is heavier by 0.34 %.  

 
 
Case 4 – train circling the equator clockwise with 2132 2vv


 . 

Both the acceleration and the reaction force are the same as in the Case 2. See Fig. D24. The 
detailed analysis of this case is left to the reader. 
 
Example – stationary merry-go-round problem 
 
A chain merry-go-round turns with a 
constant velocity  . The seat plus the 
person sitting on it, having the mass , 
are considered as a particle. The massless 
rope of the length  is attached to the 
frame of the merry-go-round at the 
distance 

m

l

r  from the rotation axis. The free 
body diagram is in Fig. D25.  
 
Given: mlr ,,,   
Determine:   
 
 
 

Fig. D25. Merry-go-round 
 
Using the d’Alembert approach, the equations of motion are 
 

.0cos

,0sin




mgS

SO




 

 
where 
 
the rope force is denoted  and the centrifugal force is . Rearranging we 
get 

S 2)sin( lrmO 

 

.0tan
tan1

tan

,0sin
cos

sin

2

22

22


















glr

mg
mlmr

 

 
To simplify the solution we introduce a new auxiliary variable, say tanx , and then 
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.0
1 2

22 


 gx
x

x
lr   

 
For given values of    it is easier to evaluate angular frequencylr,   as a function of x , i.e. as 

a function of angle  . So the inverse formula, i.e. 

2x1

lx
r

gx




 , is programmed, instead 

of the required function )(fx  .  
 
For details see the program D06_merry_go_round_stationary_solution and its graphical 
output shown in Fig. D26.  
 

Fig. D26. Matlab output. Results for r = 5, l = 5, m = 100  
 

 
% D06_merry_go_round_stationary_solution 
% original file name is merry_go_round_c5 
clear 
% alpha ... angular deflection 
% x ... tan(alpha) 
% r ... radius 
% n ... number of revolutions per minute (RPM) 
% om = pi*n/30 ... angular velocity 
% l ... length of rope 
% g ... gravitaional acceleration 
% m ... mass 
% 
% alpha_r ... angle in radians 
% alpha_d ... angle in degrees 
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r = 5;          %[m] 
l = 5;          % [m] 
g = 9.81;       % [m/s^2] 
m = 100;         % kg 
  
% range of possible angular deflections 
alfa_d = 0.1:0.1:89;            ... in degrees 
alfa_r = pi*alfa_d/180;     ... in radians 
R = r + l*sin(alfa_r); 
om2 = g*tan(alfa_r)./R; 
om = sqrt(om2); 
% x = tan(alfa_r); 
% om = sqrt(g*x./(r + l*x./sqrt(1 + x.*x))); 
n = om*30/pi;           % ... RPM from angular velocity 
S = m*g./cos(alfa_r);   % ... force in rope 
S0 = m*g;               % ... initial weight 
S_rel = S/S0;           % ... force related to original weight 
  
figure(1) 
xx = [90 90]; yy = [0 80]; 
subplot(2,2,1); plot(alfa_d,n, 'linewidth', 2); grid;  
xlabel('Angle in degrees'); ylabel('RPM in [1/min]') 
title('RPM vs. deflection') 
txt = ['Data: ','r = ' num2str(r), ', l = ' num2str(l) ', m = ' num2str(m)]; 
subplot(2,2,2); plot(alfa_d,S, 'linewidth', 2); % grid 
title(txt) 
xlabel('Deflection in degrees'); ylabel('Force in rope [N]') 
xxg =[0 30]; yyg = [6 6]; 
subplot(2,2,3); plot(n,S_rel,'b-', xxg,yyg,'k--', 'linewidth', 2); grid 
title('Apparent weight vs. RPM') 
ylabel('Force in rope related to mg [1]'); xlabel('RPM in [1/min]') 
legend('Dimensionless force in rope', 'Life threatening value', 2) 
subplot(2,2,4); plot(n,alfa_d, 'linewidth', 2); grid 
ylabel('Angle in degrees'); xlabel('RPM in [1/min]') 
title('Deflection vs. RPM') 
print -djpeg -r300 merry_go_round_c5_fig_1 
  
% simplified problem with r = 0 
R = l*sin(alfa_r); 
v_s = g*R.*tan(alfa_r); 
om_s = sqrt(v_s./R); 
n_s = om_s*30/pi; 
  
figure(2) 
plot(n,alfa_d,'b-', n_s,alfa_d,'b--', 'linewidth', 2) 
title('Compare solutions'); 
ylabel('Angle in degrees'); xlabel('RPM in [1/min]') 
legend('Full solution', 'Simplified case', 4) 
axis([0 100 0 90]) 
print -djpeg -r300 merry_go_round_c5_fig_2 

 
 

The dimensionless force in the rope, shown in the subplot (2,2,3) of Fig. D26. is the actual 
force related the force in the rope when the merry-go-round is in rest, i.e. to mg . Its value, 
depicted as a function of revolutions, shows how many times the tension in the rope is greater 
than its rest value and is clearly correlated to the riding comfort of a passenger. The values 
above five of six would be unacceptable. Recall the troubles of fighter pilots when subjected 
to high acceleration tests carried out on centrifugal machines. 
 
Observing the value of the dimensionless tension force in the rope as a function of number of 
revolutions, one might estimate the safe range of operating conditions of the merry-go-round. 
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The problem is simplified if  and 0r
sinlR  . See Fig. D27. Then, the 

equation of motion are 
 

 sin2 SmR  , 
cosSmg  , 

g

R 2

tan
  . 

      
F
i
g
.
 
F 

     Fig. D27. Merry-go-round 
 
Since Rv /  we get the required velocity to attain the inclination   in the form 
 

tan2 gRv  . 

Fig. D28. Merry-go-round – two solutions 
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From the engineering point of view the mathematically simple case with , would be 
difficult to realize. The comparison of two discussed cases is in Fig. D28. 

0r

 
Example – a collar sliding along the rotating rod 
 
Given: A collar, considered as a particle of mass m , 
could freely move along a rod, being perpendicularly 
welded to a shaft, which rotates by a constant angular 
velocity 


. Its magnitude is 21 


. See Fig. D29. 

The gravity and friction effects are neglected. The 
immediate position of the particle is denoted by x  
coordinate. The initial conditions: For 0t  the position 
and velocity are . 00 , vxxx  

 
Fig. D29. A collar sliding along the rotating rod  

 
Determine: The equations of motion, solve them and express the distance x  as a function of 
time and of the rotation angle, say  . 
 
