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Introductory part

Scope
1. Introduction
2. Foreword
3. Background for scalars, vectors, and matrices
4. Background for statics, kinematics, and dynamics

1. Introduction

The presented text represents a background for undergraduate students attending one-semester
course dedicated to mechanics of rigid bodies.

The course is based on classical deterministic Newtonian mechanics in which space and time
coordinates are completely independent. It is assumed that the rigid, i.e. non-deformable, bodies
have masses that are independent of their speeds, that bodies move with velocities that are
negligible with respect to the speed of light, and furthermore that we can accept the notion of an
inertial system — that is the system which is at rest or which moves with constant velocity with
respect to the ‘fixed stars’. Also, non-deterministic traps of quantum mechanics are avoided.

The course, divided into three parts, is subsequently devoted to

e Statics — analysis of forces acting on bodies — time variable is not considered.
¢ Kinematics — displacements, velocities, accelerations — no forces are considered.
e Dynamics — analysis of motions of bodies in time and space.

This course is a prerequisite to series of future lectures devoted to mechanics of deformable
bodies which will mainly deal with

e Elastic deformations characterized by the fact that the relation between stress and strain,
i.e. o= f(&), is linear.
e Non-elastic deformations — no permanent deformations occur. The relation o = f(¢g) is

non-linear, but no hysteresis occurs.
e Non-elastic deformations — with permanent deformations. The relation o = f (&) is non-
linear, but there is a distinct hysteresis.

Another series of courses devoted to a broader subject of computational mechanics is prepared
and will be available soon. Its intended scope is as follows

Computational Mechanics
e Continuum mechanics.

e Computer science.
e Numerical analysis.
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It is assumed that students have the ability to routinely evaluate standard mathematical functions,
and have the elementary knowledge of vector calculus, matrix analysis, differential and integral
calculus. The above mentioned items constitute a sort of engineering craftsmanship.

The practical engineering result is required to be a number, a series of numbers and/or graphs
based on which the thorough analysis and the rational engineering and managerial decisions are
made. That’s why a reader (= future engineer) should be able to enter and manipulate lists and
arrays of numbers and to write short programs — for this purpose the Matlab is employed.

The text tries to explain the basic principles of mechanics of rigid bodies by detailed analysis of
many worked-out examples. The enclosed short programs are intended to be read, played with
and the obtained results should be thought about at length and in depth. Since it is only a one-
semester course, many advanced items of analytical mechanics are omitted.

The course might be of interest to people intending to deal with commercial finite element
packages, where a proper understanding of terminology and of basics of mechanical principles is
a must.

The author can’t resist to provide a few pieces of wisdom and to suggest the readers that the main
goal to be achieved when studying mechanical engineering is to see things in proper relations, to
be able to distinguish what is important and what could be neglected. One has to realize that the
ability to find pieces of information somewhere on internet addresses does not establish the
knowledge itself. Important are the relations between the pieces of information. And last but not
least, the fundaments of understanding of mathematics and physics are required.

12. Foreword
12.1. Modeling

The computational mechanics, of which this course is an introductory part, generally aims to the
modeling of large and non-trivial tasks in physics and in engineering practice. One has to
emphasize that the proper understanding of the treated problem and the appropriate choice of the
physical, mechanical, as well as numerical models, are crucial for the successful solution of tasks
in question. To fully succeed, one should furthermore master algorithms of numerical analysis
and to command the basics of computer science, that is programming, programming languages,
operating systems, etc.

The model, as we understand it in physics and in mechanical engineering, is a purposeful
simplification of an actual phenomenon in Mother Nature. It is created with the intention to
predict — to describe what would be the behavior of the modeled phenomenon under the accepted
simplifications. After that, one has to compare the model behavior with that of the modeled
phenomenon. The assessment of model reliability and accuracy is usually based on properly
conceived experiments. After the created model is thoroughly tested and satisfies our
requirements on reliability and accuracy, then we do not need to perform the experiment.
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So, the main goal of the modeling process is to predict the future without making excessive and
repeated use of often difficult and rather expensive experiments. Of course, the experiments
cannot be avoided since they are needed for validation of new models. The modeling that is
properly validated is crucial for accepting meaningful decisions of engineering and/or managerial
nature.

12.2. Doubts

The results obtained by theoretical, numerical and experimental approaches in computational
solid continuum mechanics are correlated and compared with intentions to ascertain which of
them are ‘truer’ or closer to ‘reality’. This, however, invokes many questions.

e How is truth related to consistency and validity of theoretical, numerical and experimental
models we are inventing and employing?

e What is the role of threshold in physics, engineering, computation and in an experiment?

e How the basic quantities, as time, force, stress, etc. are defined? Do we properly
understand them?

e What is the role of singularity in mathematics, physics and in engineering?

Answers to above questions are difficult to found and lead naturally to profound doubts. These
difficulties, however, do not preclude our positive attitude to problem-solving. On the contrary,
the presented text should persuade the reader to believe that the role of doubts in our
understanding of Mother Nature plays a positive role.

12.3. Truth

When trying to answer the question what is a true approach to modeling processes in physics and
engineering we have to start inquiring about the notion of Truth.

Thomas Aquinas (1225 — 1274) claimed that the truth is an agreement of reality with perception.
Today, however, the perceived reality depends on observation tools being used. For example, the
results of observation obtained by the magnifying glass with those of an electron microscope are
quite different.

Immanuel Kant (1724 — 1804) asked for a clear distinction between the 'true reality' and
'perceived reality'. Kant argues that in principle it is impossible to observe and study the world
without disturbing it. His ideas are very close to those of Heisenberg principle of uncertainty.

As mentioned above, the model is a purposefully simplified concept of a studied phenomenon
invented with the intention to predict — what would happen if ... Accepted assumptions
(simplifications) consequently specify the validity limits of the model and in this respect, the
model is neither true nor false. The model — regardless of being simple or complicated — is good,
if it is approved by an appropriately conceived experiment.

When we, engineers, are modeling particular phenomena of Nature, the question of truth
becomes irrelevant since the models we are designing with, checking and using, either work or do
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not work to our satisfaction. It is an undeniable fact that the mechanical theories, principles, laws,
and models, used in engineering practice, cannot be proclaimed true or false. They are either right
or wrong. Furthermore, the ‘right’ theories might fail when applied out of the limits of their
applicability. A few examples might illustrate the previous claims.

* 1D wave equation is not able to predict stress wave pattern in a 3D body, and still is
internally consistent and not wrong.

* Bernoulli-Navier’s slender beam theory ‘fails’ for thick beams.

* Newton’s second law ‘fails’ for motion of bodies approaching the speed of light, and still,
it represents a perfect tool for engineering mechanics, including the computations and
perfect prediction of celestial trajectories.

* Einstein’s theory of relativity ‘fails’ when applied to quantum microcosms.

So it is obvious that we rather strive for robust models with precisely specified limits of validity
and not for philosophically defined categories of truth and falsehood. From it follows that it is the
validity of models, theories, and laws that is of primary importance. How do we proceed?

*  When trying to reveal the ‘true’ behavior of a mechanical system we are using an
experiment.

*  When trying to predict the ‘true’ behavior of a mechanical system we are accepting a
certain theoretical model and then solve it analytically and/or numerically.

The trouble is that the physical laws (or the models based upon them) cannot — in the
mathematical sense — be proved. We cannot, for example, prove Newton's second law. On the
other hand, the Pythagorean Theorem can be proved rather easily.

And still, one intuitively feels that a theorem is yet a less heavy-artillery term than a law. The
terms, as law, theory, hypothesis, theorem, are not uniquely defined. ‘Words, words, words’ h

To get rid of doubts we often claim that it is the experiment, which ultimately confirms the model
in question. But experiments, as well as the subsequent numerical treatment of models describing
the nature, have their observational thresholds. And sometimes, the computational threshold of
computational analysis is narrower than those of an experiment. From this point of view, a
particular experiment is a model of nature as well.

In our incessant quest for truth we might have another mental hindrance, namely the lack of
precise definitions of certain mechanical quantities. It appears that definitions of conceptually

defined quantities as force, stress, energy, etc are rather intuitive and often circular.

Other widely used terms as stress, energy, etc. may generate similar doubts and questions.

" LORD POLONIUS: What do you read, my lord? HAMLET: Words, words, words. From Hamlet. SCENE II. A
room in the castle.
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12.4. Concluding our ideas about modeling we might say

Mechanical theories, principles, laws, and models, used in engineering practice, cannot be
proclaimed true or false. They are either right (working to our satisfaction) or wrong. Regardless
of being simple or complicated, they are ‘right’, if approved by an appropriate experiment (i.c.
the experiment conceived in agreement with accepted assumptions of the theory). History reveals
that wrong theories might appear, but not being confirmed by experiments, are quickly discarded
as ether or phlogiston. Theories might be right only within the limits of their applicability. We
cannot claim that a theory being proved by an experiment is right. The only thing we can safely
state is that such a theory is not proved wrong.

Generally, a singularity appearing in a model always means a serious warning concerning the
range of validity of that model. Usually, a more general model — having a wider scope of validity
— is invented removing that singularity. Very often there is no need to discard the older and
simpler model since it might perfectly work in the validity range for which it was conceived.

The modeling process primarily consists of understanding the investigated phenomenon, in its
decomposition into basic physical ‘items’, in establishing causal relations — often in terms of
differential equations, whose solutions have to be found.

In simple cases” analytical solutions in closed forms are available. However, even in these cases,
the solution is based on many physical, geometrical and numerical approximations.

In most cases, however, we have to systematically rely on approximate approaches based on
physical simplifications, spatial and temporal discretizations, on numerical methods, on their
efficient implementations, and last but not least on computers.

13. Background for scalars, vectors, and matrices
13.1. Scalars

The quantities fully determined by their magnitudes are called scalars. Temperature, energy or
density, denoted as T,E, p, are good examples. In the presented text they are printed in italics.

13.2. Vectors

Vectors are quantities uniquely determined by their magnitudes and directions. Examples are
displacement, velocity, acceleration, force, moment, etc. They are denoted by a bar or by an
arrow as V or V. Sometimes they are printed by bold characters as v for example. The magnitude

of the vector V is denoted |\7| or V. In literature the terms velocity and speed are often

distinguished. The former is used for a vector quantity, i.e. V, while the latter is reserved for its
magnitude, i.e. V= |\7| )

2 As the deflection of a thin beam in the theory of linear elasticity.
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Vectors are invariant with respect to a coordinate system. The choice of coordinate system is
arbitrary, but a particular choice may be advantageous.

Frequently, the position of the origin of the directed line is immaterial. In such a case two vectors
are considered identical if they are of the same length and direction. These vectors are referred to
as free vectors.

Often, it is convenient to associate the vector with a line along which it can freely move. Such a
line is often called the line of action. These vectors are referred to as bound vectors.

Still, there are vectors associated with a fixed point. They are referred to as position, location or
radius vectors.

Any non-zero vector in 3D space can be expressed as a linear combination of three arbitrary non-
zero base vectors. The most frequent choice of base vectors in the right-handed rectangular

Cartesian system is the set of three unit vectors 1, ],IZ aligned with coordinate axes. See Fig. [01.
So, a vector, say &, can be expressed by means of its scalar components a,,a,,a, by

y

d=aj+a,j+ak.

Fig. I01. Cartesian vector

Instead of naming the coordinate axes by X,Y,z, we might alternatively denote them by X, X, X;.

Similarly, the base vectors, instead of i, 17, IZ, could be denoted by €,€,,€,. This allows an
3

efficient and elegant notation in the form of notation, i.e. @ = &€, + a,€, + a,€, = Zak € =a¢b, .

Notice, that behind the last equal sign of the previous formula, we have dropped the summation
sign. This is in agreement with so-called summation convention (sometimes Einstein’s rule)
which states.

When an index appears twice in a term then that index is understood to take all the values in its
range and the resulting term summed.
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A few things, obvious from the above figure, are worth remembering.

Vector length: a=[a|=,/a; +a; +a; =(aa, ).

. . . . a, ay a,
Direction cosines: cos@, = ,C08¢, ==,C08¢, = .
a a [
=D . . a-b
Angle, say y, between two vectors d,b can be obtained from the relation cosy = —| |6 .
alo

13.3. Operations with vectors
13.3.1. Addition, subtraction
Graphically, these operations are provided by so-called parallelogram law. See Fig. 102.

Numerically we proceed as follows

[
S

f d=aj+a,j+ak and b=bi+b,j+bk, then
d+b=(a, tb)i +(a,£b)j+(a, th,)k. Lo

2l
|
S

—

i—b

Fig. 102. Vector addition and substraction
13.3.2. Multiplication

There are two kinds of vector multiplication defined.

a) Dot multiplication (also dot product, sometimes scalar product) of vectors, say a,b,
yields a scalar quantity s. The dot serves as an operator of this operation. So, we write
s=d-b=ab,+ab +ab, =ab.

If the angle between vectors a,b is @, then the dot product is s = |é”l5‘cosgo. From it follows
: . . T
that the dot product of two perpendicular vectors is zero since cosE = 0. If the former vector

represents the force and the latter the displacement, then the physical meaning of the dot
product is the mechanical work, or energy.

b) Cross multiplication (also vector product) of vectors, say a,b, gives a vector quantity C .
The operation is denoted by a cross sign, i.e. by operator x. The resulting vector, say C, is
perpendicular to the plane formed by vectors a,b , so we write € =axb .
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The direction of the resulting vector is determined by so-called right-hand rule”.

i K

i

The vector product is defined by C =dxb =la, a, a,.
b, b, b,

The above determinant might be evaluated by means of the Sarus’ rule which gives

c=(ab, —ab, ) +(ab,—ab,)j+(ab,—ab)k.

The magnitude of this cross product is |€| :|§”6‘sin(p where the quantity ¢ is the angle

between & and b .
13.3. Orthogonal transformation of a 2D vector

The same vector could be observed in two coordinate systems having a common origin but
different orientations of axes as shown in Fig. 103.

One coordinate system has axes denoted by X,Y,
the other by X',y’. Even if the vector & is unique,

its components in both coordinate systems are -
different. \

The relation (also called the transformation) \ i 5y e
between components of the same vector in two \
different coordinate systems, is obtained by mere \

inspection of Fig. FI03, which gives g

-

—
] =l dy

aysing

a, =a,cosp—a,sing, | @ysin

a, =a, sing+a, cose.

aycosQ

Fig. 103. Vector in two coordinate system

3 If the thump points in the direction of the vector & — see Fig. S03 — and the index finger in the
direction of the vector b , then the middle finger points in the direction of the resulting vector C .
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In the matrix form, we have

a, cos@p —sing ||a, .
= . ; a=Ra’.
a, sing cos¢ ||a,
In this case, the transformation matrix R represents the rotation process and is said to be
orthogonal. For an orthogonal matrix its determinant detR =1 and its inverse is obtained by a

mere transposition, i.e. R™' = R" . So, the inverse transformation is defined by

a, cos sin a,
a, —sin@ cos@ ||3,

13.4. Orthogonal transformation of a 3D vector

Let the axes OX;,X,,X;and O'X{ X, X; represent two right handed Cartesian coordinate systems
with a common origin at an arbitrary point O =0". If a symbol r; represents the cosine of an

angle between i-th primed and j-th unprimed coordinate axes i.e. F; = cos(angle between X/X j),

then all the nine components can be arranged into a 3x3 matrix R=[r;], that is called the

rotation matrix or the transformation matrix, or the matrix of direction cosines. Then, the
transformation of a generic vector a is provided by same formulas as before, i.c. a=Ra’and

a=R"a.
13.5. Matrices

The subject is fully treated in
e Okrouhlik, M.: Numerical methods in computational mechanics. Institute of
Thermomechanics, Prague 2009, pp. 1 — 356, ISBN 978-80-87012-35-2.
http://www.it.cas.cz/files/ul 784/Num_methods_in_CM.pdf
e Stejskal, V., Dehombreux P., Eiber, A., Gupta, R., Okrouhlik, M.: Mechanics with
Matlab, Electronic Textbook, ISBN 2-9600226-2-9, http://www.geniemeca.fpms.ac.be,
Faculté Polytechnique de Mons, Belgium, April 2001

13.6. Notation

Scalar variables are printed in lowercase or uppercase italics asK,q,o0.
Matrix and vector variables are printed in bold fonts as K,q,o0.
Elements of matrices, are printed in italics, accompanied by indices as K;,q;, 0;.

“True vectors’ are printed with a bar or with an arrow or by bold fonts  as V,V or v.

: o ou; .
Partial derivatives, as —"- might be shortened to u; ;.
i
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|4. Background for statics, kinematics, and dynamics

The text is devoted to Newtonian mechanics which is valid for small velocities — small with
respect to the speed of light. Under these conditions, the mass of a moving body is independent of
its speed. In the theory of relativity, attributed to Albert Einstein, it is not so and it is assumed
(and proved as well) that the current mass m depends on the rest mass m, by the relation

mO

Ji-vi/er’

where V is the current velocity of a moving body and ¢ is the speed of light. It is obvious that as
the velocity v = |\7| approaches the speed of light ¢ the denominator of the above formula goes to

m=

zero and thus the current mass in limit reaches infinity. So, in a limit we have

. m
lim 0

—— .
e J1-v? /¢

From it follows that a body, having a non-zero mass, cannot reach the speed of light.

One should recall, however, that a photon always moves at the speed of light within a vacuum.
But it supposedly has the zero rest mass.

To see things in proper relations

e Find the speed v needed for the current mass be doubled with respect to the rest mass.

From the relation 2 = _ we get v_ ﬁ = 0.8660. So, almost 87 % of the speed
- (v/c) ¢ 2

of light is required. Quite a lot — is it not?

e Using the above formula check how the rest mass m, =1kg is changed when the velocity

of Earth (approximately 30 km/s) is taken into account. The result is
m =1.000000005 kg . Notice, that the relative difference is of the order of 10~, and thus
the resulting error is negligible.

Both examples show that, when dealing with current mechanical engineering problems, we are on
the save ground when considering the value of mass independent of velocity.

14.1. Newton’s laws

Newton describes force as the ability casing a body to accelerate. His three laws can be, for a
mass point (particle), summarized as follows
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1. First law: If there is no net force on a particle, then its velocity is constant. The particle is
either at rest (if its velocity is equal to zero), or it moves with constant speed in a single
direction.

2. Second law: The rate of change of linear momentum p = mv of a particle of mass mis
equal to the acting force F, i.e., dp/dt =F.