If the particle is labeled by the 
number 3 and the rotating shaft 
by 2, and the fixed frame by 1, 
then the motion of the particle 
may be schematically described 
as  
 
31 = 32 +21,  
 
meaning that the resulting 
motion of the particle with 
respect to the frame (31) is 
composed of the relative motion 
of the particle with respect to the 
rotating rod (32) plus the carrier 
motion of the shaft (21) with 
respect to the frame 1.   
 

Fig. D30.  Kinematics and dynamics 
 
See Fig. D30. The resulting velocity of the particle is expressed by  
 

213231 vvv


 , 

 
where the corresponding scalar values are 
 

xvxv  2132 , . 

 
Since the carrier motion is of rotary nature the resulting acceleration contains the Coriolis 
acceleration term, so 
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Cor213231 aaaa


 , 

 
where the relative acceleration is 
 

xa 32 . 

 
Since the angular velocity const21  , then the tangent component of the carrier acceleration 

. The carrier acceleration 021t a


21a


 is given by its normal component  only since 21na


const21  and thus 021  . 
 

2
n2121 xaa 


 . 

 
Finally, the Coriolis acceleration is 
  

3221Cor 2 va


  . 

 
Since the vectors 3221,v


  are perpendicular, the magnitude of Coliolis acceleration is simply 

 
xvaa 


213221CorCor 22   . 

 
For dynamics of non-inertial systems, D’Alembert introduces apparent inertia forces being 
multiples of mass and corresponding negative accelerations. In this case we have d’Alembert 
apparent inertia force , centrifugal force is  and Coriolis force is 

. Directions of velocities, accelerations and forces are indicated in Fig. D30 by 

arrows. Since there are no forces acting within the direction of the rotation axis, two scalar 
equations of motion for the considered particle in 3D space are needed only.  

xmF A
2
21cf mxF 

CorCor maF 

 

,02

,0

21

2
21




xmN

mxxm








 

 
where  is the normal reaction between the particle and the rotating rod. N
 
Note: If the friction is taken into account, then the friction force , where  is the friction 

coefficient, will act along the 

Nf f

x  axis as it is indicated in Fig. D30, where xmN 212  . Then, 

the first equation of motion would have the form . 02 2
2121   xmfxm  mx

 
Dividing the first equation of motion by and simplifying the notation by m 21  we get  
 

02  xx  . 
 
The equation could be solved by means of so-called characteristic equation 
 

  2,1
22 ,0   
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and then the solution is expressed in the form 
 

unknown inte on constants are obtained from two initial conditions. 
or , so 

 

          (a) 
or . 

ts requires evaluating the 
erivative of the assumed solution , which gives 

 

ubstituting the initial conditions into the derivative of

t
2

t
12211 ee)exp()exp(   CCtCtCx . 

 
The grati

 0,0 xxt F

210 CCx  . 

 
 0,0 vxt  F

 
The second condition for finding unknown integration constan

 t
2

t
1 ee   CCxd

t
2

t
1 ee    CCx . 

 
 

 xS  we get 
 

 210 CC v .         (b) 

rom (a) and (b) we obtain 
 

 
F







2
,

2
00

2
00

1

vx
C

vx
C





 . 

isplacement of the particle, sliding along the frictionless rotating rod, as a function of 
me, is 

 

 
So, the d
ti

t00t00 e
2

e
2







 





vxvx

x . 

ent of  a function of the angle of 
tation 

 
The program D07_projectile_rotating_barrel generates  Fig. D31 depicting the 
displacem  the projectile as a function of time and also as

. It is assumed that the initial conditions are: 0,0  t .t ro  

ee the program projectile_rotating_barrel_edu_UL_04_kmi_odpudiva_sila 

otating_barrel_edu_UL_04_kmi_odpudiva_sila 

 om = 0.5; 

*om); 

m*t); 

m*exp(om*t) + C2*om*exp(om*t); 

 
S
 
% projectile_r
clear 
incr = 0.01; 
x0 = 2; v0 = 3;
t = 0:incr:7; 
alpha = om*t; 

 = (x0*om + v0)/(2*om); C1
C2 = (x0*om - v0)/(2
  

 = C1*exp(om*t); x1
x2 = C2*exp(-o
  

= x1 + x2; x 
xdot = C1*o
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figure(1) 
subplot(1,2,1) 
plot(t,x,'k', 'linewidth', 2.5) 
title('projectile in rotating barrel', 'fontsize', 16) 

,'fontsize', 16); ylabel('displacement x [m]','fontsize', 16) xlabel('time [s]'
  
subplot(1,2,2) 
polar(alpha,x,'ok'); grid 

le('polar plot of displacement x', 'fontsize', 16) tit
  

int -djpeg -r300 fig_projectile_rotating_barrel pr
 

 
               Fig. D31. Matlab output – displacements as functions of time and of angle 

 
xample – motion of a particle in gravitational field E

 
Newton gravitational law states that the 
attraction force between two bodies is 
directly proportional to the product of 
masses and indirectly proportional to the 
square of their distance. Let’s apply the 
law to the motion of the Earth around the 
Sun, which is assumed to be in the origin 

 the coordinate system. See Fig. D32. 



m
xa

ya

x

yF F

of
  

22 r

k

r

mM
F   ,   Fig. D32. Motion of a particle in gravitational field 

here 22 yxr  is the immediate distance and the gravitational constant is mMk  . w
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Constants 

 , . 

tions  
a) Position 

 … initial distance of the Earth from the Sun, 

b) Velo
,   

quations of motion are 
 

21311 skgm1067.6  kg1099.1 30M
 
Initial condi

m105.1 11
0  rx 

00 y . 

 
city of the Earth 

00 xv

m/s109.2 4
0 y . v

 
E

,sin

,cos




Fy

Fxm







where 

2222
/sin;/cos

yx

y
ry

yx

x
rx





  ,   

m

 

,
sin

,
cos

22222

22222

yx

y

yx

k

r

k
ym

yx

x

yx

k

r

k
xm















 

 

   

   
,

,

2
3

2
3

2
3

2
3

22

2

22

22

2

22

yx

y

yx

y

m

k
y

yx

x

yx

x

m

k
x





















  where we have introduced  
/2   Mmk

.  

dures of Mat  require a system of the first order equations. A suitable 
ubstitution might be  

From it follows 

020+1.3273e 2 

 
ODE integrating proce lab

wyzx   ; .s
 

   2
3

2
3

22

2

22

2 ,
yx

y
w

yx

x
z





   . 

 
 
 
 
 
 
 
 
 
Rearrange, rename and relate to original notation. 
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 

 
.

,

,

,

44
22

2

33

22
22

2

11

2
3

2
3

y

x

vpwpw
yx

y
w

ypypywy

vpzpz
yx

x
z

xpxpxzx



























   

ssemble newly named variables and equations in an array fashion 
 

 
A

 

 
.

,

,

,

2
3

2
3

2
3

2
1

3
2

4

43

2
3

2
1

1
2

2

21

pp

p
p

pp

pp

p
p

pp


























 

 
Rename again 
 

 

 
.

,

,

,

2
3

2
3

2
3

2
1

3
2

4

43

2
3

2
1

1
2

2
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yy

y
y
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y
y

yy


























 

 
Matlab implementation of equations of motion is provided by the function central.m. 

(t,y) 

. 
 + y(3)^2))^3]; 

 = central(t,y) 

he main program is 

f Sun is M, mass of Earth is m,  

kg^-1 sec^-2; 

*M; 

ga = sqrt(Omega2) 

 
function dydt = central
Omega2 = 1.3273e+020; 
  

= [y(2); -Omega2*y(1)/sqrt((y(1)^2 + y(3)^2))^3; ..dydt 
        y(4); -Omega2*y(3)/sqrt((y(1)^2

     
% end of function dydt
 
T
 
% test_central_c1 
% numerical integration of equation of motion 
% describing a motion of a particle in gravitational field 

n F = kappa*m*M/r^2 = k/r^2; Newton's law % force of gravitato
% kappa is gravitational constant, mass o
% r is the distance 

3 kappa = 6.67e-11    % m^
    % kg M = 1.99e30     

r = 1.5e11          % m 
% k = kappa*m*M 
% Omega2 = k/m = kappa

ega2 = kappa*M Om
Ome
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% m*ddotx = -F*cos(alpha)/r^2; 
% m*ddoty = -F*sin(alpha)/r^2; 
% r = sqrt(x^2 + y^2); 
% cos(alpha) = x/r; sin(alpha) = y/r; 
% Omega2 = k/m; 
% xddot = -Omega2*x/((x^2 + y^2)^(3/2)); 

ddot = -Omega2*y/((x^2 + y^2)^(3/2)); % y
  
year = 365*24*3600 

an = [0 year];   % timespan tsp
  
% initial conditions 
x0 = 150e9;         % m ... initial position of Earth, distance from Sun 

al position', 'circle', 3) 

 velocity vs. time'); xlabel('time in [s]') 
 end of test_central_c1 

vx0 = 0; 
y0 = 0; 

h vy0 = 29600;        % m/s ... initial starting velocity of Eart
 y0 = [x0 vx0 y0 vy0];  % initial conditions for ode function 

  
[t,y] = ode23(@central,tspan,y0); 
  

iginal coordinates % Relation to or
% y(:,1) ... x 
% y(:,2) ... vx 
% y(:,3) ... y 

(:,4) ... vy % y
  
figure(1) 
subplot(2,2,1); plot(t,y(:,1)); title('x coordinate');  axis([0 year -2e11 2e11]); 
xlabel('time in [s]') 
subplot(2,2,2); plot(t,y(:,2)); title('vx velocity');   axis([0 year -4e4 4e4]);  
xlabel('time in [s]') 
subplot(2,2,3); plot(t,y(:,3)); title('y coordinate');  axis([0 year -2e11 2e11]); 
xlabel('time in [s]') 

y(:,4)); title('vy velocity');   axis([0 year -4e4 4e4]);  subplot(2,2,4); plot(t,
) xlabel('time in [s]'

  
figure(2) 
xxS = 0;  yyS = 0; 

 0; xxE = x0; yyE =
% plot circle 
tt = 0:pi/64:2*pi; 
xx = x0*cos(Omega*tt); 
yy = x0*sin(Omega*tt); 
plot(y(:,1),y(:,3), 'o-', xxS,yyS,'ok', xxE,yyE,'sk', xx,yy,'--', 'linewidth', 2.1) 
xlabel('[m]', 'fontsize', 14); ylabel('[m]', 'fontsize', 14)  
legend('computed elliptical orbit', 'Sun', 'Earth initi

.6e11 -1.6e11 1.6e11]) axis('square'); axis([-1.6e11 1
text(-0.05e11,-0.1e11, 'Sun') 
  

t cirle', 'fontsize', 18) title('Earth elliptical orbit and a perfec
% orbital velocity 

2).^2 + y(:,4).^2).^(1/2); v_orbit = (y(:,
figure(3) 
subplot(2,1,1) 

xis('square'); axis([-4e4 4e4 -4e4 4e4]) plot(y(:,2), y(:,4)); a
 vy') title('vx versus

subplot(2,1,2) 
plot(t,v_orbit) 
title('abs. value of orbit
%

 
omputed and plotted data in Fig. D33 are for following inputs. Data are highly approximate.  C

 
 , 21311 skgm1067.6 Gravitational constant 

ass of the Sun  kg1099.1 30M . M
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Initial conditions  
a) Position 

m105.1 11
0  rx  … initial distance of the Earth from the Sun, 

00 y . 

b) Velocity of the Earth 
00 xv  ,   

m/s1096.2 4
0 yv . 
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[m]

[m
]

Earth elliptical orbit and a perfect cirle

 

 

Sun

computed elliptical orbit

Sun
Earth initial position

circle

 
        Fig. D33. Trajectory of the Earth around the Sun is almost circular 

 
D6. Vibration 
The subject is fully described in the chapter Vibration of the electronic publication prepared by 
Stejskal, V., Dehombreux P., Eiber, A., Gupta, R., Okrouhlík, M.: Mechanics with Matlab, pp. 301 – 
461. Faculté Polytechnique de Mons, Belgium, April 2001, ISBN 2-9600226-2-9, see also 
http://www.geniemeca.fpms.ac.be. 
 
D7. Moments of inertia and deviatoric moments 
 
The moments of inertia and deviatoric moments are 
measures defining how the mass is distributed within 
a rigid body.  
 
In statics, we have dealt with similar quantities called 
linear (static), and quadratic (also called the second) 
moments of area – we computed these quantities 
considering moments of planar or volumetric 
elements with respect to coordinate axes. Let’s 
remind how we computed the quadratic moment of 
the cross-sectional area with respect to the x-axis. See Fig. D34.  

 
Fig. D34. Quadratic moment of a rectangular cross section 
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In dynamics, instead of summing quadratic moments of elementary planar elements , we 
are evaluating sums of quadratic moments of masses belonging to mass elements, i.e. 

, where quantity 

yxdd

yxy dd2   is the planar density measured in  2kg/m . 
 