3. Third law: When a first body exerts a force F, on a second body, the second body
simultaneously exerts a force F, = —F, on the first body. This means that F, and F, are
equal in magnitude and opposite in directions.

Newton's first and second laws, as stated above, are valid only in an inertial frame of reference.
That is in the frame (sometimes called system) which is either in rest or moves with a constant
velocity along a straight line with respect to fixed stars or by other words is subjected to no
acceleration. Even if such a system does not actually exist in the Universe, the notion of an
inertial frame of reference is a useful and frequent approximation for many technical cases.

Take the Earth for example. It rotates and moves with acceleration along its orbit and still, with
accuracy sufficient for many (not for all*) engineering cases, is a good approximation of the
inertial system.

For the safe application of Newton’s laws in non-inertial frames of references, so-called apparent
inertia forces, in agreement with d’ Alembert principle, have to be introduced.

Newton’s second law, written for a particle of mass m, states that the time rate of linear
momentum is proportional to the external force

m:If:>d—m\7+d—vm=|f.
dt dt dt

The product of mv is called the momentum. Sometimes, the linear momentum. If the mass does
not change in time, i.e. m = const, then we have the classical high-school formula in the form

dv = .= . D o .
Em = F = ma = F, since the acceleration is a time derivative of velocity.

Another possible formulation
d(mV) = Pdt ... states that the rate of momentum is equal to the impulse of an external force.

When the acceleration can be neglected then the Newton’s law in its basic formulation
Z F =ma simplifies to Z F =0. This is the condition of static equilibrium. When the vector

sum of all applied forces is equal to zero, then the body is said to be in a state of equilibrium. And
that is the subject of statics in which bodies are stationary or move with respect to ‘fixed stars’.

* The North-South bound rivers and the trade winds are good examples.
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14.2. Important terms to remember

Force might be understood as the cause of the change of motion.
Matter commonly exists in four states (or phases): solid, liquid, gas, and plasma. Matter has
many properties as volume, density, color, temperature, and also the mass and the weight.
Mass is the measure of unwillingness of the matter (body) to change its state of motion. It
is independent of the gravitational field.
Weight — another property of matter — depends, however, on the existence and intensity
of gravitational field.

14.3. SI metric units

The international systems of units SI (Le Systéme International d‘unites) defines seven basic
quantities. They are measured by units for which standard symbols (labels) are used. For more

details see https://www.bipm.org/utils/common/pdf/si_brochure 8 en.pdf .

14.3.1 Seven basic SI units are

Quantity Unit Symbol
length meter m

mass kilogram kg

time second S
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous intensity candela cd

14.3.2 SI derived units used in mechanics

Derived quantity Name Symbol In base units
area square meter m’
volume cubic meter m’
speed, velocity meter per second m/s
acceleration meter per second squared m/s>
mass density kilogram per cubic meter kg/m’
plane angle radian rad 1
frequency hertz Hz s

force newton N kgms™
pressure, stress pascal Pa=N/m° kgm's™
energy, work joule J=Nm kgm’s™
power watt W =1J/s kgm’s™
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It should be reminded that in literature, and even more frequently in real life, we can still
encounter units of so-called technical system of units in which the force quantity was considered
as the base unit while the mass quantity was a derived one. In this system the force is measured in
units of [kp] — kiloponds and the mass, the derived unit, is measured in [kps°/m]. This unit — in

contradistinction to that defined in imperial units — has no name.

It is worth noticing that a sort of technical system, using, however, imperial units i.e. pound, feet,
degree of Fahrenheit etc, is still in use the United States. The force is measured in pound-force
[[bf] while the mass in pound-mass [lbm] units, called slug. For more details see
www.en.wikipedia.org/wiki/Imperial_units

14.4. Work, energy, power and corresponding units

[4.4.1. Mechanical work

In mechanics, the term work is used for something produced by physical effort.
Mechanical work (work for short) is a scalar quantity defined as a dot product of two

vectors, i.e. the force and the displacement. When both quantities are of variable nature
we have to work with increments.

The increment of work is dW = F'ds =ds"F=F - d§ = ‘If"d§| cosy,

where ¢ is the angle between vectors @ and b . If both components are constant and have the
same line of action, then one can simply state that mechanical work = force x displacement.
14.4.2. Mechanical energy

The mechanical energy (energy for short) is an ability to produce work. Energy and work are
measured by the same units, i.e. joules [J]. The law of conservation of energy states that the total
energy of an isolated system is conserved over time. Energy can be transformed from one form to
another.

Units of work and energy in the SI system and their relation to the old technical system

J=Nm, joule =newton x meter kpm, kp x meter
1J=0,102 kpm lkpm =9,81J
Recall, how it is related to the heat energy 1kpm = 2,343 cal, lkcal =427 kpm
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14.4.3. Mechanical power

Mechanical power (power for short) is the rate of work, or work exerted per unit of time, i.e.

power = work/time. It is measured in watts [W]. .
The metric horsepower
1 hp = 739.5 walls

a) Metric horsepower. See Fig. 104.

M") Al=1s
W=1J/s
1kW =136hp, ... Ah=1m T
Ws=1J m="Thkg \

1kWh =3,6x10°J =367 000 kpm
Fig. 104. Horsepower definition

So,

1hp ... = 75kpm/s ... metric horsepower,

1hp, ;. = 0,736 kW .

b) British horsepower

James Watt determined that a horse could turn a mill wheel 144 times in an hour; that is
2.4 times a minute. The wheel was 12 feet (3.6576 meters) in radius; therefore, the horse traveled
2.4-2m-12 feet in one minute. He judged that the horse could pull with a force of 180 force
pounds. So

p :ﬂ:F_d: 1801bf><2,4‘><27z><12ft — 32572 lbf'ft .
t t 1 min min

James Watt defined and evaluated the horsepower as 32,572 ft 1bf/min, which was then rounded
to 33,000 ft-1bf/min. The equivalent in SI units gives

1hpy..., = 33 000 Ibf ft/min = 550 Ibf ft/s = 17 696 Ibmft*s™ = 745,69987158227 W .

It slightly differs from the metric horse power. Take care when you buy a new car out of
continental Europe.

14.4.4. Potential and kinetic energy

If a particle of mass m, in the Earth’s gravitational field, is raised to the height of h, then its
potential energy E is defined as the work done W . So,

W = E, =mgh, where g is the gravitational acceleration.

We say that a particle, being raised to the height of h gathers the potential energy E,,.

I, May 21, 2018 14



If the particle is released (with zero initial velocity) from that elevated position, defined by h, it
hits the initial position (ground) by velocity v, which might be determined from the equation of
motion describing the free fall, using a few simple kinematic rules. We can write

dVZ v h V2
ma=mg, =0, [dv? =2g[dx, vzzzgh:>h:2—.
X 0 0 g

This way, we have obtained the relation between the ‘hit’ velocity and the height from which the
particle was released.

The work ‘obtained’ by the falling particle from the height h is also mgh.
2

Substituting h = ;/— into the previous equation we get the kinetic energy in the form
g

E, :mgh=%mv2.

Neglecting the resistance, the sum of potential and kinetic energies, at any moment, is constant.
For the rate of kinetic energy (for a mass particle), we can write

mﬂ:Z:Fi , m%dr:Z:Fi dr, butdr=vdt, so, M vdv:Z:Fi dr,

m].vdv=-|.Z‘Fi dr and finally %m(v2 —Vé):W.

Vo

14.4.5. A few things to remember

E —E,=W.

The change of kinetic energy (between the initial and final positions) is equal to the work done by
applied forces.

Since thework = power xtime, then dW = Pdt . Differentiating we get

dE, =Pdt = 35 _p,
dt

The rate of kinetic energy is equal to the power of applied forces.

Also

work = force x dispacement ,
d(work) _ forcex d(displacement)

dt dt ’
power = force x velocity .
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I4.5. Graphical engineering shorthand
The picture is worth a thousand words. That’s why simple sketches are frequently used in the text
to improve proper understanding of presented topics. Only a few samples with short explanations
are presented in Fig. 105. The rest will be dutifully and systematically shown and explained later.
2D representation of axiradial and radial bearings.
2D rotary joint (constraint) connected to frame.

2D rotary-sliding joint connected to frame.

2D statically determinate truss bridge.

2D clamped beam. 27

Left — two rods (bars) connected by a rotary joint. Only
axial forces could be transmitted.

Right — two welded beams. Axial forces, as well as
bending moments, could be transmitted.

Fig. 105. Engineering shorthand

The schemes we are using are stripped to bare necessities as it is shown in following two
pictures. The level of simplification varies according to actual purposes.

On the left, see Fig. 106, there is schematically depicted a crankshaft mechanism as it suits the
needs for static analysis. Both crank and rod are simply represented by straight lines. The
trajectories of the rod and piston pins are indicated. On the right, see Fig. 107 there is a slightly
more complex representation of a four-stroke engine, of which the crankshaft mechanism is a
crucial part. Still, it is a substantial simplification of an actual appearance of engine parts seen in
Fig. 108.
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Fig. 106. Scheme of crankshaft mechanism Fig. I07. Four-stroke engine

E — exhaust cam, S — spark

I — intake cam, W — water

P — piston, R — connecting rod
C — crank

Fig. 108. Connecting rod and piston — actual machine parts
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Statics

Scope
1. Introduction to statics
2. Forces, moments, torque
3. Principle of transmissibility
4. Equilibrium
5. Equivalence
6. Degrees of freedom
7. Constraints and free body diagram
8. Classification of constraints
9. Friction
10. Rolling resistance
11. Principle of virtual work
12. Internal forces
13. Centre of gravity, centre of mass, and static moment
14. References

S1. Introduction to statics

In this text, the subject of statics is understood as a part of mechanics of rigid bodies. Statics
deals with the analysis of static loads (forces and moments that do not vary in time) acting on
rigid bodies trying to ascertain the conditions under which the equilibrium might occur. When
in equilibrium, the bodies are either at rest or move with constant velocities. The condition of
zero or constant velocity, i.e. V=0 or V =const, actually means that the acceleration, the

—

. o o _ dv . . . .
time derivative of velocity, is equal to zero, thus a = aT =0. So, in static analysis, the time

and acceleration play no role'.

From it follows that Newton’s law, in its simplest form, F =ma written for a particle,

degenerates to F = 0. The last equation represents the condition of equilibrium requiring that
the resulting force, or more generally the sum of all acting forces, should be identically equal
to zero. For the equilibrium of bodies, the condition of zero moments has to be added. This
will be explained later.

The reader is recommended to study other textbooks and web sources cited in Paragraph 14 of
this chapter. Studying the texts of references listed there allows to broaden the reader’s view
on mechanics of rigid bodies. Following many worked-out examples might not only help to
deepen understanding the subject of statics but also to increase the reader’s proficiency
needed to solve more complicated engineering tasks — to find out what is crucial and what
might be neglected.

! Of course, all the phenomena occur in time. So, the subject of statics is a good approximation of those
problems where bodies move so slowly, that their acceleration can be neglected.
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S2. Forces, moments, torque

Definitions of quantities appearing in mechanics, as force, moment, pressure, stress, energy,
etc, are rather intuitive and often circular. A few examples from standard textbooks are
following.

Force is only a name for the product of acceleration by mass. Attributed to
d'Alembert and cited in [1, p.532].

Forces are vector quantities which are best described by intuitive concepts such as
push or pull. See [2].

Similar unsatisfying definitions may be found for time. Intuitively, everybody knows what it
is until the moment when a direct and precise definition is required. See [3].

S2.1. Force

There is no precise definition of force. The force is
usually defined by its effects. In the presented text we

accept a simple, easily understood and intuitive Rs
definition, namely that the force represents an action of P

one body on another. This action is either due to an 8
actual contact between bodies (the forces between R

interacting bodies are equal and opposite) or due to an
action at a distance (for example due to the
gravitational or the magnetic fields).

Fig. SO1. Transmissible force

In most cases, the action between bodies is simplified as a point contact, even if actual
contacts always occur in finite-size areas instead, and the actual ‘action’ is actually provided
by pressure. So, we assume that forces are vector quantities represented by their directions

and magnitudes as an applied force P shown in F ig. SO1 with indicated reaction forces from
the frame. We will explain that these forces are in equilibrium.

S2.2. Moment and couple

Generally, the moment of a force is a torque action of that force with respect to a point, or to

an axis. n
y
At P ¢
) P _
ﬁE A ﬁ ! o)
n ™ Py
A ET
72 @) il N
X v
0 A 74 T X
L

&

Fig. S02. Moment of a force
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S2.3. Moment of a force about a point and about an axis

Moment of the force P about a point O, see Fig. S02, in the right-handed Cartesian coordinate
system O, X,Y,Z is a vector, defined by means of the cross product

M, =F, xP, (S2_1)

where T, =X, 0 +Y,] +2 AIZ is the radius vector of the point of the application of the force P,

X

and the magnitude of that force is P = ‘IS‘ =, /P + Py2 +P.

The cross product, defining the moment, is usually evaluated as a determinant by the
Sarus’rule, i.e.

defined by P =Pi + Pyj7 + lez. Its components are P, =‘|5‘ cosa,,P, = ‘ﬁ‘cos B, P, = ‘5‘cos 2

i ] Kk
My, =F xP=[x, VY. 2z, :T(yAPZ—zAPy)Jr T(zAPX—xAPZ)+IZ(xAPy_yAPX):
5 (S2.2)

k;  Magnitude: M :‘Mo‘ :\/Mf +M; +M;.
The vector components of the moment are scalars and have

geometrical meanings of moment components of that force
about particular axes, i.e.

MX =(yAPZ _ZAPy)5
M, =(z,P, - x.P.), (S2._3)

X

M, = (x,P, — y,P.)-

Fig. S03. Right-hand rule

The resulting vector is perpendicular to the plane formed by both components of the cross
product and its positive direction is defined by the right-handed rule. The picture in Fig. SO3

is for a triple of vectors V =a xb .

The positive sense of rotation of a moment about an axis, indicated by
curved arrows (see Fig. S02), corresponds to a rotary motion of an
imaginary nut, which causes its lateral motion along a right-handed thread,
located along that axis, in the direction of the positive sense of that axis.
Observing Fig. S04 we may also say that if @ is rotated into the direction of : %{

b through an angle (less than ), then V advances in the same direction as
a right-handed nut would if it turned in the same way. =

—-a—k___.)'
Fig. S04. Right-hand screw
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The scalar value of the moment of P about a line n, defined by a unit vector
§U=Tcosa2+j7cos ﬂ2+|2cos;/2, is actually the projection of MO into that line. The

projection is defined by the dot product multiplication, which gives

M, = MO ‘€, = (M J+M y] + MZE)- (iﬁcosoz2 + jcos B, + Ecosy2)= (52 4)
=M, cosa, + M, cos B, + M, cosy, . B
Using the matrix notation, we can alternatively proceed as follows.

P

X

Defining the force P =1 P, ¢ as a column vector and the radius coordinate matrix by

P

0 — I, Ya
F=| z, 0 - X,
—Ya XA 0

b

then the matrix representation of the moment is a product of the radius coordinate matrix
multiplied by the column vector of force components

M X 0 —Zy Ya Px Ya Pz —Z, I:)y
My=1M, =P =] z, 0  —X, {P,r=12,P —x,P,
Mz —Ya XA 0 Pz XA Py —Ya Px

Sometimes, one can simply evaluate components of a moment by mere inspection. As an
example, the acting force and its components are shown using the Monge’s projection in Fig.
S05.

Observing Fig. S05 we might immediately express the y F—=F"
components of force moments about the indicated coordinate Fy
axes by inspection o

h Fx
MX=—Fy(b—rsin1//), %
M, =F,(b-rsiny), b "y F'
MZ:Fy(a+ rcosy)—Fnh. \

a

Fig. SO5. Moment of a force
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S2.4. Couple of forces

By a couple of forces (briefly just a couple) we understand two forces,

say F and — F, equal in magnitude and oppositely directed, acting on

parallel lines that do not coincide. See Fig. S06. The resultant moment of r
that couple is a vector perpendicular to the plane formed by those parallel

lines and its magnitude is M. = ‘I\ﬁc‘ = Fr, where r is the shortest distance

between the parallel lines.
Fig. S06. Couple of forces

The moment of a couple is a free vector — in mechanics of rigid bodies, it can be located
anywhere, while in mechanics of deformable bodies its location is crucial. The moment of a
couple is often called a torque.

Earlier, for rigid bodies, we have stated that a force, as a bound vector attached to the line of
action, can freely move along that line. However, it cannot, without penalty, be shifted
laterally.

If one still has to shift the force laterally, then that action has to be compensated for by adding
a couple. The rule is that a single force, acting along a specified line of action of a rigid body,
can be replaced by an equal and parallel force F provided that a couple of forces is added in
such a way that the moment of that couple is M = Fd, where d is the shortest distance
between two lines of action.

Hint — what to do if we intend to shift a force laterally, say to the right l

We add two parallel forces at the required position that are equal in
magnitude and oppositely directed. In the rigid body world, nothing is
changed since the forces are canceling themselves and are thus causing no
overall effect.

Decomposing the middle part of the sketch, as indicated in Fig. SO07, we l
might deduce that to shift a force laterally requires adding a proper couple,
which — in this case — is oriented counterclockwise.

—

Fig. SO7. Shift a force laterally

S3. Principle of transmissibility —is valid for rigid bodies only

The exact location of a force along its ‘line of action’ is immaterial. In our example, depicted

in Fig. S08, the location of force P does not influence so-called reaction forces® acting on
supports’. This is due to the fact that we assume that the bodies are perfectly rigid, i.e. not
deformed due to applied forces. This principle does not apply to deformable bodies.

2 How to evaluate reaction forces will be presented later.
* If a force were applied to a body which is not supported, the body would start to accelerate. This is, however,
the problem that is out of the scope of statics — it belongs to the realm of dynamics.
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If a body, shown in Fig. S08, is considered Py
deformable, then the forces P, and P,cannot be taken

as identical and their effects on the body are generally
different. The subject will be treated later.

—

P,

bececres beccrces

Fig. S08. In mechanics of deformable bodies the force is non-transmissible

S4. Equilibrium

A spatial system of forces and moments is in equilibrium if the sum of all forces and the sum
of all moments are equal to zero. Then, we say that such a system is in the state of
equilibrium. In vector form, we write

> FE=0, >M,=0. (S4_1)

S5. Equivalence

Any system of forces can be replaced by an equivalent force, called the resultant force, such
asR=>"F. (S5.1)

As an alternative, the force can
also be replaced by an equivalent
system consisting of a single
force at a chosen point, say O,
and of a corresponding moment,
as illustrated in Fig. S09. A

£ x ¥ x

Fig. 09. Force-couple equivalence

So, any force system can be replaced either by a single equivalent force or by a force at a
chosen location accompanied by a properly dimensioned couple.