Generally, the moment of inertia of a body of the 
mass  composed of n  material particles  (or 

of all infinitesimal elements ) about an axis, 
say o, is defined by the relation  

m im

md

 

 
m

iio mRmRI d22 ,  (D7_1) 

where 2R  is the square of the shortest distance of 
each elementary mass  from the considered 
axis. See Fig. D35. 

md

 
Fig. D35. Moments of inertia 

 
Sometimes, another quantity named the gyration radius used. It is defined by the relation 
 

m

I
r 0
g  .          (D7_2) 

 
Similarly, the moments of inertia about coordinate axes are defined by 
 

 

 

 











m

z

m

y

m

x

myxI

mxzI

mzyI

.d

,d

,d

22

22

22

         ... (D7_3) 

 
Sometimes, an alternative notation for moments of inertia is used, namely  
 

zzzyyyxxx IIIIII  ,, .          (D7_4) 

 
The moments of inertia with respect to coordinate planes are 
 

      
m

xy

m

zx

m

yz mzImyImxI .d,d,d 222      ... (D7_5) 

 
Observing the above relations, it is obvious that 
 

yzzxzxyyzyzxxyx IIIIIIIII  ,, .      (D7_6) 
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The moment of inertia with respect to the origin of coordinate system is 
 

 



m

zyx
zxyzxy

III
IIIdmzyxI

2
222

O .    (D7_7) 

 
The deviatoric moments are defined by 
 













m

zxxz

m

zx

m

yzzy

m

yz

m

xyyx

m

xy

DdmxzDdmzxD

DdmzyDdmyzD

DdmyxDdmxyD

.,

,,

,,

             ... (D7_8) 

 
The moments of inertia and deviatoric moments are often assembled into a single matrix 
known as the inertia matrix 
 












































zzxyzx

yzyyyx

xzxyxx

zxyzx

yzyyx

xzxyx

IDD

DID

DDI

IDD

DID

DDI

I .    (D7_9) 

 
Notice that the matrix is symmetric. The dimensions of elements of the inertia matrix are 
mass   square of length, i.e.  2mkg . 
 
Example – moments of inertia 
 
Given: A cone having its apex in 
the origin of the coordinate system 

yx,  is defined by its dimensions 
and the density  . See Fig. D36. 
Determine: Moments of inertia 
with respect to coordinate axes 

zyx ,, . 
 
To simplify the computation the 
mass element is considered as a 
ring with the radius y , the height 

and the thickness .  yd xd
 
 
 

Fig. D36. Moment of inertia for a conus 
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Then, the moment of inertia about x axis is 
 

.dd2where,d2 yxydmmyI
m

x    

 

4

0

4
4

4444/

0

4

0

/

0

3

10
d

2
d

4

/
2d

4
2dd2 hrxx

h

r
x

hxr
x

y
yxyI

hhhrx

o

hh hrx

x

 







   . 

 

Dimensional check: 25
3

mkgm
m

kg
 . 

 
In this example the density   was put in front of the integral sign since it is assumed that it is 
distributed homogeneously within the considered body. 
 
In cases where the density is a function of spatial coordinates then it must stay behind the 
integral sign and be properly integrated with spatial coordinates describing the body’s shape.  
 

In engineering textbooks, one can find an alternative formula, i.e. 2

10

3
mrIx  , where 

hrm 2

3

1  is the mass of the cone. Check, that the formulas are identical. 

 
Moment of inertia about y axis  
 

  xyyxy IImzmxmzxmrI   dddd 22222 . 

 
We know that  
 

xzxyx III  . And also that due to symmetry xzxy II  , xzx II 2 and finally 

 
4

20
2/ hrII xxz


 . 

 
Still, we have to determine 
 

  ./,,d 22 hrxydxydmmxI yz   

 
Now, the mass element is taken as a circular plate of the radius y and the thickness . So, xd
 

 
h

yz hrxxx
h

r
I

0

3222
2

2

5
d

 . 

Finally, 234

520
rhhrIII yzxyy


 , yz II  . 
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Example – deviatoric moments 
 
Given: A blade, depicted in Monge’s 
projection with its dimensions according in 
Fig. D37, has the density  . 
Determine: Deviatoric moments. 
 
Due to symmetry we have 0,0  xzyz DD . 

 

 mxyDxy d , 

yxsdm dd , 

 xax
b

c
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b

c
x

b

c
y  . 
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               Fig. D37. Deviatoric moments 
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Example – moment of inertia 
 
Given: ,l and   – density per unit length. See Fig. D38.  

Determine:  xyx DI , .

  mxyDmyI xyx d,d2 . 

   22 dd,d yxdssdm   . 

  
 
 

Fig. D38. Moment of inertia 
 




cos

1
1,

cos

sin
tan, 2  kkkxy . 

21ddd kxdsxky  . 

     


3322
cos
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222
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3

1
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1
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1
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Similarly 


cossin
3

1
...d1)(d 3

cos

0

2 lxkkxxmxyD
l

xy   . 

 
To understand the subject of mass distribution of rigid bodies we have presented a detailed 
procedure how moments of inertia are calculated. Usually, the formulas for moments of 
inertia as well as deviatoric moments are not computed from the scratch but are readily found 
in engineering textbooks instead. As an example, a few of frequently used formulas are 
presented below. 
 
Moments of inertia of rigid bodies of mass  m
 
body     axis      I  
 

thin rod, length L   perpendicular axis through centre   2

12

1
mL  

thin ring, radius R   perpendicular axis through centre    2mR

circular cylinder, radius R  axis of cylinder    2

2

1
mR  

thin disk, radius R   transverse axis through centre  2

4

1
mR  

sphere, radius R   any axis through centre   2

5

2
mR  

thin spherical shell, radius R  any axis through centre    2

3

2
mR  

thin rectangular plate,  ... axis through centre perpendicular to plate ba  22

12

1
bam   

 
 
D8. Dynamics of rigid bodies 
 
It should be reminded that 
 

 rigid bodies do not deform due to applied forces and moments,  
 mass distribution within a body is characterized by  

o the location of the centre of mass, 
o the moments of inertia, 
o the deviatoric moments, 

 usually, it is assumed that the density is distributed homogeneously within a body, 
 a free body in 3D space has six degrees of freedom, thus six equations of motion are 

required (at least three of them have to be of moment nature), 
 a free body in 2D space has three degrees of freedom, thus three equations of motion 

are required (at least one of them have to be of moment nature).  
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D8.1 Translatory motion 
 
All the material points (particles) of the considered body have (in a given moment) the same 
trajectories, velocities, and accelerations. The angular velocities and angular accelerations are 
equal to zero. 
 
Momentum       vp m , 

Angular momentum about the centre of mass S  0L S  ,  ... (D8_1) 

Angular momentum about a generic point O  vrL m SO , 

Kinetic energy      2
k 2

1
mvE  .       (D8_2) 

Vector equations of motion about a generic point O are 
 

 im Fa ,                (D8_4) 

 OS im Mar   or about the centre of mass S   SiM0 . 

 
The above vector relations are generic. They are valid universally. For a body in 3D space we 
write six scalar equations instead. Equations of motion about a generic point O are 
 

 ixx Fma , 

 iyy Fma ,          ...   (D8_5) 

 izz Fma , 

   ixyz Mazaym SS        xiM S0 , 

   iyzx Maxazm SS   or about the centre of mass S   yiM S0 ,       (D8_6) 

   izxy Mayaxm SS        ziM S0 . 

 
Hint – apparent inertia forces for a translatory motion 
 
The apparent inertia forces and moments for a body 
subjected to a translatory motion, written with respect 
to the centre of mass S, are 
 

0, D
S


 MamD . 

 
The vector D


 and the upper right index D stands for 

d’Alembert. See Fig. D39. Notice, that in 
accompanying pictures the shown vectors are denoted 
by oriented lines with arrows, showing the direction, 
and by letter labels having no above arrows. So the 
labels indicate just the magnitudes of particular vectors. 

 
Fig. D39. Inertia forces – translation 
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Example – a skidding car on a slope 
 
Given: Dimensions ,,,, bhlm , the coefficient of friction and gravitational acceleration f g . 
A car of the weight , whose wheels are fully braked (no rotation), is skidding 

downwards the slope inclined by an angle 

mgQ 
 . The initial velocity of the car is . See Fig. 

D40, where the free body diagram forces are indicated. 
0v

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. D40. Motion of a skidding car 
 

Determine: The final velocity  at a distance l  from the beginning. 1v
 
Scalar equations of motion are  
 

.02sincos:

,0cos:

,0sin:

BA

BA

BA






DhbNQhQbM

QNNy

QfNfNDx





 

 
where .  mgQmaD  ,
 
By subsequent rearranging and integration, we get 
 

     .cossin2,cossin
2

,sincos 2
01

2

 fglvvfg
dx

dv
fga   

 
The task has a meaningful solution only if , i.e. if 0a  cossin f , that is if ftan . 
 
Notice that as far as the acceleration is concerned, the result is identical with that of the 
particle sliding down an inclined plane. 
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Example – translatory motion. 
 
Given: A rod of weight G  is constrained to the 
frame by two ropes of the same length . See 
Fig. D41. 

l

 
Determine: The equations of motion. 
 
All the points of the rod are subjected to the 
same trajectory, velocity and acceleration. Thus, 
by definition, the whole body is subjected to a 
translatory motion. The equation of motion for 
the centre of mass, written in a vector form, is 

.  
    Fig. D41. Swinging rod 

n sed in a scalar form for tangential and 
ormal components and for the centre of mass ,  are 

 

BA SSGa m

 
Newton’s formulation of the equation of motio  expres

Sn

.cos0:

,cos:

,sin:

S

BA
2






mgSS

mgSSmln

m

M

gmlt

BA 








  

atic relations for tangent and normal acceleration components 
e,

 
We have used the known kinem

   lala  nt , .i.  

xample – translatory motion 

ri

 
E
 
Given: A block of given dimensions and of the 
weight G  slides along the ho zontal plane 
being towed by a constant force P  to the right. 
The coefficient of friction is f. See Fig. D42, 
where the free body diagram forces are 
epicted. 

force

d
 
Determine: The maximum possible magnitude 
of the  P  which does not cause the block 
to tilt. 

           Fig. D42. A Sliding block 

he equations of motion, written in d’Alembert’ style, are 
 

ent
from the fact that the norm . From 

 
T

.0)(:

,0:

,0:

S 




NfsshPNn

GNy

NfmaPx

 

M

 
We have three equations for three unknowns, i.e. Nna ,, . The ‘non-tilt’ requirem  comes 

al reaction should stay within the contact area, thus ln 

D, 21 May 2018 67



 

 

this we get 
sh

fsl
GP




 . Of course, there is another condition, i.e. h >s, which has to be 

satisfied. 
 
D8.2 Rotary motion        
 
Summary of kinematics rules for a particle at the radius R subjected to the rotation with 
angular velocity   and angular acceleration  . 
 
The velocity          Rv  . 
The tangential acceleration        RRa t . 

The normal (centripetal) acceleration      . RvRa /22
n  

 
D8.2.1 Planar rotary motion 
 
is described by the fact that the considered body has its symmetry plane perpendicular to the 
rotation axis. In that case, it is sufficient to write three equations of motion in which inertia 
effects of individual particles are expressed by three overall effects – by the apparent 
centrifugal force, by the apparent tangential inertia force and by the apparent inertia moment. 
D’Alembert style is used for the explanation. 
 
There are three possibilities. 
 
a) Apparent inertia effects (forces and moment) related to the centre of rotation O.  
See Fig. D43.  
  

St mRmaT    ... apparent tangential inertia force, 

perpendicular to the OS line, acts at the centre of 
rotation; its direction is opposite to that of tangent 
acceleration. 

2
Sn mRmaO   … apparent normal inertia force 

(centrifugal force) acts against the direction of the 
normal (centripetal) acceleration. 
OIM D    … apparent inertia moment acts against 

the direction of angular acceleration.  
 

    Fig. D43. Apparent inertia forces for the centre of rotation 
 

SR  is the distance between the centre of mass and the axis of rotation and  

OI  is the moment of inertia about the axis of rotation. 
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b) Apparent inertia forces related to the centre of mass S. See Fig. D44.  
 
 

St mRmaT  ... acting at the centre of mass, 
2

Sn mRmaO  , 

SIM D . 

 

SR  is the distance between the centre of mass and the 

axis of rotation,  is the apparent inertia moment 

and  is the moment of inertia about the centre of 

mass. 

DM

SI

 
Fig. D44. Apparent inertia forces for the centre of mass 

 
c) The third possibility is rarely used. 
 
It is based on the fact that a force and a moment could be generally replaced by a laterally 
shifted force. In this case, the centrifugal force is the same as before, but apparent tangential 
force, whose magnitude is same as before, acts at the distance l  from the centre of rotation. 
Its location is obtained from 
 
 SSOO ///  mImITIlITl OO  . 

 
And now, why it is so.  
 
A body of the mass m rotates around the point  by angular velocity O   and by angular 
acceleration  . The distance of the centre of mass  from the centre of rotation O  is . See 

Fig. D45. 

S Sr

 
The apparent normal inertia force, i.e. the 
centrifugal force, acting on the i -th particle is  
 

2iii rmO  . 

 
Summing these forces all over the body we get 
 

2
S

moment static

22 d  mrmrrmOO
m

iiii   


 . 

 
The resulting force is aligned with OS line. 
 