For practical purposes, it is convenient to treat equilibrium and equivalence conditions for 1D,
2D and for 3D cases separately.

The simplest situation occurs when there are no moments and all the forces share a single
line of action.

Two forces Z and P, shown in Fig. S10, are in equilibrium if Z + P =0. The condition of

equilibrium — expressed in a scalar form — is:—Z, + P, = 0. In this case, the index, denoting

the axis, is arbitrary, immaterial and might be omitted.
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Fig. S10. Equilibrium of two forces

Forces pass through a single point in 2D space

Equivalence p
Two forces ZI,ZZ , shown in Fig. S11, are acting at the single point

in a plane. The force V is the resultant force. It is equivalent to

forces 21,22 . The force P is in equilibrium with the force V . The “1 7
condition of equivalence, written in vector and scalar notations, is “
I 1%

V=2+2,,

Vi=24,+2,, V,=2,,+2,,. Fig. S11. Equilibrium and equivalence
Equilibrium

The force P, see Fig. S11 again, being of the same size and of the opposite direction with
respect to the force V , is said to be in equilibrium with force V or with its components Z,,Z, .
The condition of equilibrium, written sequentially in vector and scalar notations, is

P+V =0, p

P+V,=0, P, +V, =0. . 7
Z» -

The difference between equivalence and equilibrium, as V&

treated graphically, is depicted in Fig. S12. 7 Z

Fig. S12. Equilibrium — left, equivalence — right

Summary of equilibrium conditions for forces and moments, i.e. ZlfI =0, Z M, =0,
expressed in scalar forms for different spatial cases

System of forces acting along a single line of action

> F=0. (S4_2)
System of forces acting at a single point in plane

> Fi=0, > F,;=0. (S4._3)

For a system of forces and moments in a plane to be in equilibrium, two component-type
equations (sum of all the forces along the specified directions is to be zero) and one moment
type equation (sum of all moments of all forces about a specified point is to be zero) has to be
satisfied.
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X: Zin:O,
y: D F;=0, (S4_4)
M,: D Ry +F%+M, =0

Out of three equilibrium conditions, at least one equation of the moment type always has to be
used. Using three component-type equations leads to a linearly dependent system of equations
that is singular and does not allow finding a unique solution. Each component type equation
could, however, be replaced by a moment one. But not vice versa.

System of forces for a single point in 3D

SF=0. $F=0 TR=0. 4.9

System of forces and moments for a body in 3D

x: Y Fg=0,

y: D F;=0,

: F.=0,

‘ 2.F. (S4 6)
M, D Fz+Fy, + M, =0,

M,: Y FX+Fiz+M, =0,

M,: Y Foy+F%+M, =0

Out of six equilibrium conditions, at least three equations of the moment type have to be
always used.

S6. Degrees of freedom

The number of degrees of freedom (number of dof’s for short) is the measure of a degree of
‘movability’* of a body. The number of degrees of freedom of a rigid body is defined as the
number of independent coordinates uniquely determining the position of that body in space.

A few examples might clarify the subject.

e The position of a free’ rigid body in space is uniquely determined by six coordinates
— three longitudinal coordinates of a certain point (usually the center of mass) and
three rotational coordinates (angles) determining the body orientation (pitch, yaw and
roll angles) with respect to arbitrarily chosen fixed coordinate axes. We say that a free
rigid body in space has six dof’s.

e The position of a free rigid body in a plane is uniquely determined by three
coordinates — two longitudinal coordinates of a certain point (usually the center of

* The term mobility is used as well.

> The attribute ‘free’ indicates that the body in question is unsupported. We might also say that a free body is not
constrained. As for example a space capsule in the outer space.
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mass) and one rotational coordinate (angle) determining the body orientation with
respect to chosen coordinate axes. So, the free rigid body in a plane has three dof’s.

e The position of a particle® in space is uniquely determined by three longitudinal
coordinates — three dof’s.

e The position of a particle in plane is uniquely determined by two longitudinal
coordinates — two dof’s.

e The position of a particle constrained to a line is determined by one positional
coordinate — it has one dof.

The concept of degrees of freedom for deformable bodies is quite different and will be treated
and explained later.

S7. Constraints and free body diagram

From a rather academic treatment of equilibrium of forces, we have analyzed so far, we
proceed to the treatment of a body, or to a set of bodies, that are in a state of equilibrium. As
before, the condition of equilibrium requires that the vector sums of all the forces and all the
moments, acting on the body or bodies, are equal to zero. Strictly speaking, we are seeking
the conditions under which the state of equilibrium might occur.

We have already mentioned that a free body is an object not being supported — it is freely
‘flying’ in space and has its degree of ‘movability’ which is specified by the number of
degrees of freedom. A free body, however, cannot be treated by static tools because any
applied nonzero force would invoke its motion with certain acceleration. Since the
acceleration and time are excluded from considerations in statics, a body always has to be
‘properly’ constrained — i.e. connected to the frame or to other bodies.

By the mechanical constraint, we understand a type of a mechanical attachments gadget or
implement, having a specific engineering design, allowing the bodies to be constrained
(restricted) in their motions or allowing them a sort of limited motion. In most cases, we will
be evaluating the constraint forces and moments due to applied forces for bodies staying in
rest and having zero dof’s.

A body can be constrained in its potential motions by a variety of ways. Among the analyzed
bodies there is always one playing a special role, namely the fixed frame of reference (frame
for short) which is firmly attached to the ground — usually to Mother Earth, which for most of
analyzed cases is considered stationary.

In statics, the analyzed problem might consist of one body attached to the frame or of a set of
interconnected bodies. Generally, whenever a motion of one body is restricted by another
body, including the fixed frame, then there are corresponding forces and/or moments, typical
for the type of constraint in question, occurring in contact (connecting) locations.

% A particle is rigid by definition. It has no dimensions and its angular orientation in space is immaterial.
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To allow the mathematical analysis of applied forces that are in equilibrium with the
constraint forces (often called reactions) a helpful tool, named the free-body diagram (FBD),
is frequently used.

Free body diagram is a graphical sketch used to visualize body (bodies) under applied forces
and moments and also under the reaction forces and reaction moments occurring due to the
existence of particulate constraints. This helps to understand the way how the bodies are
mutually connected facilitating thus the formulation of equilibrium equations.

The free body diagram depicts the forces and moments applied to a body, and complement
them with corresponding reaction forces and moments. This is a sort of mental procedure. The
actual physical connections (constraints) between bodies are apparently removed and replaced
by equivalent forces and moments that are characteristic for the particular type of constraints
in question. These forces and moments should be suitably indicated and named to be
susceptible for further analysis. This way, we convert the problem of bodies being in the state
of equilibrium to that of equilibrium of forces.

Example — a car on an inclined plane

Given: A stationary car on the inclined road, being held in its
position by a rope, is schematically depicted in Fig. S13. The
car brakes are not applied. The mass of the caris m.
Determine: Using the free body diagram technique, visualize
the forces acting on the car, write the equilibrium equation
and find the force in the rope, say S, required to hold the car
in its current position.

The thought process required for establishing
the free-body diagram is illustrated by a
sketch in Fig. S14. As the first approximation,
the car might be considered as a particle
through which all the forces pass. Then, the
first constraint, the ‘road’, is removed and
replaced by an equivalent reaction force acting
from the road to the car.

Fig. S14. Equilibrium of forces

Considering the stationary car and neglecting friction effects, the reaction force, say N, has
to be perpendicular to the ‘road’. That force allows the car to stay in its current position even
if the road is ‘removed’. The second constraint, the rope, is cut and replaced by a force, say
S, acting in the direction of the rope. What remains to consider is the weight of the car, say
W =mg, which can be visualized by a vertical vector, acting ‘down’, in the opposite direction

of the y-axis.
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We have added constraint forces (reactions), named them, and now the equilibrium conditions
can be mathematically expressed. In this simple case, all three forces pass through a single
point, approximating the car’.

For the car remain stationary, all three forces have to be in equilibrium — their vector sum has
to be zero, so

S+N+mg=0.

Since we have simplified the problem by assuming that all the forces pass through a single
point, then the scalar conditions of equilibrium (equivalent to the above vector form) might be
written for X and y force components in the form

X: —Scosa+Nsinag =0,
y: Ssina+ Ncosa—mg=0.

This way, we have obtained two linear algebraic equations. Knowing the angle « and the
weight of car mg, two unknowns, i.e. N (the normal reaction) and S (the force in the rope)
can easily be determined.

The magnitudes and directions of unknown vectors Nand S can also be determined
graphically, as indicated on the right-hand side of Fig. S14. The graphical reasoning is also
based on the fact that the resulting force of these three vectors is equal to zero — satisfying
thus the conditions of equilibrium.

There are different kinds of constraints (body connections). To determine the character of

forces and/or moments, associated with a particular type of constraint, is the subject of the
following text.

S8. Classification of constraints

At first, frictionless constraints are considered. See the chapter devoted to friction phenomena.
S8.1. Rigid constraint — clamping

This kind of constraint is assumed to be perfectly rigid — it secures

that in the connection point there is no motion possible between the
fixed frame (the wall) and the body shown in Fig. S15.

Fig. S15. Clamped beam

7 Accepting this degree of simplification, there is no way how to determine the forces between the road and
wheels. There are, however, other manners, by which we will solve this task.
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Let’s analyze 2D and 3D situations separately.
a) Rigid constraint in 2D — clamping

To draw a free body diagram for a clamped beam in a plane requires removing the rigid
connection constraint, where the beam is attached to the frame by clamping. Simultaneously
we require that the beam stays in its current position. To do so, we have to add a force (having
two scalar components) preventing the beam to move in up and down and in sideways
directions. Also, a moment has to be added preventing the beam to rotate. (The moment
vector has one scalar component). A free body in a plane has three degrees of freedom. Each
force component removes one possible motion — we say that two force components remove
two translatory degrees of freedom. The remaining degree of freedom, i.e. the rotation, is
removed by the reaction moment. As before, the equilibrium equations are

z IfI = 6, z Mi =0 , and their scalar form is

X: Zin:O’

y: ZFyi =0, where M, is the i —th applied moment.
M,: D Ry +Fux+M, =0,

Example — clamped beam in 2D

Given: In Fig. S16 there is schematically depicted a 2D beam
of the length | which is clamped at point C to the rigid
frame, being visualized by hatching. Graphically, the beam is
approximated by a straight horizontal line of the length I.
The beam is loaded by forces F, and F, at locations

indicated by the distance dimensioning a and |. The forces
are graphically represented by vectors with their directions
and magnitudes defined. Also, a moment M, is applied at the g 4 £ M,

,‘.‘

AANRAANANAANY
—

location of force F,. In the lower part of the figure there is

shown the free body diagram corresponding to this case. TN /o F
Mc/ R

X

Fig. S16. Free body diagram for a loaded clamped beam

Besides the external loading, represented by F,F, and M,, there is the reaction force,

represented by its two components, and the reaction moment. These correspond to the rigid
connection (clamping) between the beam and the frame. As explained before the reaction
force and moment are associated with this type of constraint in question — the clamping. The

reaction force components, say R,,R,, and the reaction moment, say M., are unknown

quantities that are to be determined from equilibrium conditions:

sum of force components in X direction : R,+ Fcosa+F, =0,
sum of force components in Yy direction : R, —Fsina =0,
sum of force moments about the point C: M. —-Fasina -M, =0.
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Determine: Knowing dimensions, angle «, external forces F,F,and external moment M,
the above equations could be solved for the unknown reaction components, i.e. R,,R, and

Mc.

b) Rigid constraint in 3D — clamping

A free body in 3D space has six degrees of freedom. In this case, the clamped constraint
represents also a vector force and a vector moment, but these, however, represent three force

components and three moment components — altogether six unknown reactions.

S8.2. Rotary constraint — hinge joint or pin joint or revolute pair

}.v

Fig. S17. A hinge constraint

A hinge constraint allows a free rotation only about the hinge axis and prevents any
translation. See Fig. S17.

In 2D, a single reaction force (with two scalar components) represents this constraint. In 3D, a
single reaction force (with three scalar components) and two reaction moment components,
ie. M,,M , about axes perpendicular to the hinge axis, are needed. In 3D these five

components remove five of dof’s corresponding to a free body in space, and since 6 -5=1,
there remains one degree of freedom corresponding to the rotation about the z-axis.
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Graphical representation of different types of constraints in free body diagrams

In the text and in accompanying examples we will
use a sort of easily drawn ‘shorthand’
representations of constraints. In Fig. S18 a few of
them are shown together with reaction forces and
moments that correspond to a particular type of
constraint and are needed for the free body
diagram reasoning.

An example of an engineering design of a shaft
supported by two bearings is in Fig. S19.

The left bearing, being firmly connected to the
shaft and to the housing, is able to support both
radial and axial forces. The right bearing,
connected to the shaft but allowing left or right
sliding motions with respect to the housing,
permits to support radial forces only.

y

A: 3D axial-radial bearing

B: 3D radial bearing

X

A 2Dradial joint (hinge)

2D radial joint allowing

[ b

clamping

a sliding motion

Fig. S18. Free body diagrams

/7
4
- { -

Fig. S19. Engineering design of a supported shaft

This is the way how the thermal expansion of the shaft is provided for.

The corresponding FBD is in Fig. S20.
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Individual bodies of mechanical structures are connected by constraints of different types,
sometimes also called kinematic pairs. Generally, a kinematic pair is a connection between
two bodies imposing constraints on their relative motions. A few types of 2D frictionless
kinematic pairs are listed in Table 1.

Planar kinematic pairs

2 2 Revolute pair, joint — allows rotary motion
only, 1 dof, 2 reaction components.
I o L
B /2 Prismatic pair, slider, sleeve — allows
| 11 translational motion only, 1 dof, 2 reaction
i 7 Y ) components.
X

Rolling pair — no slipping, 1 dof, 1 reaction
I 1 component.

s - the same lengths

2
;-"-‘ < N2 Higher pair — slipping occurs, 2 dofs, 2
51 ; / X ) l reaction components

5,,8, - different lengths

(]

Table. 1. Kinematic pairs

S, May 21, 2018 15



Hint - kinematic pairs, the principle of action and reaction, FBD for a 2D crank mechanism

The crank mechanism has one dof. See Fig. S21. So,
only one coordinate (either the angular displacement
of the crank or the positional coordinate of the piston)
is sufficient for determining its actual position.

Crank, denoted by number 2, is a 2D body loaded by
a planar system of forces. Thus, three equilibrium
equations are required.

Rod, number 3, even if it is actually a body in the Ry S
plane, is loaded by forces sharing the same line of
action. So, only one equilibrium condition is needed.

Piston, number 4, is a 2D body loaded by a planar
system of forces. Three equilibrium equations are
required. N

Fig. S21. Free body diagram for crank mechanism

Generally, the normal force between the cylinder and piston does not pass through the piston
pin.

S, May 21, 2018 16



S8.3. Ball and socket joint

This type of constraint allows for attachment of two bodies, allowing their free mutual
rotation and at the same time restricting any mutual translation. See Fig. S22. A human hip
joint is a good example. When considered in a free body diagram, this type of constraint is
replaced by a reaction force having three components in 3D and two in 2D. Since a free
frictionless rotation is allowed, there are no moment components in this case.

y

socket ball

Fig. S22. A spherical joint or a socket ball
S8.4. Wires, ropes, cables, chains, rods, bars, struts, springs, belts, and dashpots

A T

b 2
,> cuts

—_—

T3 \T1

B C
Fig. S23. Free body diagrams for a rope

Wires, ropes, cables, chains, rods, bars, struts, springs, and dashpots are machine design
elements that are frequently used in mechanical engineering. See Fig. S23. They serve as
connecting elements, whose transversal dimensions are small with respect to lateral ones.
That’s why their transversal dimensions, their weight and/or mass are often neglected. The
element of this kind is only able to transfer the force that acts within the line connecting its
extremity points. In rigid body mechanics, they are considered inextensible.

Wires, ropes, cables, chains, and belts are assumed to have a capability transmitting tension

forces only, while rods, bars, struts, springs, and dashpots could transfer compression forces
as well. The terms rod, bar and strut are considered synonymous.
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S8.5. Springs

The spring is a machine design element that is
elongated under the influence of an axial tensional
force or shortened when an axial compression force is
applied. See Fig. S24. Its initial or unstrained length
is |, the change of length® (which might be positive or
negative), due to an applied force might be denoted
Al . The force in the spring, say F , is usually taken as
a linear function of elongation, i.e. F=KkAl. The

coefficient of linearity, k, goes under the name of the
stiffness, or the spring stiffness. Its dimension is
[N/m]. The spring linearity should not be taken for

granted, it is valid only for cases when the elongation
Al is small with respect to the unstrained length I,
and for cases when elastic deformations, with no
permanent material changes (so the plasticity effects
are excluded) in the spring, occur.

T = K(ADN

[+ Al

T =k(Al
\()

Fig. S24. Free body diagram for a spring

In engineering, we also encounter torsional springs and coiled springs. The latter is still used
in mechanical watches being connected to the balance wheel securing thus its regular

oscillations.

The actual appearance of a spiral spring is in Fig. S25.

¥ Sometimes called the deformation or elongation.
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The meaning of spring linearity is graphically illustrated in
Fig. S26. This kind of behavior is in accordance with
Hooke’s law, that states that the force F, required to
elongate or shorten a spring by a displacement X, is linearly
proportional to the magnitude of that displacement, i.e.
F = kx, where the coefficient of proportionality k is called
the spring stiffness. 25|

Y

The law is named after Robert Hooke who published it in
1676 in the form ut tensio, sSic vis, meaning ‘as the
extension, so the force’.

Fig. S26. Linear behavior of a spring

It should be emphasized that Hooke's law is only a first-order
approximation of the real response of springs. Spring
characteristics, i.e. the dependence of force to spring elongation,
could be of various types as shown in Fig. S27. That is (1)
progressive, (2) linear, (3) degressive, (4) almost constant or (5)
progressive with a knee.

Fig. S27. Spring characteristics
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S8.6. Dashpots, dampers

The dashpot, also called damper, is a machine design element T — C;\

that resists the change of its initial length |. The resisting

(reaction) force is linearly proportional to the change of its [
initial length, or by other words, to the relative velocity v, of

its extremity points. See Fig. S28.