 
Fig. D45. Resultants of apparent inertia forces 
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The apparent tangent inertia force acting on the i -th particle is  
 

iii rmT  .           

     
When this force is transferred laterally to the origin , a corresponding couple has to be 
added, i.e. 

O

 
2iiii mrrTM  . 

 
Summing it up for the whole body we get 
 
– firstly, the apparent tangential inertia force that acts at the centre of rotation and is 
perpendicular to OS line 
 

 S

moment static

d mrmrrmTT
m

iiii   


,  

 
– and secondly, the apparent inertia moment 
 

 O

inertia ofmoment 

22 d ImrrmMM
m

iiii   


,  

 
where  is the moment of inertia about the centre of rotation. OI

 
As before, the resulting tangential force could be laterally shifted to the centre of rotation. 
Then, the additional couple, i.e. , has to be added. Thus, the apparent inertia moment is  STr

 
   SSSSS ImrmrITrIM  22

0 ,  

 
where  is the moment of inertia about the centre of mass. SI

 
Notice that the directions of apparent inertia effects, in agreement with d’Alembert’s 
principle, always act against the directions of corresponding accelerations. 
 
One has to carefully distinguish two close terminological terms appearing in the relation 

IM  . The term M on the left-hand side is the apparent inertia moment – it is measured in 
. On the right-hand side we have the geometrical quantity 22/skgmNm  I  which is called 

the moment of inertia – it is measured in . Knowing that the dimension of 2kg/m   is 
one is satisfied. 

2s/1  
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Example – swinging rod 
 
Given: The rod is constrained to the frame by a 
frictionless joint. In its vertical position, it is held by 
two initially unstretched springs. The values of string 
stiffnesses, dimensions, mass and the moment of 
inertia with respect to the centre of mass, i.e. 

, are known. In Fig. D46 the rod is 

depicted in a generic position, characterized by the 
angle 

SS2121 ,,,,,, Jmrrrcc

 , with corresponding free body diagram 
forces and moments. 
Determine: Period of vibration under the assumption 
of small rotational displacements. 
 
If apparent inertia effects are considered with respect 
to the centre of mass S, then the scalar equations of 
motion are 
 

,0sincoscos:

,0cossin:

,0sincos:

S2211SA

A

21A











mgrrSrSJTrM

OTmgRy

OTSSRx

S

y

x

 
 

Fig. D46. Rotating rod 
 
where centrifugal and apparent tangent inertia forces, spring forces and the relations between 
the moment of inertia with respect to point A and to the centre of mass, are 
 

.

,sin,sin

,,

S
2

SA

222111

SS
2

S
2

S

JmrJ

rcSrcS

mrmrTmrmrO







 

 

 
The last relation is sometimes referred to as the parallel axis theorem or the Steiner’s rule.  
 

Note: When elongations of spring forces   are evaluated a small arc due to the rod 
rotation is approximated by a straight line. For small angles, this is an acceptable 
approximation. 

21,SS

 
The third equation leads to 
 
    .0sincossin S

2
22

2
11SS

A

  mgrrcrcJmr
J


  
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For small angles, we use the following approximations, i.e. 1cos,sin   , so 
 

 
.0

,0

2

A

S
2

22
2

11

S
2

22
2

11A












  





Ω

J

mgrrcrc

mgrrcrcJ

 

And finally, the period of vibration is 
 

.
2

S
2

22
2

11

A

mgrrcrc

J

Ω
T





 

 
 
Example – falling rod 
  
Given:  Fig. D47.  gravity. of centre  the... S,,,, AS Jgmr

Determine: How the rod bar falls from the vertical position, i.e. find the function )(  . 
 
 
Equations of motion are 
 

.0sin:

,0cossin:

,0sincos:

ASA

A

A











JmgrM

mgOTRy

OTRx

y

x

 

 
Normal and tangential accelerations are 
 

 St
2

Sn , rara  . 

 
 

Fig. D47. Falling rod 
 
Apparent normal (centrifugal) and tangential inertia forces and inertia moment are 
 

. thatRecall.

,

,

2
SSAA

St

2
Sn

mrJJJM

mrmaT

mrmaO











 

 
Kinematic relations 
 

.
2d

d

d

d

d

d
,

d

d 2

2

2


 

ttt
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From the moment equation of motion, we subsequently get 
 

A

S sin

J

mgr   , 
A

S
2 sin

2d

d

J

mgr 



 , 

 



00 A

S2 dsin
2

d

2

J

mgr
,  1cos

2

A

S2  
J

mgr
. 

 
So the angular velocity  , expressed as a function of angle  , is 
 

  cos1
2

A

S 
J

mgr
. 

 
D8.2.2 Spatial rotation of a body about an axis    
 
The coordinate system  ,,  is firmly connected 
to the rotating body. See Fig. D48. A generic 
mass particle , subjected to the rotation around 

the 
im

  axis by the angular velocity   and by the 
angular acceleration  , has the normal 
acceleration  and the tangent 

acceleration 

2n iia

iia t . According to d’Alembert 

principle, there are the apparent centrifugal force 
and apparent tangential inertia force 2iiiO m

iiT im . The directions of forces  are 

opposite to the directions of corresponding 
accelerations   

ii TO ,

i
at, .

i
an

Fig. D48. Spatial rotation 
 
In the chapter devoted to kinematics, we have derived  
 

0ia , 

iiia   2 , 

iiia   2 . 

 
It should be reminded why it is so. The velocity of a particle defined by the radius vector 

kzjyixr





 of a body subjected to rotation defined by the angular velocity  

kji zyx


   is given by the cross product 

 

     
















zyx v

yx

v

xz

v

zyzyx xykzxjyzi

zyx

kji

rv   . 
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The acceleration components are obtained by expressing the derivatives of velocity 
components with respect to time  
 


t

v
a x

x d

d
yzzzyyzzyy vyvzyyzz    , 

   







zx v

yxxx

v

zyzzzxxxzzy xyzyzxvzvxa   , 

   







xy v

zyyy

v

xzxxxyyyxxz yxxzxyvxvya   . 

In our case, we have 0 zyzy  , so 

 
0xa , , . zya xxy   2 yza xxz   2

 
The similarity is obvious. It suffices to rename variables in such a way that  
 

  zyx ,, . 
 
Now, back to the resulting force which would arise due to summation of elementary forces 

. These forces could be expressed by components in ii TO ,  ,,  directions as  

 

 iii amD  , 

 iii amD  , where  

iiia   2 , 

iiia   2 . 