\T=cf

Fig. S28. Free body diagram for a dashpot
. . . : d :
So, the corresponding reaction force appearing in the FBD is T = CE =cl=cv.

In this case, a linear behavior of the dashpot is assumed. Often, non-linear dashpots, with
forces proportional to the second, third and higher powers of velocity, are considered in
engineering practice as well.

The dashpots play no role in statics. We will explain their importance in dynamics.
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Survey for constraints, FBD and dof’s

Six cases of a differently constrained body (a truss structure, composed of thin rods, also
called bars) connected at their ends by frictionless joints, are depicted in Table 2. Due to
miscellaneous constraints applied to that body, we can analyze six different cases with
different numbers of degrees of freedom. For simplicity, the bridge structure is assumed to be
two dimensional and all the constraints are considered frictionless.

R 4@ ﬂ ﬂ. ﬂs
2 1 0 -1 -2

#dof’s 3

resettons ﬁ M M ﬁ

# reactions components O 4 5

# equilibrium equations 3 3 3 3 3 3

type of structure | moving - ...---....-. | properly | ... constrained ... |
| | constrained | too much |

type of problem [ statically ........... | statically | ... statically ... |
| underdeterminate | determinate | iInterdeterminate |

to be solved in | dynamics  .......... | statics | strength of material |

Table 2. Degrees of freedom and free body diagrams

The first column corresponds to a free, unconstraint or unsupported body that has 3 dof’s in
the plane. There are no reaction forces to be associated with the case.

The second column. The body is attached to the frame by a radial joint that besides the
rotation allows left or right sliding motions. By mutual consent, the vertical motion in the up
direction is prohibited. The body could freely rotate around the joint and also could freely
move in left or right directions as well, it thus has two dof’s. In the FBD this joint could be
replaced by one unknown reaction component on the left, which would act vertically.

The third column. The body is attached to the frame by a radial joint allowing a free rotation
around this joint only, it thus has one dof. In the FBD, this joint could be replaced by two
unknown components of the reaction force in that joint.

The constraint bodies, depicted in the first three columns, have one common property, — they
can move. Generally, the moving structures are characterized by the fact that their number of
dof’s is greater than zero. Mechanical systems composed of more rigid elements, having a
positive number of dof’s, are often called mechanisms. More about the subject is in the
chapter devoted to kinematics.
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Any structure able to move will start to change its position in space and cannot be treated by
statics tools of mechanics. Their motions, due to the applied forces and moments, are
described not by equations of equilibrium, but by equations of motions having the form of
ordinary differential equations. In the following text, we will show how these problems are
analyzed by tools of dynamics.

The fourth column. The body is attached to the frame at two places. On the left, there is a
radial joint, which when considered alone, allows a free rotation. On the right, there is a
sliding radial joint allowing both the rotation and the horizontal motions. The left joint
removes one dof, and represents two unknown reaction components, the right one two dof’s
and requires to add one unknown reaction component in the FBD. Altogether, the body
cannot move and has, in this case, zero degrees of freedom. Reaction forces represent three
unknowns, two on the left and one on the right, and for a body in a plane, we have three scalar
equations of equilibrium at our disposal. This case is thus easily solvable. We say that such a
system is statically determinate.

Generally, we can state that the actual number of dof’s of a body, say i, plus the
number of unknown reaction components due to prescribed constraints, say m, is equal to the
number of dof’s of that body “freely” flying in the space (rigid body motions). In plane, we
could write i+m =3, in space i+mM=6.

The fifth and sixth columns correspond to structures that from the statics point of view are
‘constrained too much’. They have a negative number of degrees of freedom. We say that
these cases are statically interdetermine. In these cases, the number of unknown reaction
components is greater than the number of available equilibrium equations. Consequently, the
conditions of equilibrium do not suffice to find unknown reactions. Cases of this kind will be
explained, analyzed and treated in chapters devoted to the mechanics of deformable bodies.
We will show that adding an adequate number of so-called deformation conditions, the tasks
of this type can be solved.

The treated tasks could be classified according to the number of degrees of freedom.

If # dof’s = 0, then the mechanical system is said to be statically determinate and for given
forces and moments, the corresponding reactions are readily obtained from properly
formulated equilibrium conditions. In this case, the system is stationary and the number of
unknowns is equal to the number of available equilibrium conditions.

If # dof’s > 0, then the system is statically underderterminate and generally cannot be solved
by statics tools. For given forces and moments, the system would start to move with
accelerations and could only be treated by dynamics tools. Still, the tasks of this kind could be
analyzed in statics if the problem is reformulated.

There are two possibilities.

First, for a given position determine such forces and moments that allow the system to stay in
its current configuration.

Second, determine such a configuration in which the system — for a sufficient number of
prescribed loads — will be in the state of equilibrium.
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If # dof’s < 0, then the system is said statically indeterminate and cannot be solved by statics
tools since the number of unknown reactions is greater than the number of available
equilibrium equations. The tasks of this kind could be treated by tools of mechanics of
deformable bodies, where a suitable number of so-called deformation conditions are added,
which together with equilibrium equations will suffice to find all the unknown reactions.

Example — structure of six rods, zero dof’s, forces passing through a point
Type of task: 2D, rods, forces passing through a point.

Given: dimensions, angles, force Q.
Determine: rod forces S, to S,. a b ¢

A structure, composed of

six rod elements that are connected J D
. S ) ; B C Ss [
by frictionless joints, is depicted in a B .
Fig. S29. Y
Sy Si S2 Se

The left side and right side joints S1 5
connect the structure to the fixed
frame, which is indicated by A
hatching. 0

Fig. 29. Rod structure

The rods are able to transfer axial forces in directions of
their end joints only, so to find them it is required to
analyze the equilibrium of forces passing through the
joints A, B and C, respectively. The vectors of all the
forces have directions of rods (lines connecting their end
joints), their directions, which might be chosen
arbitrarily, are indicated by arrows.

Generally, the free body diagram, the principle of action
and reaction and conditions of equilibrium are applied. In
detail, we proceed in four steps. See Fig. S30.

a) Starting at the joint A we mentally cut the rods
that are connected by a frictionless joint A and replace
them by equivalent forces S, and S, .

Fig. S30. Free body diagram, action and reaction, equilibrium

Their directions are given by lines connecting their end joints, their directions, indicated by
arrows, are chosen arbitrarily. This is what we also see in the lower part of Fig. S29. Now, the
conditions of equilibrium of forces acting at the joint A are applied — it is required that

§1 + qu +Q=0. Solving the equation allows determining the unknown forces S,,S,. So far,
we are talking about forces acting on the joint A.
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b) Now, let’s analyze the forces acting on the rod with end joints A and B. According
to the principle of action and reaction the joint A, as a part of the rod is acted on from the joint
A itself by a force which has the same magnitude as before, but is of an opposite direction.

¢) Equilibrium of forces acting on the rod AB. Since there are no other external forces
acting on the rod, the left and right reaction forces have to have the same magnitude and the
opposite directions to satisfy the equilibrium conditions.

d) Plotting the FBD for the joint B we take into account the principle of action and
reaction again. Then the equilibrium conditions can be written. It is required that

§1 + §3 +S . = 0. For practical purposes, the vector equations of equilibrium are often replaced
by a corresponding number of scalar equations.

Similarly, we proceed for other joints. We believe that a detailed discussion of this
kind will not be needed when solving the tasks that follow.

Expressing the equilibrium conditions in scalar forms we can write

Forces passing through the joint A

X: —=S,cosa+S,cos =0,

y: S;sina+S,sinf-Q=0.
Knowing Q = S,,S,.

Forces passing through the joint B

X: S,cosa—S;sind—S,siny =0,
y: —S§;sina+S;cos0—-S,cosy=0.

Knowing S, = S,,S,.

Forces passing through the joint C
X: —=S,cosff+S,+S,c0ose=0,

y: —=S,sinff—S sine =0.

Knowing S, = S,,S,.

We have stated that the directions of forces in FBD are chosen arbitrarily. Their actual
directions come from analyzing the results of the numerical solution. If the resulting unknown

variable has a positive value, then the original choice of direction was chosen correctly. And
vice versa.
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Example — forces passing through a single point.
See Fig. S31.

Type of task: 3D, rods, zero dof’s, forces passing
through a point.

Given: dimensions, force P.
Determine: forces S, to S, .

. . / /”/
Three rods are attached to a rigid wall (plane xz) L i/” L ! J
by frictionless joints. Their other ends are e
connected in another joint where a vertical force P |

is applied. :
Fig. S31. Forces through a point

The angles come from geometry considerations, i.e. from
tang, =c/l, tana,=a/l, tana, =b/l.

The task requires solving the spatial system of forces passing through a single point. As
explained above three scalar equations in directions of coordinate axes are needed.

X: =S,sina, +S;sina, =0,
y: —=S§,cosa,—S,cosa, —S;cosa; =0,

z: S;sina,—P=0.

Knowing P = S,S,,S;.

Equilibrium conditions in the matrix notation are

0 —sina, sina; |[S, 0
—cosa, —cosa, —cosa, |15, =40
sing, 0 0 S, P

To get a purely analytical solution the Matlab symbolic toolbox might help. See the program
S01_three_rods _3D.m

%S01_three_rods_3D
% old file is named tri_pruty 3D

clear

syms al a2 a3 P b A x

A = [0 -sin(a2) sin(a3); -cos(al) -cos(a2) -cos(a3ld); sin(al) 0 0];
b = [0; 0; P];

inv_A = inv(A);

X = A\b;

pretty(x)
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The result is

sin(al)
sin(a3) cos(al) P
sin(al) (sin(a2) cos(al3) + sin(a3) cos(a2))

sin(a2) cos(al) P

[ e = )

sin(al) (sin(a2) cos(al) + sin(a3) cos(a2))

Example — forces passing through a single point of a body

Type of task: 2D body, zero dof’s, all the forces are passing through a single point.
o T

Given: dimensions, angles, forces F, Q. F
Determine: reactions N, ,N,;.

A cylinder, whose weight is Q, is supported D

by two perpendicular planes, as depicted in 14 4
Fig. S32, and loaded by a force F. Free body Na

diagram reasoning requires to remove o

supporting planes and to add corresponding Nz

reactions, say N, , N, acting at contact points. 0

Since no friction is considered both reactions B
are perpendicular to supporting planes. — B

X

Fig. S32. Equilibrium of forces passing through a point
At the first sight, we deal with a body loaded by a planar system of forces, requiring
expressing and solving three equilibrium equations. In this case, however, all the forces pass

through a single point, so only two equilibrium conditions are needed.

Generally, the orientation of the coordinate system is arbitrary but a smart choice is
always advantageous.

Equilibrium conditions, written for scalar components of acting forces, are

&: N, —-Qsina—-Fcosy=0,
n: Ny—Qcosa—Fsiny=0.
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Discussion

The task would have no solution if the force F had an opposite direction.
Mathematically, this would be indicated by negative values of contact reactions. If the
angle y # /4 then the above solution is not valid. Explain why.

Example — forces acting on a 2D block, zero dof’s

A rectangular block is supported by a sliding joint at point A (one vertical reaction) and by
two rods connecting the block to the frame. See Fig. S33. Both rods have frictionless joints at
their ends. Rod reactions represent axial forces in direction of their end joints. The block is

loaded by forces P, Z and Q.
Type of task: 2D, body, zero dof’s.

Given: P, Q, Z, dimensions, angles.
Determine: S,,S,,R, .

b1Z d

Equilibrium equations i); S o

) R
X: =S, =S,sinff—Pcosa =0, B N W h
y: =S,cosf—Psina+Z-Q+R, =0, _&f

2 T
M, :=S,hsin f-2PIsina +Zb + R,(21 —a) - Ql =0. B o7
______________________________ l l

Knowing P,Q,Z,a,5 = S,,S,.R,.

Fig. S33. Equilibrium of a body
Discussion

For certain combination of values and directions of forces P and Q the reaction R, might be

negative. What does it indicate?
A

Q; 4 @0-
Example — simplified 2D bridge A 2 8 | g I % D

3
|
, 7 : o
Type of task: A 2D structure
3

with zero dof’s, composed of s
three bodies is depicted in Fig. <
S34.

£
Given: dimensions and a a/s > a

a/s
Q,,Q;,Q,, .

Determine: reactions at joints
R,sRys. R, Ry, R

Fig. S34. A simplified bridge
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Equilibrium of each body is treated separately. Notice the ‘transfer’ of reactions from one
body to another using the principle of action and reaction as shown in Fig. S35.

Body 2 P
Eq.1: X: -Q,sina+R, =0, &,
Eq.2: y: R —Q,cosa+R; =0, tkf 1733
Eq.3: M,: —Q,bcosa+R,a=0. A o B.r—-—
R,
b
a —
)
Body 3 ¢
Eq.4: X: —-R+R,+R, =0, i %1*
Eq.5: y: -R,-Q,+R,+R, =0,
Eq,6: M,: —Q3C+R5a+R6a+R7%:O. \
/
Body 4 . %5
Eq.7: Xx: -R,+R; =0, N
Eq.8: y: -R -Q,+R, =0, o 7};
Eq.9: M.: -Q,d+Ra=0. S 4
‘“

Fig. S35. Free body diagrams for bodies.

Now, follow the text of the program S02_bridge.m. Altogether, we have nine equations
allowing to evaluate nine unknown reactions R, to R,. The above equations could be written

in the matrix form as [KK]{R} = {F} . The matrix of the system of equilibrium equations is

% 1 2 3 4 5 6 7 8 9

KK =[0 1 0 O O O O O O0; %l
1 01 0 0O O O O 0; w2
0O 0 a O 0 (O] 0O 0; %3
0-1 0 1 0 1 0 0 0; %
0 0-1 0 1 0 1 0 0; %5
0O 0 0 O a a a/2 0 0; %6
0O 0 O0-1 0 (O] 1 0; %7
0O 0 0 0 -1 0 0 0 1; w8
0O 0O0OO O O 0O 0 a]; %9

Right hand side — the vector of loading forces
F = [Q2*sin(alfa) Q2*cos(alfa) Q2*b*cos(alfa) 0 Q3 Q3*c 0 Q4 Q4*d]";

Reactions are obtained solving the system of algebraic equations
R = KK\F;
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Results

reactions
259.81
500
606.22
853.11
-800
-353.11
2906.2
853.11
1200

OCO~NOOUAWNPE

% S02_bridge

% old Ffile name is mst_010 _most_c2
clear; format short g
a=1; b=0.7; c =0.2;
Q2 = 1000; Q3 = 1500; Q4
alfa = pi/6;

% loading forces

= 0.6;
2000;

([N

F = [Q2*sin(alfa) Q2*cos(alfa) Q2*b*cos(alfa) 0 Q3 Q3*c 0 Q4 Q4*d]";
the system {KK]{R} = {Q}

% the matrix and the right hand side of

% 1 2 3 4 5 6 7 8 9

KK =[0 12 0 O 0O O O O 0; %
1 01 0 0O OO O O0; %
0O 0O0a 0O O OO O O0; %
0-1 0 1 0 1 0 0O O0; %
0O 0-1 O 1 0 1 0O O0; %
0O 00O a 0 afs21 0; %
0O 0 0-1 0 OO0 1 0; %
0O 0O 0 0 -1 0O O 0O 1; %
0O 0 0 O 0 0O O 0 a]; %

rank(KK);

R = KK\F;

counter = [1:9]";
disp(“reactions®)
disp([counter R])

Example — parallel forces in 3D

A block of weight Q is suspended by three
parallel rods (connected to the block and to the
frame by frictionless joints) of equal length as
depicted by means of Monge’s projection in Fig.

S36.
Type of task: 3D, body.

Given: Q, dimensions.
Determine: rod forces S,,S,,S;.

Here, we are dealing with a system of forces in )
3D space, so 6 equilibrium scalar conditions are

required.
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Q2*sin(alfa)
Q2*cos(alfa)
Q2*b*cos(alfa)
0

Q3

Q3*c

0

Q4

Q4*d

% check

% solution

Fig. S36. Equilibrium of a body
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x: 0=0,

y: 0=0,

z: =§,-5,-5,+Q=0,
M,:Qb-2S,b=0,

M, :Qa-S,c-S,(c+d)=0,
M,:0=0.

Due to the fact that all the forces are parallel and vertical, three equations are satisfied
identically. Knowing Q and dimensions, the remaining three equations suffice to evaluate

unknown forces S,,S,,S;.

Explain, why the task could not be solved if the block were suspended by more than three
rods.

What would happen if the force Q were not vertical? Answer: The block would start to move
and the task would not be solvable by statics tools.

Example — cable forces in 3D

Type of task: 3D, rods, zero dof’s, forces passing through a point.

Given: Three rods, attached by frictionless joints to the ‘ceiling’, as depicted in Fig. S38, are
connected by another joint located at point A. The system is loaded by an attached cylinder
whose weight is mg.

Determine: rod forces.

It should be reminded that the direction
cosines of a vector see Fig. S37, can be
expressed in the form
cosg, =a, /||é , Cosp, =a, /||é ,

,where [&] = \/a; +a; +a;.

cosg, =4, /||é

Fig. S37. Components of a vector. Fig. S38. Equilibrium of a body in space
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Locating the origin of the coordinate system, as indicated in Fig. S38, then the radius vectors
associated with rods, expressed in Matlab style, are

AB = [1 3 5];
AC = [-3 0 5];
AD = [1 -4 5];

% their lengths

L_AB = sqrt(dot(AB,AB));
L_AC sqrt(dot(AC,AC));
L_AD sqrt(dot(AD,AD));

% direction cosines for rod AB
cos_alfa(l) AB(1)/L_AB;
cos_alfa(2) AB(2)/L_AB;
cos_alfa(3) AB(3)/L_AB;

% direction cosines for rod AC
cos_beta(l) AC(1)/L_AC;
cos_beta(2) AC(2)/L_AC;
cos_beta(3) AC(3)/L_AC;

% direction cosines for rod AD
cos_gama(l) AD(1)/L_AD;
cos_gama(2) AD(2)/L_AD;
cos_gama(3) AD(3)/L_AD;

Assembling them into a matrix of direction cosines columnwise

CS = [cos_alfa"™ cos_beta®" cos_gama®]

we get
cs =

0.1690 -0.5145 0.1543
0.5071 0 -0.6172
0.8452 0.8575 0.7715

The equilibrium conditions are

X: T cosa,+T,cosf, +T,cosy, =0,
y: T,cosa,+T,cosf3, +T,cosy, =0,
z: T cosa;+T,cosf,+T,cosy, —mg =0.