 
Using the definition of static moments, coordinates of the centre of mass S,S  and the 

overall mass of the body  we get the apparent inertia forces in the form m
 

    SS
22  mmmmamD iiiiii ,    (D8_7) 

  SS
22  mmmamD iiiii   .    (D8_8) 

 
The above relations could be easily verified by a simple 
geometric consideration depicted in Fig. D49. The 
projections of elementary forces O  into the coordinate 

axes are  
ii T,

 

iiiiiiii mmOO 
22 coscos  ,  

iiiiiiii mmOO 
22 sinsin  , 

iiiiiiii mmTT   sinsin , 

iiiiiiii mmTT   coscos . 

 
 

Fig. D49. Components of apparent forces 
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The forces were summed up and transferred into the origin of the coordinate system.  This 
requires a few moment components to be added.  
 
The moment of apparent inertia forces is  
 

 





iii

iiiiii

aaa

kji

mamr




. 

 
The components of this apparent vector related to the coordinate axes are 
 

     iiiii aam: , 

     iiiii aam: , 

     iiiii aam: , 

 
where  are static moments about coordinate axes.   iiiiii mmm  ,,

 
Substituting 
 

0ia , 

iiia   2 , 

iiia   2 , 

 
into previously derived relations we get three moments. 
 
1) The moment of apparent inertia forces about the  axis 
 

      
  .222

22









Imm

maamM

iiiii

iiiiiiiiiiii








   ... (D8_9) 

 
2) The moment of apparent inertia forces about the  axis 
 

       CCmmmM iiiiiiiiiii
2220 ... (D8_10) 

 
3) The moment of apparent inertia forces about the   axis 
 

       CCmmmM iiiiiiiiii
222 0 .  ... (D8_11) 
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The quantity  is the moment of inertia about the rotation axis.  I

If , we say that the body is statically balanced. It means that the centre of rotation of 0I

that body ‘sits’ at the axis of rotation. 
The quantities  a   are deviatoric moments.  CC   CC 
A dynamically balanced body requires the deviatoric moments to be identically equal to zero 
as well. 
 
D8.3. General planar motion 
 
We proceed the same way as in kinematics and complement each acceleration component 
with a corresponding apparent inertia force. 
 
In a given moment the motion of a generic particle of a body subjected to general planar 
motion is assumed to be described by the velocity and acceleration of the reference point plus 
by a relative rotational velocity and acceleration of the considered particle around the 
reference point. In kinematics, we have described the basic and the Coriolis decomposition. 
 
D8.3.1. Basic decomposition 
 
It is advantageous to decompose the overall motion into two parts, i.e. the carrier motion of 
the translatory nature plus the relative rotational motion around the chosen reference point. 
 
There are two ways how to proceed. 
 
First. The decomposition is carried out 
with respect a generic reference point K, 
whose trajectory, velocity  and 

acceleration , as well as relative 
angular velocity 

Kv


Ka


  and relative angular 
acceleration, are known. See Fig. D50.   
 

 
 

Fig. D50. Dynamics of general planar motion – 1 
 

Then, the magnitudes of apparent inertia forces and of apparent inertia moment are  
 

KmaD             (D8_12) 
 
… the apparent inertia force due to the carrier translatory motion, it is situated in the center of 
mass S of the considered body, its direction is opposite to that of the carrier acceleration Ka


, 

 
2meO            (D8_13) 

 
… the apparent relative normal force (called the centrifugal force), situated in the reference 
point, its direction is opposite to that of relative normal acceleration of the centre of mass S. 
The quantity  is the shortest distance between the centre of rotation and the centre of mass. e
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meT            (D8_14) 
 
… the apparent relative tangential force, situated in the reference point, its direction is 
opposite to that of relative tangential acceleration of the centre of mass S. 
 

KJM            (D8_15) 
 
… the apparent relative inertia moment, its direction is opposite to that of relative angular 
acceleration  , where  is the moment of inertia of the body with respect to the reference 
point K. 

KJ

 
Second. The situation is simplified if the centre of 
mass is chosen as the reference point. See Fig. D51.  
 
In this case, the forces O  and T  become null, since 
the distance  is zero. What remains is the apparent 
inertia force due to the translatory carrier motion. 
The magnitude of this force is 

e

 

SmaD      (D8_16) 

  
Fig. D51. Dynamics of general planar motion – 2 

 
and the apparent inertia moment due to the relative rotation. The magnitude of this moment is 
 

SJM  ,          (D8_17) 

 
where is the moment of inertia of the considered body with respect to the centre of mass. SJ

 
Example – cylinder rolling down an inclined 
plane 
 
Given: mass m , moment of inertia with respect 

to the center of mass S, radius 
SJ

r , angle  . 
Determine: equations of motion 
 
In Fig. D52 is depicted a cylinder at a generic 
position x , the immediate quantities are the 
velocity , acceleration of the centre of cylinder 

.  
v

a
 
Fig. D52. Rolling cylinder 

 
A free body forces are the normal force , the weight N mg , the rolling resistance force T . It 
should be reminded that the rolling resistance force differs from the force of friction. 
 
The apparent inertia effects consist of the force  due to the translatory motion and of the 
apparent inertia moment 

D
SJ  whose direction is against that of angular acceleration  . 
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We can write the kinematic relations in the form 
 rarv  SS ,  

 
and then the equations of motion are 
 

0sin: S  maTmgx  , 

0cos:  Nmgy  ,  

0:S  SJTrM .  

----------------------------------- 

S,,, aNT  . 

 
When the unknowns are calculated, the condition of pure rolling has to be checked. The 
rolling resistance should be always less than the force of friction, i.e. NfT  , where  is the 
coefficient of friction.  

f

 
The rolling of a body might be imagined as a combination of a translatory motion of the body, 
characterized by the translatory motion of the centre of mass, plus the rotary motion of the 
body around the centre of mass. The kinetic energy is obtained by summing the translatory 
and rotary energy contributions, thus 

 
2

S
2
S 2

1

2

1 JmvE  . 

 
This expression is sometimes referred to as the König’s rule. 
 
The velocity at the location x  might be alternatively computed from the condition that the 
difference of kinetic energies (at the end minus that at the beginning) is equal to the work 
exerted by external forces. It is only the body’s weight which works here. 

 
WEE xx  0 , 

 sin0
2

1

2

1 2
S

2
S mgxJmv  , 

S
2
S2

S sin)(
2

1
vmgxv

r

J
m   . 
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D8.3.2. Coriolis decomposition 
 
The general planar motion could also be decomposed into the carrier motion of rotary motion 
plus the relative motion which could be of translatory or rotary nature. 
 
Example – a pendulum on the merry-go-round. 
 
A pendulum is attached at joint A to the 
rotating frame. See Fig. D53.  
 
Given: mlr ,,,21  
A rod, attached to an arm rotating by a 
constant angular velocity const21 , 
could freely swing about the joint A. 
 
Determine: Apparent inertia forces  
The motion (31) of the particle of mass 

at point S can be decomposed into the 
carrier rotation (21) plus the relative 
rotation (32).  

m

 
 
 

 
 
 
 
 
 
 

Fig. D53. Pendulum attached to merry go round 
 
Kinematics – velocities and accelerations. 
 
Velocitity of S with respect to the frame (1) 
 
S: , 213231 vvv




 
where the magnitudes of velocities are  
 

lv 32 ,   2112 sin lrv  . 

 
Acceleration of S with respect to the frame (1) 
  
S: , cor213231 aaaa




 

n32t3232 aaa


 , n21t2121 aaa


 , 3221cor 2 va


  , 

 
where the magnitudes of accelerations are 
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la t32 , , , , 2
n32 la  0   21n21 sin lra t21 a 2  cos2

2
sin2 213221cor lva 






  . 

Dynamics – vectors of apparent inertia forces and their magnitudes. 
 

n3232 amO





,  ... apparent normal inertia (centrifugal) force due to relative rotation, 2
32 mlO 

t3232 maT  , mlT 32  ... apparent tangential inertia force due to relative rotation, 

n2121 maO 


,  

...  ... apparent normal inertia (centrifugal) force due to carrier rotation,   2
2121 sin  rmO

021


T , , (021 T 021  )    ... apparent tangential inertia force due to carrier rotation. 

 
And finally  

corcor amD


 ,  cos2 21cor lD  ... apparent Coriolis inertia force. 

 
D8.4. Summary to dynamics of rigid bodies 
 
At first, consider a system of 
individual particles of mass , 

later we will deal with elementary 
mass elements . 

im

md
 
Let zyx ,,  is an inertial coordinate 
system and  ,,  is another 
coordinate system which translates 
and rotates with respect to the 
former. The origin of   ,,  
system is defined by a radius 
vector . The system r  ,,  

zrotates with respect to yx ,

.  

,  with 
the angular velocity ω  and the  

ration εang ele
 

Fig. D54. External and internal forces 
 

er le 

ular acc

External and int nal forces acting on the partic im  are IE , ii FF .  

Radius vector i  determines the location of with respect to the origin of the coordinate 

ystem

 im

 ,, . See s Fig. D54.  

quations of motion are  
 

,        (D8_18) 

.       (D8_19)  

 
E

E

iiim   Fa

 E

iiiii m   Frar
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In kinematics, we have derived that the velocity and acceleration of the -th particle can be 
expressed by 

... carrier and relative velocity, 

 

i

 

relativecarrierrelativeΩ iiiii vvvρωvv    (D8_20) 

    relativeCorioliscarrierrelativerelativeΩ

Coriolisnormal

2 iiiiiiii

ii

aaaavωρωωρωaa
aa

carrieria

tangentialia




 




 

. (D8_21)

 

dices denote relative and carrier components, respectively. Substituting Eq. 
(D8_21) into Eq. (D8_18) we get  

and after introducing apparent forces the equations of motion have 

 
     ... carrier, Coriolis and relative accelerations. 
 
In  carrier relative,

 

 relativeCoriolis iiiicarrierim   Faaa  
E

 

 

    Corio

E

relativeCorioliscarrier

E

iicarrieriiiiii
m DDFaaaF0  relativelis iD   

 
    ... (D8_22) 

Evidently, we have in oduced 
 

is acceleration. 

Moment effects are obtained by substituting (D8_21) into (D

 
tr

icarrierii m aD u    … apparent forces due to carrier motion, 

  … apparent forces due to relative motion, D relativer iii m a  

CoriolisC iii m aD     … apparent forces due to Coriol

 
8_19).  

 

  Coriolisrelative

E

iiiiicarrier DrDrD  iii rFr0 .   (D8_23) 

riting equations of motion in a non-inertial coordinate system requires adding apparent 

 
Expressed in words 
 
W
inertia forces due to the carrier, relative and Coriolis accelerations. 
 
If the carrier motion of translatory nature, then there are no Coriolis forces since .  

y two bearings – radial on the left, axi-radial on the right. There are two 

0εω 
 
Example – dynamical balancing 
 
In Fig. D55 there is depicted a machine part originally consisting of two cylindrical shafts, 
denoted by number 1 and 2. The first has the length a  and the diameter 1d  while the second 

has the length b  and the diameter 2d . To that part, which is dynamically balanced, two 
additional small cylinders, denoted by numbers 3 and 4, are attached. The rotating body is 
supported b
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coordinate systems. One stationary, the other rotating with the body, the latter is distinguished 
by primes.  
 
Given: Dimensions, , . 
Determine: The magnitudes and positions of two counterweights to be added in order to 
ecure the dynamical balancing of the depicted machine part. The counterweight masses 

  considered as particles. Then, the tangential and centrifugal 
pparent inertia forces, acting on them during the rotation with angular velocity 

s
should be positioned in planes I and II, respectively. See Fig. D55. 
 

 
Fig. D55. Dynamical balancing 

 
The cylinders 3 and 4 are
a   and 
angular acceleration  , are 
 

2
3333 ,  hmOhm   T

2
4444 ,  hmOhm  . T
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The scalar equations of motion are 
 

xx JMM : , 

, 


0: B xRx

   02/2/: 2324B  clLTclLOLRM zy , 

    02/2/: B2423  LRclLTclLOM z , y

    02/2/: 2324A  clOclTLRM yz , 

    02/2/: 2423A  clOclTLRM zy . 

 
We intend to balance the body by adding tw called counterweights in t

ass particles in planes I and II. The balancing particles should be located at distances 
o so- he form of two 

 if the moment effects of apparent inertia 
rces are null. Let’s simplify our effort by assuming that 

III ,  m

from the rotation axis and oriented by angles III ,  from the vertical plane.  
 
The body is in the state of dynamic equilibrium

const . Then 00  Tfo . 
So, the following conditions have to be satisfied 
 

, 

.  After substitution and cancelling by 

ix un , in previous four equation

, could be determined.  

] Truesdell, C. and Toupin, R.: The classical and field theories. Encyclopedia of Physics, 

ations, New York, 
970, ISBN 13-978-0-468-65067-8. 

anicsLanczos

  0sin2/: IIII
41  aOcbaOM y , 

  0sin2/: II
42  aOcbOM y , 

  0cos2/: IIII
31  aOcbaOM z , 

  0cos2/ II
3  cbO:2 aOM z

 
where III mO  and 2  there remain 

IIIIIII ,,,,, mm s.. Choosing the values of 

2

knowns, i.e. 
II ,  then the rem

2IIIIII mO 


ining four, i.e. m

s II

a I ,I , IIIII ,, m
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