To simplify the subsequent analysis of results we have substituted mg =1 here.

cosa, cosf cosy, ||T,

cosa, cosfl, cosy, 1T, =1{b}, where {b}=

- O O

cosa; cosf, cosy, || T,

Solving the system of equations by T = CS\b we get
T =
0.5071

0.2915
0.4166

Now, we claim that the resulting rod forces are multiples of the value of mg .
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Alternatively, we can proceed more efficiently, even if in a less transparent way. Let’s collect

the radius vectors in a matrix columnwise as

r(:,1) = [1 3 5];
r(:,2) = [-3 0 5];
r(:,3) = [1 -4 5];

Their lengths are

for i = 1:3
LL(i) = sgrt(dot(r(:,i),r(z,i)));
end

Similarly, the direction cosines are stored columnwise into another matrix as

for i = 1:3
CSS(:,i1) = r(:,i)/LL();
end

The rest of the procedure is the same as before. This could be verified by executing the

statement TT = CS\b. See the program S03_cable_forces.m.

% S03_ cable_forces

% m_024_cable_forces_en.m
clear

% position vectors

AB [1 3 5];

AC [-3 0 5];

AD [1 -4 5];

% their lengths - Pythagoras and the dot product
L_AB = sqgrt(dot(AB,AB));
L_AC sqrt(dot(AC,AC));
L_AD = sqgrt(dot(AD,AD));

% direction cosines for AB
cos_alfa(l) = AB(1)/L_AB;
cos_alfa(2) = AB(2)/L_AB;
cos_alfa(3) = AB(3)/L_AB;
% direction cosines for AC
cos_beta(l) = AC(1)/L_AC;
cos_beta(2) AC(2)/L_AC;
cos_beta(d) AC(3)/L_AC;
% direction cosines for AD
cos_gama(l) = AD(1)/L_AD;
cos_gama(2) AD(2)/L_AD;
cos_gama(3d) AD(3)/L_AD;

CS = [cos_alfa"™ cos_beta®" cos_gama®]
% losding vector

b=1]001]";

% solve the system oquations

T = CS\b

% and now, a more efficient style

% direction vectors are assembled columnwise in r matrix
r(:,1) = [135]; r(:,2) = [-305]; r(:,3) = [1 -4 5];

for 1 = 1:3 % compute lengths
LL(1) = sqrt(dot(r(:,i1),r(:,1)));
end

% the same for direction cosines
for i = 1:3
CSS(:,1) = r(:,)/LL(1);
end
TT = CS\b % compute forces

% end of m_024_ cable_forces.en
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Exa mple — 2D body of weight W suspended by two cables, as seen in Fig. S39.

Type of task: forces passing through a point.

Given: Lgc =5m, L,z =3m, | R

D=6m, W =2000N. ) 7

Determine: forces in cables.

Fig. S39. Weight suspended by two cables

The equilibrium conditions for forces passing through the point B are

X: —T,zcos8+T,.cosg=0,
y: +T,5sin@+T,.sing—mg =0.

Sine and cosine rules give

Lyesind =L, sing,
L. =D+ L, —2DL,,cos0

and from this we get

sing = LABsmﬁ,
LBC
cosf = D + Ly — Ly .
2DL,,

System of equations corresponding to equilibrium conditions is

—cos® cosg||Tz| | O
sinf  sing ||T,e|  |mg

Input data are

D = 6; LAB = 3; LBC = 5; MG = 2000;
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Writing and executing this piece of code

theta = acos((D"2 + LAB"2 - LBC"2)/(2*D*LAB));
fi = asin(LAB*sin(theta)/LBC);

K = [-cos(theta) cos(fi); sin(theta) sin(fi)];
F = [0 MG]";
T = K\F
we obtain
T =
1737.2
1113.6

Now, let’s analyze what would happen if, leaving the length of the rope L,. constant, the
angle ¢ is allowed to vary. Consequently, the length of L,; will be varying as well. Now, in
the enlarged task one has to determine the rope forces as functions of the varying length L,;.

Considering the triangle properties and the condition that ropes cannot transmit compression
forces we could write

LABfmin =D-Lg,
LABfmin = D* + L?ac-

In Matlab we have

LAM_min D - LBC;

LAB_max = sqrt(D”2 + LBC"2);

incr = 0.1;

LAB_range = LAM_min+incr - incr : LAB_max; % vynech zacatek intervalu

i=0;
for LAB = LAB_range
=1+ 1;

theta = acos((D"2 + LAB"2 - LBC"2)/(2*D*LAB));
fi = asin(LAB*sin(theta)/LBC);

K = [-cos(theta) cos(fi); sin(theta) sin(fi)];
F = [0 MG]";
T = K\F;
T all(i,:) =T;
end
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The program S04_ weight_supported_by_two_cables generates the plot showing the
rope forces as functions of the varying length L, . See Fig. S40.

4500 T T T T T

(R—

AB
TBC | |

4000 -

3500

3000+
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[=]
T

2000+

rope forces [N]

1500

1000 - .
w...‘..
500 e 1
.“%..
0 1 L L L L L .~“-,
1 2 3 4 5 6 7 8
length L AR [m]
Fig. S40. Rope forces

Discussion

Why the values of forces goes to infinity for L,; —1?
What length of L,;1s required to get a minimum force in the rope BC.
The answer is got from program.

Minimum force TBC for a varying length LAB is 1105.5617 [N]
This happens for LAB = 3.3 [m]

See the program S04_ weight_supported_by two_cables.

% S4_ weight_supported_by_ two_cables

% old file name is m_025 weight_supported_by two_cables_en.m
clear; format short g; format compact

D = 6;

LAB = 3;

LBC = 5;

MG = 2000;

% geometry

theta = acos((D"2 + LAB"2 - LBC"2)/(2*D*LAB));
fi = asin(LAB*sin(theta)/LBC);

% equilibrium

K = [-cos(theta) cos(fi); sin(theta) sin(fi)];
F [0 MG]";

di
T

S

p("Rope forces TAB and TBC for given geometry are-®)
K\F;
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disp(T)

LAB_min D - LBC;
LAB_max = sqrt(D”2 + LBC"2);
incr = 0.1;
% to avoid singularity we start to compute
% the lenght from LAB = LAM_min + incr
LAB_range = LAB_min + incr : incr : LAB_max;
i=0;
for LAB = LAB_range
=1+ 1;
theta = acos((D"2 + LAB"2 - LBC"2)/(2*D*LAB));
fi = asin(LAB*sin(theta)/LBC);
K [-cos(theta) cos(fi); sin(theta) sin(fi)];
F [0 MG]";
T = K\F;
T all(i,:) =T;
end

figure(l)

plot(LAB_range,T_all(:,1),"--k",LAB _range,T_all(:,2),"-r","linewidth",2)
legend("T_{AB}", "T_{BC}"); xlabel(“length L_{AB} [m]", "fontsize", 16);
ylabel ("rope forces [N]", “"fontsize®, 16)

print -djpeg -r300 T 025_2_en

% Find a minimum and its position

[TBC_min i_min] = min(T_all(:,2));

kolik = TBC_min;

disp(["the minimum force TBC for variable length LAB is " num2str(kolik) ° [N]"D
kde = LAB_range(i_min);

disp([“and occurs for length LAB = * num2str(kde) * [m]"D)

% end of m_025_weight_supported_by two_cables_en.m
Example — crankshaft mechanism

In Fig. S41 there is schematically depicted a part of the four-stroke engine with its
fundamental elements denoted by capital letters. C stands for the crankshaft (crank for short),
R for the rod (connecting rod), P for the piston. Other parts, as W — cooling water, E — exhaust
cam shaft, I — intake cam shaft, V — intake and exhaust valves and S — spark, are not important
for the present analysis. In Fig. S42 the heart of the engine, that is the crankshaft mechanism,
1s even more simplified.

This is what we call a kinematical scheme of that mechanism. The mechanism has one degree
of freedom. We intend to determine the moment M, applied on the rod, which is required to
hold the mechanism in its current position against the force P that acts on the piston.

Fig. S41. Four stroke engine Fig. S42. Kinematics scheme of a crankshaft mechanism

S, May 21, 2018 36



Given: The mechanism with one degree of freedom, Y
dimensions, force P.

Determine: The moment M as a function of a constant N

force P for the crank angle « varying from 0 to 360

degrees. As a parameter consider different values of S

r/l, that is the ratio of crank radius to the connecting %. P

rod length. X

The solution is done by solving subsequent equilibrium
conditions for individual parts of the mechanism.

Fig. S43. Free body diagram for a piston
Equilibrium of forces acting on the piston is in Fig. S43.

The force from the rod is S, the normal reaction is N, the force acting on the piston is P .
Equilibrium of forces passing through the gudgeon pin at the point C is

X: —P+Scosf =0,
y: N+Ssinf=0.

There are two ways how to express FBD on a piston
as shown in Fig. S44. Either as a planar system of
forces acting on the body, or as a planar system of

forces passing through a point, i.e. the piston pin.
The latter approach is a crude simplification whose

validity should be properly checked. \‘ 5%
TN | N

Forces acting Forces acting
on 2D body at a point in plane

Fig. S44. Piston reactions

Equilibrium of rod forces according to Fig. S45 is

Fig. S45. Rod reactions
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Equilibrium of crank forces — Fig. S46.

Fig. S46. Crank reactions

To satisfy the equilibrium of planar forces acting on the crank, two component type equations
and one moment type equation are needed

X: R —Scos =0,
y: R,y +Ssin =0,
M,: M =Srsinacosf—Srcosasinf=0.

From the third equation, we get the moment acting on the crank
M = Sr (sina cos S —cosasin f3). (a)

The system has one degree of freedom, so all coordinates should be expressed as a function of
a single variable. For this purpose we have chosen the angle « .

The angle £ depends on o by the relation
rsing =lsinff =singf =|£sina .

So the function cos f, needed for Eq. (a), could be expressed by

2
cos B = +4/1—sin’ g =i1/1—(|£) sin’ a

or

2
cos/i’:l—Zsinzﬁzl—ZL sin? <
2 I 2

The latter formula is better, since it does not require a special treatment of + sign in front of
the square root as it depends on the varying value of « in the range of <O, 27r>. See the

program SO5_crank_shaft_mechanism.

The problem is solved by the program S5_crank_shaft_mechanism.

% SO5_crank_shaft_mechanism

% old file name is m_005 klikovy_mechanizmus_c3_en.m (old k6_c4)
% program requires function procedure asin_0_2pi(x)

% crank shaft mechanism - constant force acring on piston

% find dependence of the crank torque on the angular displacement
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% ratio of crank length to rod length is varying
clear

al = 0:pi/16:2*pi;

as = al*180/pi;

p = 1000; % piston force
r = 0.8; % crank lenght
1 =2; % rod length
sinal sin(al);

cosal = cos(al);

sinal_half = sin(al/2);

r_range = 0.1:0.1:0.9; %range of r/I

% necessary dimensional requires that

% 2*r must be less than the rod length 1
% so rkl must be smaller than 1/2

i=0;
for r_var = r_range
i=i1+1;r=r var; rkl = r/1;
sinbe = rkl*sinal;
beta = asin_0_2 i(rkI*S|naI)
% cos(beta) =1 - 2*S|n(beta/2)A2
beta_half = beta/2
cosbhe =1 - 2 * S|n(beta_half).A2;
= p./cosbe;
mm = r*ss.*(cosbe.*sinal + sinbe.*cosal);
figure(l)

subplot(3,3,1)
text = ["r/1 = ° num2str(rkD)];
plot(as,mm,"-k", "linewidth", 3);

title(text, "“fontsize®, 16); axis([0 360 -1000 1000]);

grid; xlabel(“angular displacement®, “fontsize®, 16);
ylabel ("torque [Nm]*", “fontsize®", 16);

end

print -djpeg -r300 ¥ 005_1_en

%end of m_005_klikovy_mechanizmus_c3_en.m

function x_asin = asin_0_2pi(x)

% vypocti asin(x) v rozsahu 0 az 2*pi

% X musi byt v rozsahu 0 az 2*pi

y = sin(xX);

if x<0, x_asin = NaN; end

if (x<=pi/2), x_asin = asin(y); end

iT (x<=3*pi/2), x_asin = -asin(y) + pi; end
if (x <= 2*pi), x_asin = asin(y) + 2*pi; end
if (x>2*pi), x_asin = NaN; end

% end of asin_0_2pi.m
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Fig. S47 shows the rod moment, considering a constant piston force, as a function of the crank
angle o for different ratios r/l of the crank radius to the rod length.

r/l = 0.05 r/l=0.1 r/1=0.15
[= 1000 c 1000 c 1000
<, <, <,
3 3 3
g =4 o
£ -1000 L 1000 £ 1000
0 100 200 300 0 100 200 300 0 100 200 300
angular displacement angular displacement angular displacement
r/l=0.2 r/l =0.25 rll=0.3
= 1000 E 1000 = 1000
Z. Z <.
) 0/\_/ o 0/\/ o 0
=3 =3 =3
g =3 =
S 1000 9 1000 2 1000
0 100 200 300 0 100 200 300 0 100 200 300
angular displacement angular displacement angular displacement
r/l=0.35 =04 r/l =0.45
= 1000 = 1000 c 1000
Z < <,
[} 0 [0} 0 ()] 0
=3 =3 =3
=3 =3 =
£ -1000 S 1000 S 1000
0 100 200 300 0 100 200 300 0 100 200 300

angular displacement angular displacement angular displacement

Fig. S47. Torque as a function of angular displacement

Discussion

One can see that a short stroke crank mechanism, with a small ratio of r/l, provides a small
moment M with respect to the loading force P, but the function M = f(a) has a rather

regular, almost a sine character. The long stroke engine, having a higher ratio r/l, is more
‘efficient” — for a given force we get a higher value of the torque M — however, on the
expanse of a certain irregularity of the function M = f ().

The assumption of the constant force P during the rotation of the crank within the range <0,
27 > is not realistic. Actually, one cycle of a four-stroke engine requires four strokes of the
piston, that is two complete rotations of the crank, i.e. <0, 47 >. And only one fourth of it
corresponds to the expansion part (power stroke) of the cycle. Furthermore, during the

expansion part the pressure in the cylinder, i.e. the force acting on the piston, is far from being
constant.

The solution presented above could be considered as the first approximation of the task to be
refined later on. But this is the way how we generally proceed when analyzing technical
problems. Simplifying it as much as possible at first and then gradually taking more and more
details into consideration. After all, the real appearance of two parts of crank mechanism, i.e.
the connecting rod and piston, shown in Fig. S48, is quite different from the symbolic
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representation sketched by a few lines as depicted in the
schematic picture Fig. S42. There is a long way from the
oversimplified static analysis to an efficient engineering
design.

Fig. S48. Piston and connecting rod
Example — simplified truss bridge

The statically determined planar ‘bridge’ composed of seven rods of equal lengths, connected
by five frictionless joints, see Fig. S49, supported by a joint constraint on the left (number 1)
and by a rotary sliding joint constraint on the right (number 5), is loaded by a single force Q
acting in the lower middle joint (number 3). In the figure the assumed directions of the rod
forces are indicated as well.

Fig. S49. Truss structure

Given: dimensions, force Q.
Determine: rod forces S, to S, and reactions S, S, S, .

The task could be solved by expressing equilibrium conditions for individual joints.

S,cosa+S,+S; =0,

Joint 1. )
S;sina+ S, =0.
, —S,cosa+S;cosa+S, =0,
Joint 2. . )
—S,sina - S;sina =0.
, —S, -S,cosa+S;cosa+ S, =0,
Joint 3. ) )
S;sina + S;sina—Q =0.
. —S,—S,cosa+S,cosa =0,
Joint 4.

—Ssina — S, sina = 0.
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: —S4—S,cosa =0,
Joint 5. )
S;sina+S,,=0.

Altogether we have ten equations for ten unknown reaction forces. The following program
S06_truss_bridge shows how to proceed in Matlab.

% S06_truss_bridge
% prutovka_stat _urcita_silova_metoda_cl

clear
al = pi/3;
sn = sin(al);
cs = cos(al);
% matrix [K]
K=[ecs 10 0O O O O0100;
sn 00 0O O O O001o0;
-cs 0 cs 1 0 O 00O0O0;
-sn 0 -sn 0 0 0O 00O0O;
0 -1 -cs 0 cs 1 000 O0;
0O O sn 0 sn 0 00 0 0;
0 O 0 -1 -cs 0O cs 00 O0;
0O O 0 0 -sn 0 -sn 0 0 O;
0 0 0 O O -1-cs00O0O0;
0 0 0 O O O snoOO1];
% loading forces
F = zeros(10,1);
Q = 1000;
F(6) = Q;
F;
% solving the equilibrium conditions we get
S = K\F

The rod forces (S, ---S, ) and reaction forces ( Sy, S,,S,,) are

-577.3503
288.6751
577.3503

-577.3503
577.3503
288.6751

-577.3503

0.0
500.0000
500.0000

QOO NOUDRWN R

[y

The reader should check the equilibrium conditions. How?
Discussion

If the ‘bridge’ were supported on the right the same way as it is on the left-hand side, then the
number of dof’s would be equal to —1. Such a system would be classified as interdetemined.
The unknown variables could not be determined since their number (4 + 7 = 11 in this case) is
greater than the number of available equations (still ten only). Later, we will show how the
tasks of this type are solved by tools of mechanics of deformable bodies.
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Hint — plot truss bridge in Matlab
4

Fig. S50. Nodes, trusses, displacements

Matlab could help when the bridge structure, depicted in Fig S50, have to be plotted. All the
rods are of the same length. The coordinates of all joints (stored in the array xy) are given.
The following piece of program shows how to proceed using the Matlab function
gplot(C,xy). The array C, called the connectivity matrix, indicates the nodes that have to be
connected by a line. See the Matlab program S07_plot_a_truss_structure and Fig. S51.

% SO7_plot_a_truss_structure
% old File name is m_008 nakresli_prutovou soustavu.m

clear
% geometrie . spy(C)
1 =1; |
alfa = pi/3; % 60 degrees 1
ly = I*sin(alfa); Al
% nodal coordinates
xy(1,:) = [0 0]; ¥
xy(2,:) = [172 ly] .
xy(3,:) = [1 0];
xy(4,:) = [3/72 ly]; %0 2 4 [
xy(5,:) = [2,0]; nze7
% conectivity gplot(C xy)
c(1,2) =1; 1
c(,3) = 1; sl o2
C(2,3) = 1; s
C(2,4) = 1; )
C(3,4) = 1; 0.4
c(3,5) = 1; -
C(4,5) = l; ‘,-" "-\_,-"' ‘.
figure(1) e . = . bl
subplot(2,1,1); spy(C); ‘ oe ! e ?
title("spy(C)", "fontsize", 16)
subplot(2,1,2); gplot(C,xy);
axis("equal®); axis([-0.1 2.1 -0.1 1]) Fig. S51. Matlab plot
title(C"gplot(C,xy)", “fontsize", 16)
hold on % hold for a moment
for i = 1:5 % and plot the nodes
plot(xy(i,1),xy(i,2), 0", “linewidth®, 2)
end
hold off % its all

print -djpeg -r300 ¥ _008_2

% end of m_008_nakresli_prutovou soustavu.m
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Example — movable system with one dof

Type of task: find the equilibrium configuration for
a movable system with one dof.

Given: In Fig. S52 there is a planar mechanism with "
one degree of freedom. It consists of a sleeve, z

=]

having weight Q, which could move in up or down > -
directions along a vertical rod attached to the frame. ) A J/a<1 \

At the point A of the sleeve there is attached a rope Ny |||
that is led around the pulley that could rotate around 0
the frictionless joint at point S. The other end of the
rope is loaded by a force Z. Friction effects are
neglected.

l—rsina |rsino Z
l

Fig. S52. Pulley and sleeve equilibrium
Determine:
For given loads (Q and Z) and for given dimensions find the configuration of the mechanism,
determined by the coordinate X, in which the equilibrium occurs.

One way to solve the problem is to analyze equilibrium of forces at point A. Two component
type equations are

—N, +Zcosa =0,
—Q+Zsina =0.

Q Q

=sina =—, «a =arcsin—.
Z Z

From geometry considerations, we get the distance X, oriented downwards, as a function of
the angle o from

X+rcosa .
tang =—— = x:—rcosa+(l - rsma)tana.
| -—rsina

This way the reactions at joint S are not obtained. But nobody asked for it so far. Show,
however, how the task might be solved if the reaction force at the joint S is required.

Discussion
Since the function arcsin appears in the analysis, there is a natural limit for its argument. So, it
is necessary that —1<Q/Z <1. The physical, or rather the geometrical, meaning of this fact

is that as the ratio Q/Z approaches to +1or —1, then the distance X goes beyond all limits.
So, there is an embedded singularity in the solution that might be described by

limx = lim [— r cos(arcsing) +(-r sin(arcsing)) tan(arcsing)} — to0.,
Q/Z—+l  Q/Z->+l 7 Z Z
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See the Matlab program S08_sleeve_and_pulley.m. The output is in Fig. S53.

% S08 sleeve_and_pulley
C:\tmp_matlab_2016\rest_123

% test_123
clear
1=2; r = 1;

Q = -9.9:0.1:9.9; Z = 10;
alfa = asin(Q/2);

X = -r*cos(alfa) + (I - r*sin(alfa)).*tan(alfa);

figure(l)

subplot(1,3,1); plot(Q,x, "“linewidth®, 2); grid; xlabel("Q"); ylabel("x");
title("x = F(Q)")

subplot(1,3,2); plot(Q,alfa*180/pi, "“linewidth", 2); axis([-10 10 -90 90]);
grid; xlabel("Q"); ylabel("\alpha®); title("\alpha = f(Q)")

subplot(1,3,3); plot(Q/Z,alfa*180/pi, "“linewidth®, 2); xlabel("Q/Z%); ..
ylabel ("\alpha®); grid; axis([-1 1 -90 90]); title("\alpha = T(Q/2)" )

figure(2)

subplot(1,2,1); plot(Q/Z,x, “linewidth", 2); grid; xlabel("Q/zZ [1]", “fontsize® ,16);
ylabel ("x [m]", "fontsize® ,16); title("x = T 1(Q/2)", "fontsize® ,16)

subplot(1,2,2); plot(Q/Z,alfa*180/pi, “linewidth", 2); xlabel("Q/Z [1]", "fontsize" ,16);
ylabel ("\alpha [degrees]®, "fontsize" ,16); grid; axis([-1 1 -90 90]);
title("\alpha = T 2(Q/z2)*", “fontsize® ,16)

print -djpeg -r300 rest123_fig_2

=1,(Q/2)
10 T T T
5 N
0 -
E 5
[}
x 101 1=
3
-15 1
_20 -
-25 : : : : : '
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Q/Z [1] Q/Z [1]

Fig. S53. Matlab output
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Example — system of two connected bodies in plane

Type of task: zero dof’s.

Given: Dimensions, forces P,,P,.
Determine: All the reactions.

The structure, composed of a rotary bar (3) and a slider (2), connected in a frictionless joint A,
is depicted in Fig. S54. The corresponding FBD is in Fig S55.

Equations of equilibrium are

Body 2
X: A -P =0,
y: -A +N=0,

M,: Pg—-Nz=0.

Body 3
X: -A +Rg, =0,

y: A -P+R, =0,

My: —Ppsina+Alcosa+Alsina =0.

There are six equations for six unknowns, i.e. for A, A ,R;,,R

S, May 21, 2018
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Hint — why the normal reaction appears to be out of the sleeve

Explain, why the normal reaction between the sleeve with a handle and the rod along which it
slides, is seemingly out of the contact area as it is indicated in the third subplot of Fig. S56.

To secure a smooth motion of the sleeve along the rod, there has to
be a certain radial gap. When the handle of a sleeve is loaded, then
the sleeve tilts a little bit and the actual contact occurs at the side
parts of the sleeve as it is shown in the first two subplots of Fig.
S56.

The reaction forces N,,N, between the collar and the sleeve are
parallel, perpendicular to the rod, and generally of different
magnitudes. And the resulting force N, being the vector sum of
N,,N,, always occurs out of the centre of the sleeve. So, when
plotting FBD one can use either two unequal forces N,,N, or just

a single force N displaced by an unknown distance X. In both
cases, the number of unknowns is two.

Fig. S56. Sleeve reactions — alternatives

Nj

N| [

S

N

2

4
~

In Fig. S57 a task of finding the force N, being the resultant of N;,N,, is shown both by

graphic and analytical approaches.

a sV
0
|}
b 'x
N> 1
X W= NL—NA t:'
Nia =N b= —Nx
Y= N;L—NA&- (Q_B
N %

=

el

Fig. S57. Parallel forces — graphical and numerical approach
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S9. Friction

Friction is a phenomenon appearing when surfaces of bodies in contact are in relative
motions. Friction induces forces acting against the motion. The behavior of mechanical
systems is always accompanied by the occurrence of effects resisting motions, or by other
words, of forces (and moments) acting against the motion.

These effects are of different nature as the dry friction, fluid friction, internal friction, etc. The
common property of frictional effects is that they irreversibly dissipate energy.

In the text, we will devote our attention to the phenomenon of dry friction, frequently
occurring in contact surfaces of bodies. The actual contact surface is often approximated by a
point.

The mathematical description of dry friction is a subject of tribology and is far from being
simple’. For our purposes, a simplifying so-called phenomenological approach, known as the
Coulomb’s law'’, will be used.

There are two distinct regimes of dry friction; they are called kinetic and static frictions,
respectively.

S9.1. Kinetic friction, frequently called just friction, is defined for sliding bodies. The
friction force is approximated by the formula

F=Nf, (S9 1)
where

F is the friction force acting in the contact of sliding bodies. The force lies in the tangent
plane between the contact surfaces of bodies and its direction is opposite to relative velocities
of contact surfaces.

N is the normal reaction in the contact of sliding bodies and

f is the coefficient of friction. Its value, depending on the type of contacting surfaces, can be
found in engineering handbooks. Often, the friction coefficient is denoted by the symbol x .

Expressed in words, the Coulomb’s law states that the friction force is proportional to
the normal force in contact.

? Neale, Michael J. (1995). The Tribology Handbook (2nd Edition). Elsevier. ISBN 9780750611985.

' One has to realize that the Coulomb law is an approximation of real world assuming that the friction
phenomena are independent of the sliding velocity, magnitude of normal force, temperature, humidity, surface
structure, etc.
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https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/9780750611985

A few examples of values of coefficient friction f for different sliding surfaces

Steel —ice 0.02
Steel — steel 0.15
Steel — stone 0.30
Steel — sand 0.40

It is a dimensionless quantity, whose value is obtained experimentally. For more details see
www.engineershandbook.com/Tables/frictioncoefficients.htm.

S9.2. Static friction — also called adhesion — defined for bodies in contact that are not
moving relative to each other, is approximated by

F <Nf_, (59_2)
where

F is the adhesion force acting in the contact between stationary bodies. The force lies in the
tangent plane between the contact surfaces and its direction is a priory unknown.

The force N is the normal reaction in the contact between the bodies and

f, is the dimensionless adhesion coefficient. Its value, depending on the type of contacting
materials can be found in tables of engineering textbooks.

The adhesion force can take any value within the interval <— Nf_,+ Nfa> .

Expressed in words, the adhesion force is just what it must be in order to prevent motion
between the surfaces of contacting bodies.

The adhesion coefficient is usually higher than the coefficient of kinetic friction.

In left-hand side of Fig. S58 there are shown —v>0 v=0
reaction forces for a general planar constraint N N
contact taking friction phenomenon into R
account. It is assumed that the upper ‘body’

moves to the right with velocity v. Besides of \p Qu

the normal reaction N, which is
perpendicular to the mutual tangent to both
surfaces, there is the friction force, lying in the
tangent line and having a direction opposite to F=N
the relative motion of surfaces. tgQ =

F:fl - Nﬂa
= NTH =H 1€Pa = Ha

Zm =

Fig. S58. Friction — adhesion

According to Coulomb’s law, its magnitude is proportional to the normal force N, while the
coefficient of proportionality is just the coefficient of friction f .
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www.engineershandbook.com/Tables/frictioncoefficients.htm

The resulting reaction is obtained as a vector sum of both vectors, i.e. R=+/N?+F? . This
sliding constraint represents one unknown reaction component, i.e. the normal reaction. It is
of interest that the angle ¢, sometimes called the friction angle, can be obtained from

tan(p=%=NWf= f,so p=arctan f . (S9 3)

In the right-hand side of Fig. S58 there are shown reaction forces for a general planar
constraint contact taking friction phenomenon into account. Now, it is assumed that both
surfaces are stationary, i.e. V=0. It should be emphasized that in this case, the direction of
the actual adhesion force is unknown (it could point either to the left or to the right) and the
magnitude of the adhesion force unknown as well. This stationary constraint represents two
unknown reaction components, i.e. the normal reaction N and the adhesion force F,. The

adhesion angle is ¢, = arctan f, .

S9.3. Normal and friction forces in a contact between extended surfaces

If a loaded block, shown in Fig. S59 moves to the right, one might be Al
wondering where the normal force, acting between the frame and the
block, should occur. Actually, the normal force, we intend to plot in the B
FBD, is a resultant of generally nonuniform contact pressure (of course,
multiplied by the magnitude of the surface area) between the block and X

F

the frame. x N

Fig. S59. Position of a normal reaction

The distribution of the pressure along the contact surface is a priory unknown since it depends
on the actual loading of the block. Since we are only interested in the resultant value, say N ,
we might assume that it is located at an unknown distance X from the left-hand side of the
block. The quantities N, X appearing in FBD are unknown.

The friction force, being by definition F = Nf , lies in the contact ‘plane’ and its lateral

position is immaterial. So, when solving the task to find a force B, needed to pull the block
with a constant velocity to the right, and knowing the force A and the coefficient of friction
f , we have to write three equations for the block — two component and one moment type

equilibrium equations — which would allow to find three unknowns, i.e. B,N and x.

Example — forces acting on a 2D block in plane.
See Fig. S60.
Given: The block of weight Q lies on an inclined

plane and is also supported by a pin constraint at
the point A. It is loaded by forces Z,,Z,.
Determine: Reactions.

2h X

Fig. S60. A loaded block
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Three equations are required to express equilibrium conditions of a body in 2D space.

X: -R, -Z,cosa+Qsina =0,
y: N-Z -Z,sina—-Qcosa =0,
M,: 2IZ,+Qcsina+Qlcosa —NQ2l-x)+Z,(h—h)cosa =0.

S9.4. Normal and traction forces in a pure rolling contact

In Fig. S61 there is depicted a driven (or braked) round wheel J

on an inclined plane in 2D. Also, the FBD forces and moments Mwheel§ L,
are indicated. The condition of pure rolling requires that there
is no slipping between the wheel and the supporting frame. The
corresponding constraint force, called the traction force F , has
to be smaller than Nf . Writing three equilibrium equations for

a 2D body and knowing mg F,.,F,, one can evaluate three

wheel? " x2 " y
unknowns i.e. M,F,N, needed for the wheel to move with a
constant velocity.

Fig. S61. Rolling contact

We have to check whether the condition of rolling, i.e. F < Nf , is satisfied. If this condition

is not satisfied, it means that the initial assumption of pure rolling was wrong. The task has to
be recomputed under the assumption of slipping, i.e. F = Nf .

S10. Rolling resistance

Even if we are dealing with mechanics of rigid (non-deformable) bodies, the phenomenon of
the rolling resistance can be best explained by a logical sidestep. Imagine that a loaded rigid
wheel is rolling on a slightly deformable surface (frame). See Fig. S62.

Due to the deformed frame
the normal reaction N is
shifted slightly (from the
ideal contact point) by the
distance & to the right. The

traction force, which has to
be smaller than Nf , is
directed against the motion.
The resulting reaction is R.
To simplify the analysis of
the task and the plotting of
the FBD we usually shift
the normal force to the ideal contact point P.

Fig. S62. Rolling resistance
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This artificial shift has to be accompanied by a corresponding moment M, , whose magnitude
is N& .

The coefficient £ goes under the name of the coefficient of rolling resistance. Its value for
different contacting surfaces can be found in engineering textbooks.

S11. Principle of virtual work (PVW)

The virtual work is mechanical work produced by forces exerted during their virtual
displacements. By the term virtual
displacement  we understand any
infinitesimal displacements and rotations,
satisfying  the  prescribed  constraint
conditions. For virtual quantities Lagrange y=f)
introduced the symbol 6, to emphasize the _ .
virtual, i.e. the fictional or apparent,

character of these quantities. We assume Oy

that while the body is being transferred to a
new, infinitesimally close position, the
acting forces do not change their magnitudes
and directions and simultaneously that the dx
time is frozen. The difference between the |
virtual and differential quantity can be a x  x+dx b
explained observing Fig. S63.

dy

Fig. S63. Variation vs. derivative

Let the function y= f(X) represents the relation between two quantities, say the

displacement and time. Let’s have another function y = f(x) and let it be defined as the

virtual variation of the original function. According to rules of infinitesimal calculus, there is
a unique correspondence between differential increments dx and dy depending on the

function f(x). Contrary to the differential increment dy, the virtual increment is defined as
0oy =Y —Yy. More about the subject can be found in books devoted to variational calculus. See

[4].

In mechanics of deformable bodies (strength of material) the principle of virtual work states
that the virtual work of internal forces , say oU, is equal to the virtual work of external

forces, say oW , so
OW =0dU . (S11_1)

In mechanics of rigid bodies the deformations of loaded bodies are neglected, so the work
done by internal forces is assumed to be identically equal to zero, thus

SW =0. (S11 2)
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It can be proved that zero work of forces acting during the virtual displacement corresponds to
the equilibrium condition stating that the sum of forces and moments acting on a body is
equal to zero.

At the first sight the conclusion, that the zero resulting force produces zero work, seems to be
trivial. But, the resulting zero is a sum of non-zero contributions of works produced by virtual
displacements of individual forces. We will show that the strength of the principle is based on
the fact that it has to be valid for an arbitrary virtual displacement.

When balancing individual work contributions we rely on the fact that in mechanics of rigid
bodies the internal forces — when the resistance effects are neglected — ‘do not work’.
Furthermore, according to action and reaction principle, they are equal but of different
directions. The principle allows advantageous solving static tasks without the necessity to
evaluate all the reaction forces. The principle of virtual work loses its simplicity when
resistance forces are taken into account.

Example — work done by a force acting on a spring

Given: A linear spring with stiffness k is gradually loaded by the force P . See Fig. S64. Its
magnitude is linearly increasing from zero to the
maximum value P_ . The deflection is

proportional to the applied force, thus P =Kky,
where k is the spring stiffness. Consequently,
the spring deflection y goes from zeroto y_ .

Determine: The work W exerted by the applied
force P during the loading process.

VYmax

Yimax Yimax
W= [Pdy= [kydy =%ky§m.

0 0 P PH?{J’.Y

. P
We could express the stiffness as k =—" and
ymax

substitute it into the previous equation and obtain S

1
W =3 Pmax ymax' }

2 y dy

Ymax

Fig. S64. Work done by a constant force acting on a linear spring
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Example — crankshaft mechanism
Type of task: mechanism with 1 dof, no friction considered.

Given: dimensions, force P, see Fig. S65.
Determine: moment M needed for mechanism to stay in the shown configuration using PVW.

oo

rsinQ c=VI2—rcos’a

z 0z

Fig. S65. Principle of virtual work applied to a crankshaft mechanism
The principle of virtual work requires that for an infinitesimal change of the current position
of the mechanism, the sum of the virtual work of the moment M and of the virtual work of
the force P has to be zero. Since the mechanism has just one dof, there exists a single
coordinate uniquely determining its position. Opting for the crank angular coordinate, say «

as the primary coordinate, the piston displacement z depends on it and has to be expressed as
a function of « . Similarly for 6z.

Observing Fig. S65 one can write
Z=rsina+C.

Using Pythagoras theorem gives

r‘cosa+c’=1> = c=+JI’=r’cos’a.

So, the piston position depends on the crank angle o by

z=rsina++1>—r’scos’« . ()

Considering the clockwise orientation of the angle as « positive, the virtual increment o« is
positive in the clockwise direction as well. One can observe that increasing angle « by a
positive increment d« leads to an increase of z by a positive value of 6z. So, the principle
of virtual work states that

SW =M da—Pdz=0. (b)
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Note: The minus sign by the second term is due to the fact that the force P, as it is plotted in
FBD, acts against the positive virtual increment of 6z .

The relation between 62,8 can be found by differentiating Eq. (a).

oy —2r’cosa(-sina)
—Z =rcosa + .

oa W12 —r2cos’ a

(©)

This can also be done by the program S09_crank_virt_work _cl.m

% S09_crank_virt_work cl

% original file name is crank_virt_work_cl
clear

syms r I alfa z z1 z2

z1 = r*sin(alfa);

z2 sqrt(In"2 - r"2*cos(alfa)”2);

z =z1 + z2;

dzl_to_dalfa = diff(zl,alfa);

dz2_to_dalfa = diff(z2,alfa);

dz_to_dalfa = dzl_to _dalfa + dz2_to_dalfa;
pretty(dz_to_dalfa)

Executing it we get

r cos(alfa) sin(alfa)
r cos(alfa) + -~ —————————————————————
2

(I - r cos(alfa) )

And similarly for virtual increments

0z —2r’ cosa(—sina)
—=rcosa+ .

oa W12 —r2cos’a

The virtual displacement of the piston 0z depends on the virtual rotational increment o« by

r’sinacosa
0Z=|—-rcosa— o

JI2 —r?cos?a

Substituting into (b) and factoring out o we get

2 .
Sa M—P{rcosa+ f sinacosa } -0. ()
V12 —r2costa

And now, comes the most important logical step for the understanding the principle of virtual
work. The last relation consists of a product of two terms that are equal to zero. That is the
virtual displacement da and the rest of the relation, which is contained in braces. The
mathematical condition for the product (d) to be equal to zero for any value of da requires
that the contents of the bracket has to be equal to zero. And what is inside the braces
corresponds to equilibrium condition.
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Thus

M=P|rcosa +

r’sinacosa }

\/I2 —r’cos’a

This way we found the required relationship between the forces needed for the equilibrium of
the mechanism without a necessity to determine reactions and internal forces. The beauty and
the simplicity of the task would be lost if passive resistance effects were taken into account.

Example — compare FBD and PVW solutions

Type of task: 1dof system.

Given: Dimensions. A sleeve of the weight G can move
up and down along a vertical frictionless rod. The sleeve
is also attached to the frame by a linear massless spring
whose initial (unstretched) lenght |, is equal to b and its

stiffness is €. See Fig. S66.

Fig. S66. Sleeve and spring equilibrium
Determine: For the given weight G find the equilibrium position indicated by X coordinate.
Compare the classical solution, obtained by FBD technique, and that obtained by the principle
of virtual work.

1) FBD solution

The condition of equilibrium of forces passing through a single point in a plane requires
writing two equations.

J— N =
Sc?sa+ 0, (ab)
—Ssina+G =0.

Since the spring is assumed linear, then the force in the spring S is proportional to the
elongation &, and thus the constitutive equation is

S=cé, (c)
where C is the stiffness of the spring.

The relations between the distance X, elongation & and the angle o come from geometry.

|, +& @
(I, + &Y =b” + X2, (e)

sina =
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Knowing G and ¢ and using the above five equations we can determine five unknowns, i.e.
S,N,a,&,x. To take into account the friction effects would not complicate the solution at all.

Only the Eq. (b) would be changed to —Ssina —Nf +G =0.

2) PVW solution

In this case, the condition of zero virtual work of active forces is
oW =Gox—S8&=0.

Why does the minus sign appear at the term denoting the virtual work of the spring force?
This is due to the fact that the spring force acts against the positive virtual displacement 0&

which increases with the increase of 06X . Of course, the normal force N does not work since
it is perpendicular to the motion of the sleeve.

Since we deal with a mechanism with one degree of freedom, whose position is described by
a single parameter, say X, we have to start by finding how the variable £ depends on X.

From (I, + &) =b? + x> we get &=, +Vb> +x*.
The derivative of the previous relation with respect to X and the corresponding variations are

o0& 2X X X

o C T e

= OX.
5% 20> +x> b +X
Substituting the constitutive relation S =c& into Gox —S3& =0 we subsequently get

Gox—céo& =0,
X

Vb +x?
GSX—C(—|0+\/b2 +X2)L5X:0,

vb* +x?
(G —c(— l, +Vb* +x° )ﬁjéx=0.

The above relation has to be valid for any virtual displacement dx . From it follows that the
outer bracket of the previous relation has to be equal to zero, so

G:c(—lo+\/b2+x2)%.

b+ x

Gox—cé ox=0,

We wanted to find how the displacement X depends on the sleeve weight G . Instead, we
obtained the relation G = f(X). This function could be readily evaluated by Matlab for

varying values of X. The inverse function X = ¢g(G), we were actually looking for, is then
obtained graphically. This way, we circumvent rather cumbersome extraction of X form the
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resulting formula above. To take into account the friction effects requires solving the task by
the FBD procedure first. This would, however, completely disqualify the simplicity of PVW
procedure. See the program S10_spring_sleeve.m.

% S10_spring_sleeve

% original file name is mtl_002_pruzina_objimka
clear

b =1; ¢ =1000; 10 = 0.8; G = 100;

X_range = 0:0.1:1;

ksi = -10 + sgrt(b”"2 + x_range."2)

nom = x_range;
denom = sqrt(b”"2 + x_range."2);

dksi_to_dx = nom./denom;

figure(l)

subplot(2,2,1); plot(x_range, ksi, “linewidth", 2)
title("ksi as a function of x%)

xlabel("x [m]"); ylabel("[m]")

subplot(2,2,2); plot(x_range, dksi_to_dx, "linewidth®, 2)
title("dksi to dx as a function of x*)

xlabel ("x [m]"); ylabel("[1]%)

i =0;
for x = x_range

i i+ 1;

G(i) = c*x*(-10 + sqrt(b”"2 + x"2))/sqrt(b"2 + x"2);

end

subplot(2,2,3); plot(x_range, G, “linewidth", 2)
title("G as a function of x%)
xlabel ("x [m]1"); ylabel ("[N]")

subplot(2,2,4); plot(G, x_range, “linewidth®, 2)
title("x as a function of G%)
xlabel (°G [N]17); ylabel("[m]")

print -r300 -djpeg mtl_002_pruzina_objimka

Graphical output is in Fig S67.

ksi as a function of x dksi to dx as a function of x

0.8
07

0.8

06
_ 05

(U]

E
0.4
03
02

0.1 :
0 02 04 06 08 1 0 02 04 06 08 1

x [m] x[m]

G as a function of x x as a function of G
500

400

300

IN]

200

100

1 ; 500
% [m] G M

Fig. S67. Matlab output
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Example — using PVW find the equilibrium position of a 1 dof system depicted in Fig. S68

Type of task: 1dof system. lo a
Given: Dimensions, spring stiffnessk . '
Initial length of spring is |,. Force Q.

Determine: Using PVW, find the

equilibrium position. X
ox
Fig. S68. Principle of virtual work
The condition of zero virtual work due to virtual displacements of the mechanism is
oW =Qdox—S8& =0. (a)

Note: The axial force in the rotating rod ‘does not work’ since it is always perpendicular to
the trajectory of its end joint where the massless spring is attached. The spring is linear so the
spring force S = k& .

The system has one dof. So, the positional coordinates £ and the angle « can be uniquely
expressed as functions of a single coordinate, say X.

For this, we use the law of cosines

|0+§=\/(|0+a)2+a2—2(|0+a)acosa. (b)

The angle « is a function of X as well. It is obvious that

2
) X X
sima=— = cosa==%[1-|—] .
a a

Only the plus sign is valid in this case, so

§:—I0+\/(lo+a)2+a2—2(lo+a)a 1—(§j = f,(x). (c)

The notation f,(X) is used for further development.
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The derivative of (3) with respect to X is

X1 X
- 2('0 + a)a AZ (Io 4+ a)#2
R : 1_(2) = 1_(9 = ,(x)
OX > ==1,
2\/(I° vaf +al -2l + a)a\/1 ) @1) \/ (1, +af +a*—2(l, + a)a\/ I- (:J
.. ()

The notation f,(x) is used for further development. Substituting (c) and (d) into (a) and
exploiting the spring linearity S =k<& we get

Q=52 —ke% k£, 0 f,(x). ©
OX OX

We can evaluate Q = f (X) for varying values of X variable. The Matlab program
S11_principle_of virtual_work.m produces Fig. S69.

ksivs. x dksi to dx vs. x Q vs. x -- in italics
0.7 T 1.4 T 1000 . : i
a=2, l-—. =1
1.2+
750+
1 i
08r
E E
£ ‘= 500
g o
06+
041+
250
02} /
0 . 0 . .
; 0 05 1 0 02 05 08 1
xin [m] xin [m]

Fig. S69. Matlab output
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This Matlab program shows a few nonstandard graphical tricks as well. Just for fun and future
convenience.

% S11_principle_of_virtual_work
% original_file name is St_princip_virtualnich_praci_priklad_P11
% program requires functions 1 and T2

clear

10 = 1; a = 2; k = 1500; % dimensions and spring stiffness
X = 0:0.1:1;

ksi = f1(x,10,a); % my function fl

dksi_to_dx = f2(x,10,a); % my function T2

figure(l)

subplot(1,3,1)

% markersize should be in multiples of 6

hl = plot(x,ksi,"-0", "linewidth®, 2, "markersize®,6,
"markeredgecolor®, "r", "markerfacecolor®, "y")

title(C"ksi vs. x%)

xlabel ("x in [m]");

ylabel("ksi in [m]")

subplot(1,3,2)

h2 = plot(x,dksi_to_dx,"-.", "linewidth®, 1.5)

title("dksi to dx vs. x")

xlabel ("x in [m]");

Q = k*ksi.*dksi_to_dx;

subplot(1,3,3)

h3 = plot(x,Q)

a3 = get(h3);

title("Q vs. x -- in italics®, “color®, "r*, “fontangle®, "italic");

% color and fonttype for title

txt = [Fa = ° num2str(a) °, 1.0 = * num2str(10)];

text(0.1,900,txt, “color®, [0.5 0.5 0.5], “fontsize®, 12);

% color (gray) and fontsize (14) of text

xlabel("x in [m]","Color®,"y"); % color of xlabels

% xtick distribution, could be non-uniform

set(gca, “xtick®, [0 0.2 0.5 0.8 1]);

set(gca, “"xcolor®, "m"); % magenta for x axis line and ticks
ylabel ("Q in [m]","Color®,"r"); % color of ylabel

% GCA means Get handle to current axis.

set(gca, "ytick®, [0:250:1000]); % tick distribution

set(h3, "linewidth", 3, “color®, "g") %linewidth and color for plotted curve
print -djpeg -r300 priklad_P11 fig3

function ksi = f1(x,10,a)

% it belongs to St _princip_virtualnich_praci_priklad _P11.m
% compute the elongation of spring ksi as a function of x
aa = a™2;

10pa = 10 + a;

xx = (1 - x."2/aa).~(0.5);

ksi = -10 + ((I0pa)”2 + aa - 2*(10pa)*a*xx).~(0.5);

function dksi_to_dx = f2(x,10,a)
% it belongs to St_princip_virtualnich_praci_priklad_P11.m
% compute the derivative of ksi with respect to x

aa = a™2;

10pa = 10 + a;

citl = I0pa*x/a;

jml = (1 - x.~2/aa)."0.5;

cit = citl./jml;

xx = (1 - x.~2/aa).~(0.5);

jm = (I0pa™2 + aa - 2*I0pa*a*xx)."~(0.5);
dksi_to_dx = cit./jm;

S12. Internal forces

In rigid body mechanics, we are trying to find the state of equilibrium of external and reaction
forces acting on bodies regardless of their strength, reliability, durability, etc. The considered
bodies are by definition perfectly rigid, that is infinitely stiff, they the do not deform due to
the applied forces, and are theoretically indestructible. So, one might naively deduce that what
happens inside bodies is generally out of our interest. This would, however, be a shortsighted
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approach from the engineering point of view. We know that in practice the bodies break due
to applied forces and this evidently happens due to a failure of the weakest part of the internal
structure of bodies. What the loading bodies can safely withstand and under what conditions
they break is the crucial part of engineering reasoning and is fully treated in mechanics of
deformable bodies — that is in chapters devoted to the strength of material.

In statics of rigid bodies, we are capable to determine the internal forces in a chosen part of a
body. Here we explain the procedure how to do it. The presented procedure, based on the
principles of rigid body mechanics, will become a fundamental step for answering the
structural strength tasks in the subject of the strength of material.

The procedure for finding internal forces can be explained studying a simply supported beam
of the length | loaded by single force F as depicted in Fig. S70.

Generally, we proceed in three steps.

1. Using FBD we plot the applied and reaction forces. F
2. Writing equilibrium conditions and solving them we
determine reaction forces. x A (o B
3. We mentally cut the body in the place of interest, then ”‘f" a %
apply the FBD technique again and determine the A, By
internal forces in the cut area by expressing the '
equivalence of internal forces with those imagined on '
a chosen side of the cut. Both left- and right-hand part 4x N M,
of the body could be alternatively used — both | N 71
approaches lead to same results. A, ' -
In this particular case, there are three force effects satisfying T !l;{ N //(x
the equilibrium of individual parts of the beam. Force T \
represents the tensional force in the cross sectional section of ad T B
¥

the beam. This force tries to tear the beam at that place apart.
Fig. S70. Internal forces at a cross section

Force N is normal to the beam axis and represents the shear force. Finally, the moment M
tries to bend the beam — it is called a bending moment.

The magnitudes of internal forces acting on divided parts are the same; their directions — in
agreement with the principle of action and reaction — are, however, opposite. Of course, the
internal forces cancel out when both artificially divided parts are put together. From outside,
these forces are not visible — they are internal. Still, to satisfy the engineering requirements
concerning the strength of material an observer has to ‘immerge’ inside the body to find out
where are the structural limits of a body to withstand the applied loading. The subject will be
treated in more detail in chapters devoted to the strength of material.

S, May 21, 2018 62



Here is the procedure for finding the internal forces in detail.

1. FBD: Applied and reaction forces (in agreement with the fixed joint constraint on the left
and the sliding joint constraint on the right) are indicated in the upper part of Fig. S70.

2. The equations of equilibrium written for the whole body are

X: A —Fcosa =0,
y: A —-Fsina+B, =0,
M,: Fasina-BI=0.

Solving the system of equations for unknowns we get
a) . a .
A =Fcosa, Ay=F(1+T}s1na, ByzFTsma.

3a. Equivalence of internal forces to known forces on the left-hand side of the beam

T=A =Fcosa,
N=A = F(l+%jsina,
a) .
M =—AyX=—FX(1+T)sma.

Notice that the moment of forces about the ‘cut’ point is evaluated. No other point can be
chosen for this purpose.

3b. Equivalence of internal forces to the known forces on the right hand-side of the beam
T =Fcosa,

N=Fsina—-B, =Fsina- F%sina = F(l—%)sina,
. . a . aj) .
M =F(@a-x)sina—B (l-x)=F(a-X)sina - FI—(I —X)sma :—FX(1+I—js1na.

Of course, the result has to be same regardless of what the part of the body is analyzed. The
magnitudes of internal forces computed with respect to the left and right parts of the body are
identical, their directions, indicated by vector arrows, are opposite.

Usually, we treat that part of the body, which requires less menial, algebraic and numerical
effort.
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Example — internal forces for a simply supported beam

Given: Dimensions, Q,,Q,,Q;,M,x. a u
Determine: Internal forces of the beam J 1 .
in the I-I cross-section depicted in Fig. ! !
S71.
Rax —2 =L
Rar| o I 03 |Rs (0))
a b f

Fig. S71. Simply supported beam

The equilibrium equations for finding reactions are

X: Ry =0,
y: RAy_Ql_Q2+RBy_Q3:09
M,: —Qd+M -Q,(a+b-c)+Ry(a+b)-Q,(a+b+ f)=0.

= Ry,R,ys Re.

Internal forces at the cross-section I-I, which is located at the X
distance x from the support A, are obtained by summing up + T
forces and moments along one side of the section. See Fig. N
S72. First, take the left part of the beam and write the My =

equivalence equations for establishing normal and shear forces Ry
N,T and the bending moment M, . d

Ray
= RAx 5 Ql
R

o = ~Ry X+ Q(x—d).

Fig. S72. Internal forces in the I-I cross section
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Varying the distance X
from zero to (a+b+ f),
the following diagram for
the distribution of the
shear force T(X) and the

bending moment M ;(X)

as functions of the
longitudinal variable x
can be obtained. See Fig.
S73.

This subject will be more
closely analyzed in
chapters devoted to the
mechanics of deformable
bodies.

RAK Ql‘ ‘Qa ‘RB 0
T(x)
R s X
! 0, T ="
o LTI X
M (x) 03 Rp
“““7 Muyi/nmm
X

L]

Al

Fig. S73. Shear forces and bending moments along the beam

Example — internal forces along a cantilever

beam. See Fig. S74.

Given: Cantilever
forces K, F, .

beam

loaded by

two

Determine: Shear force and bending moment as
functions of longitudinal variable X.

The equilibrium conditions based on the FBD are

0=0
R, —F —F, =0,
M,+FRa+Fl=0.

... there are no forces in this direction,

There are only two reaction forces in this case, i.e.

R, =F +F,=0,
M, =-Fa—F|[.

Fig, S74. Cantilever beam — internal forces
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Areal for 0<x<a.

Considering right-hand forces — counterclockwise

M,(x)=-F¢ —-F,¢, =

=-FR@a-x)-F(l-x)=

=-FRa-Fl+(F+F)x=M, +R,x.
M, Ry

X+&=a = & =a-Xx

x+& =1 = & =1-x

Considering left-hand side forces — clockwise
M,(X)=M, +R,X.

Area ll, for a< x <I, counterclockwise
M,(x)=-F,0-x).

Clockwise

M,X)=M, +Rx-F& =M, +Rx-F(Xx-a)=M, +Fa+ (R, - F)x=

-Fa-F)l+Fa F,

=-Fl+Fx=-F,(1-x)=F,(x-1).

S+a=x =& =x-a.

The results have to be same regardless of the considered e
part being treated. Varying X, we can plot the distribution K
of the shear force T(X)and the bending moment M (X) as R 7 futs
functions of X as shown in Fig. S74. L T ‘J’Q_‘ﬁ o
Example — internal forces due to continuous loading R 42 &J [0, T8
o 3
DT e
Given: Simply supported beam, continuous loading — L. 4
1,9,,0,.,, - See Fig. S75. Lx |
Determine: Reactions and bending moment and shear force T fots
as functions of the longitudinal variable X. ]_ =7 *
. . ) [ i 1 Qux f
By the continuous loading we understand the cumulative .
weight effect of a homogeneous layer of a loose EALH
aggregation of substances as sand, snow, gravel, etc. In Fig. -
S75 there are indicated two layers; the lower one, which is I .

of constant ‘height’ and the upper one, which has a
triangular shape.

Fig. S75. Internal forces in a continuously loaded beam
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In 2D cases the ‘loading density’ is expressed by quantities measured in [N/m].

For purposes of rigid body mechanics, the effect of continuous loading is replaced by an
equivalent resulting force, which acts in the centre of gravity of the graphical representation
of the continuous loading. In our case we have two layers to which two equivalent forces, say
Q,.Q,, are assigned.

Observing FBD reasoning we can write

Q] = qll >
1
Q2=Eqmax| °

First, evaluate the reaction forces. The equations of equilibrium are

X: 0=0,
| 2
M, : —+Q, =1
A Q12 Q23

I 1
MB: —QIE—QZEI-FRAI:O.

—Ryl =0,

Solving them gives the unknown reaction forces

R.(%qu R, '(%qﬂ

Now, assume that we intend to express the internal forces as functions of longitudinal
coordinate, say X. The partial equivalents of equivalent loading within the interval <0, X> are

le :qlx’
1 X 14¢q )
=—X _:_ﬂx .
QZX 2 qmax I 2 I

Observing the acting forces and moments along the interval <0, X> and assigning them to the

sought-after internal forces we get distributions of the normal force, the shear force and the
bending moment as functions of time.

1. Axial force N(x)=0.
1 X
2. Shear force T(x)=R, —q,x _EqmaXT .
: 1, 1 X
3. Bending moment M (X) =R, X —qux —EqmaxT.

Note: The magnitudes of R,,Rj are already known.
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S13. Centre of gravity, centre of mass and static moment of area

The centre of gravity of a body is a point where the resultant force of gravity (weight) forces
of individual body’s elements is located. We could also define the centre of gravity as a point
around which the resultant moment of gravity (weight) forces of all the individual body’s
elements is identically equal to zero.

Another point of view. The centre of gravity is a point in which the overall effect of the
resultant gravity force is the same as the effect of gravitational forces acting on individual
body’s elements. If the body has to be suspended or supported, at a single point, then the so-
called axis of centre of gravity has to pass through the centre of gravity and the suspension or
supporting point.

The centre of mass is a more general term. It is associated only with the body’s geometrical
shape and with the density distribution. The location of the centre of mass is independent of
the surrounding gravitational field. Furthermore, the centre of mass, in contradistinction of the
centre of gravity, does not depend on the fact whether the body ‘lives’ in the inertial or non-
inertial system.

In a pseudo inertial frame of reference — in the vicinity of the Earth’s surface — where the
gravitational field is considered to be uniformly distributed, the centre of mass is practically

identical with that of gravity.

In deep space, where no gravity could be assumed, the term centre of gravity loses its
meaning.

Realizing the subtle differences, we might use both terms interchangeably. In the text,
however, the term centre of mass is preferred.

It should be reminded that matter has different properties — among them weight and mass.

Weight ...G=mg ... mass x gravitational acceleration.
Mass ..m=pV = J.pdV = J.,odxdydz ... density xvolume.
Volume .. V=8I ... for example area xlength.

If the density of a body is considered constant, then the location of the centre of mass could be
computed using mass, weight or volumetric approach. Also, the so called static moments of
area or volume might help.

Location of the centre of gravity of a planar object using the static moments of area

Observing Fig. S76 we define A

dy y [ dxdy
A
)
(o]

S A

Yr

Y

Fig. S76. Centre of mass X dx
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M :_[dx dy ... area,
S
M, = j ydxdy...static moment of area about X axis,
S

M, = J-de dy...static moment of area about Y axis, ..(S13.1)
S

y:M =M, ...static moment of the whole area = static moment of its parts,

X

= the y coordinate of the centre of gravity is y, =

In general, we define the static moments of area about coordinate axes by

M, = j ydm...j de...J. ydS ... mass, volumetric and area static moments about X axis,

M, = dem... I xdV... I XxdS ... mass, volumetric and area static moments about Y axis.

..(S13.2)
1

1 1 1
m X :J’ydm:xT :Ej‘ydm:EMx, my, =dem:> Yr :E[xdm:HMy.

My My

..(S13.3)

So, the determination of the location of the centre of mass is based on the statement that the
static moment of the whole body is equal to the sum of static moment of individual parts. For
the computation, we can use mass, weight, volumetric or area elements. If the gravitational
field is uniform and the density homogeneous, then all the mentioned approaches lead to the
same result.

Example — centre of mass coordinates

y
Given: Quarter of a circle.
Determine: The coordinates of the centre of mass N
for a quarter circle depicted in Fig. S77 AN
q Y g. . N dy
The area of a quarter circle is R r /e
r y
M =7R’/4. -
o
The static moment of the quarter circle about the X X \ dx X
axis is considered as the integral sum of moments of \
its infinitesimal areas defined by dxx dy . So, M= ?TTRE

Fig. S77. Quarter circle — centre of mass
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It is convenient to evaluate the integral by means of polar coordinates. The change of
variables behind the integral operator requires taking the coordinate transformation and the
corresponding Jacobian into account.

So, Xx=rcosa, y=rsina,J =r ... Jacobian.

R z/2 /2 R3 R3 R3
M, = I jrzsina drda = J. ~sina da =——][cosa? =—.
’ r=0a=0 a=0 3 3 3

Since the static moment of the whole body is equal to the sum of static moments of individual
infinitesimal elements, we can express the Y coordinate of the centre of mass from

M, R/3 4R
My = = = =R d e

The object is symmetrical so, the X; coordinate is the same.

Alternatively, the static moment could evaluated from ‘elementary slices’ as

M, = I ydx% = %J‘ y’dx and since y* = R* — x> we can rewrite it into

R 3R 3
M, == [(R2 =) ax =2 Rx =X | = 12p R0
2% 2 3], 23 3

Example — centre of mass coordinates of a blade

Given: The left boundary of the blade is formed by a line defined byy =k x, the right
boundary is a parabola defined by y =k,x*. The upper boundary is formed by a constant line
y=b. For given values k;,k,and for the prescribed value b we get reference dimensions

a=Db/k, and c=,/b/k,, respectively. See Fig. 78. The input values have to be carefully

chosen in such a way that the b value is ‘below’ the intersection of both curves. See Fig. 79.
Determine: The coordinates of the centre of mass.

y
line  parabola

dy

/ yr

X dx

0s

XT

-

o ; ‘
a a 05 1 1.5

- -

Fig. S78. Blade — centre of mass Fig. 79. Solution limits
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In this case, the blade area the can be evaluated as

P Moy < T bk be) o [b¢ be ] bal bal
ox / ¢
o] Joor- oo o S S

And the static moment about the X axis is

a bx/c all 27 Px/¢ 8/ 2y2 2,4 2,3 2,512
y L[ b™x" Dbx 1| b"x bx
M, = dxdy=|| — dx=— —— |dx=— - =
x ,([ .[y y .[[2} 2-([[ c? a“] 2{302 5a*

bx? /a2 0 bx? /a2 0

X

}. So, the y coordinate of the centre of gravity isy,; = MV

2| 32 sa

_1jb’a’ b’
2

Example — volume of sphere

Given: A sphere is depicted in Fig. S80. - =N\
Determine: The volume of a sphere. Everybody knows the e %ann
answer by heart, but do it anyway in order to recal how the /

transformation into spherical coordinates is provided.

The volume of a body R with properly defined limits is

Vv =_[”dxdydz.
Fig. S80. Sphere

Often, it is convenient to solve the tasks using the transformation of coordinates into the polar
coordinate system. See Fig. S81. In this case the

transformation has the form y

X =rsin&%cosa,

r
=rcosa,
Y 9
Z=rsinYsina.
. . . o Q x
When the change of variables behind the integral sign is

carried out, the Jacobian of the transformation has to be

added. In this case J =r*sin 9. /

Fig. S81. Spherical coordinates
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eight-multiple of the volume of one eighth of the sphere in the first quadrant.

To simplify the computation we could evaluate the volume of a sphere as the T
/ AN
/ N\
See Fig. S82. / £ \\

Fig. S82. One eighth

R 7r/271/22 ‘ R 5 z/2 7r/2‘ R3 T ) 4 X
Y :Ijjdxdydz:Srjoajogjor 51n19drdad.9=8£r dr .!da Z|)‘51n.9d.9=8?3[—cosl9]0 =R

Example — just for fun — plot one eighth of sphere in Matlab. See Fig. S&3.

% one_eighth

clear

[X,Y,Z] = sphere;

figure(l)

surf(X,Y,2); axis equal; axis off

szX = size(X);
for i = 1:21

for j = 1:21
if X(i,j) <0, X(i,j) = 0; end
% if Y(i,j) <0, Y(i,j) = 0; end
if 2(i,j) <0, Z(i,j) = 0; end
end
end
figure(2)

surf(X,Y,Z2); axis square; axis equal; xlabel("x"); ylabel("y")

figure(d)

x =[01]; y =1[00]; z=[00];

plot3(x,y,z,"k"); axis square; axis equal;

xlabel ("x"); ylabel("y"); grid; zlabel("z"); axis off
az = 120; el = 30; view(az,el)

hold on

x1 = [0 0]; y1 = [0 1]; z1 = [0 O];
plot3(x1,y1,z1,"k"); hold on

phi = 0:pi/32:pi/2; d = length(phi); r = 1;

x2 = r*sin(phi); y2 = r*cos(phi); z2 = r*zeros(1,d);
plot3(x2,y2,z2,"k"); hold on

plot3(z2,x2,y2,"k"); hold on

plot3(y2,z2,x2,"k"); hold on

x3 = [0 0]; y3 = [0 0]; z3 = [0 17;
plot3(x3,y3,z3,"k"); hold off

Fig. S83.
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Kinematics

Scope
1. Introduction to kinematics
Motion of particles
Rotary and translatory motion of bodies
Acceleration components appearing in a non-inertial frame of reference
Generic motion of bodies in two-dimensional space
References

ISARRANE el N

K1. Introduction to kinematics

Kinematics is a subject of classical mechanics which deals with quantities describing the
motions of particles and bodies, without considering the causes that induce the motion. These
quantities, i.e. displacement, velocity (time rate of displacement) and acceleration (time rate

of velocity), are measured in [m], [m/s] and in [m/s’] respectively. Kinematics tools,

together with those of statics, are necessary instruments for solving problems of dynamics. A
reader is recommended to enlarge his views studying the textbooks listed in References.

K2. Motion of particles
K2.1. Motion along a straight line

In this case, a single spatial variable, say X, suffices for a unique determination of the particle
position. We say that this case has one degree of freedom.

Knowing the location or the displacement measured from a certain origin, as a function of
time

X =X(t), (K_I)

then we define the immediate, or the current velocity as a time rate of displacement, or by
other words, as the first derivative of displacement with respect time

dt’

(K_2)

The instantaneous velocity should be distinguished from the average velocity, say v,,,, which

is obtained as a sum of the velocity v, measured at the time t;, plus the velocity v,

measured at the time t;, and divided by the corresponding time interval At =t_ —t; . So,

_ VetV

v K 3
ave AL (K_3)

Generally, when the term velocity is used, it is understood that the immediate velocity is
meant.
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Acceleration (again, the immediate acceleration or the acceleration right now) is defined as
the first derivative of velocity with respect to time or as the second derivative of displacement
with respect to time.

dv
—y="0 K 4
dt KA
. d’x
=K =—. K5
dt? K3)
Eliminating time variable from (K_4) and (K_5) we get
2
oYV _ 4V (K_6)
dx  2dx -

The motion of a particle moving along a straight line might be classified as follows

K2.1.1. Motion with constant velocity — v = const.
If v=const =c then %:azo.

For initial conditions, t =t, X = X,, we get X=X, +c(t—t,). (K _7)
K2.1.2. Motion with a constant acceleration — a = const .
Let a=const =k ; then for initial conditions t =t,, X = X,, V=V, , we get

v=V, +k(t-t,), for zero initial conditions we get v =at, (K _8a)

X=X, +V,(t=t,)+ %k(t -1, )2 , for zero initial conditions we get X = %at2 . (K 8b)

Example — uniformly accelerating motion

Given: A motion of a particle with a constant acceleration along the straight line is assumed.
Determine: Derive formulas for velocity and acceleration. For given initial conditions plot the
distributions of displacement, velocity and acceleration as functions of time.

The velocity distribution is obtained by integrating the relation % =a=const.

jdv:jadt,

Vo to
v-v,=a(t-t,),
v=v,+a(t-t,). (K_9)

The displacement distribution is obtained by integrating the relation % =V.
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Js'ds = jvo +a(t-t))dt,
)

So

s=§, +v0(t—t0)+%a(t—t0)2. (K_10)

Defining initial conditions by
t0 = 1; t = t0:0.1:2; a =5; vO = 3; sO = 1;

we can write

\%
S

v0 + a*(t-t0);
sO + v .* (t-t0) + 0.5*a*(t-t0)."2;

.unifc:gr.nl.y accelerating !notic;?
Eliminating time variable from Egs.
(K 9) and (K 10) we get the
velocity as a  function of
displacement

Vi-v, =2a(s—5,).

velocity [m/s]

displacement [m]
velocity [m/s]

The same result can be alternatively
obtained by integrating the relation

dv’=2ads.

] 3
1 15 2 1 2

15 5 10 15
time [s] time [s]

gisplaoement [m]
Fig. KO1. Displacements and velocities for uniform acceleration

See the program KO1_uniformly_accelerating_motion and its graphical output Fig. KOI.

% KO1_uniformly_accelerating_motion
% old File name is m_007_rovnomerne zrychleny_pohyb po primce_en.m
% constant acceleration a

clear

t0 = 1; t = t0:0.1:2; % time range

a=>5; vO = 3; sO0 = 1; % given acceleration and initial conditions

v = vO + a*(t-t0); % velocity as a function of time

s =s0 + v .* (t-t0) + 0.5%a*(t-t0).”2; % displacement as a function of time

vl = sqrt(vO™2 + 2*a*(s-s0)); % velocity as a function of displacement

figure(l)

subplot(1,3,1); plot(t,v, "“linewidth®,2);
ylabel("velocity [m/s]", “fontsize®, 16);
xlabel ("time [s]", “fontsize", 16); grid
subplot(1,3,2); plot(t,s, “linewidth",2);
titleCCuniformly accelerating motion®, “fontsize®, 16)
ylabel ("displacement [m]*", "fontsize®, 16);
xlabel ("time [s]", “fontsize®", 16); grid;
subplot(1,3,3); plot(s,vl, “linewidth",2);
ylabel ("velocity [m/s]", "“fontsize®, 16); grid;
xlabel ("displacement [m]", “fontsize®, 16);

print -djpeg -r300 ¥ 007_1_en

% end of m_007_rovnomerne zrychleny_pohyb po primce_en.m
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Example — motion with cubic increase of displacement

Given: x(t) = X, +kt’, where k,X, are constants.
Determine: v(t),a(t),v(a),s(a),s(v).

X = X(t) = X, + kt*, (@)
v =v(t) =3kt?, (b)
a=a(t) = 6kt. ©)

The functional dependence of individual quantities on time is not always explicitly stated.
Often, we simplify the notation by writing X = X(t), etc.

Eliminating the time variable from the last equation, i.e. t = K and substituting it into the

last but one equation we get the formula for the velocity as a function of time in the form

a2

V=—-.
12k
Similarly, we could obtain the displacement as a function of acceleration
3 3
a a

And finally, eliminating the time variable from Eq. (b) t =, /% and substituting it into (a) we

get

v? v’
X=X, +k W:x(ﬁ 7K

Example — the motion with decreasing velocity

Given: a=-a, —kv, a,,k =const, initial velocity V,,.
Determine: The distance X, where the current velocity reaches just the half of initial velocity,
re. v,/2.

a=-a,—kv, (a)
vdv
—=-a, —kv, b
. 0 (b)
Vo /2 v X,
— dv=|dx.

V-[ a, + kv -! X ©

It should be reminded that

dx

= lg(X) ’

X

% = %lg(x) multiplication constant,
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ji=1g(a+x) ... substitution z=a+x, dz=dx,
a-+ X

J' x__ llg(a +X) substitution z =a +bx, bdx=dz.
a+bx b

The integral J.lg(x) dx can be evaluated by the ‘per partes’ rule' according to

ju'v =uv-— Iuv’ . In our case,

u' =1,v=1g(x),
.1
u=x,v =—.
X
and so,

j lg(X)dx = x1g(X) — j xidx = xlg(X) - X.

Check. Knowing that the derivative of a product is (uv)' =u'v+uv’, we have

i(xlg(x) - X)=1xlg(x)+ xl —1=1g(x).
dx X

Similarly,

j lg(a + bx)dx---(po substituci (a + bx = z, bdx = dz, dx = dz/b)--- :%z[lg(z) ~1]=

= %(a + bx)[lg(a +bx) — 1] = %lg(a +bx) — % + xlg(a+bx) —x.

Another case

J‘ X dx by per partes rule Iu’v =uv-— Juv' gives
a+bx

' Also called integration by parts
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X X 1
dx =—lg(a+bx) - |—lg(a+bx)dx =
Jarp &= ple@r b - [ le@+bo

X lifa a B
Blg(a + bX) —B|:(6+ leg(a + bX) —E— X:| =

X a X a X
Elg(a+ bx) _KFJFB)lg(aJF bx) _F_E} =

a a X a X
—Zlg(a+bx)+ = +—==—(1-lg@+bx))+-—-.
lg@rb)+ bz( g(a+bx)) -

Check. The derivative of the result gives the initial term

d(a X a b 1 a 1 1 —a+a+bx X
—| S(-lg@a+bx)+= |=—= +—=—= +—= = .
dx\b b b a+bx b ba+bx b b(a+bx) a+bx

Matlab provides the result differing by an integration constant only
yl = x/(at+b*x)

int_yl = 1/b*x-a/b"2*log(a+b*x)

>> pretty(int_yl)

a log(a + b x)

X a
x/b - - .- :B—b—zlg(a-l—bX).

Another check.

>> diff(int_yl,x)
:l_ ab :a+bx—a: X
b b*(a+bx) b@a+bx) a+bx’

ans = -a/b/(at+b*x)+1/b ...

Now we can come back to our initial task

Integrating Eq. (c)

clear

syms a0 k v vO

yl = v/(a0 + k*v);

int_yl = int(yl,v)

upper = subs(int_yl,v,v0/2)
lower = subs(int_yl,v,v0)
resl = upper - lower;
pretty(resl)

we get the unknown distance in the form

vO a0 log(a0 + 1/2 k vO) a0 log(al0 + k v0)
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Example — a falling particle influenced by air resistance

My

Tvo=0
Given : h,v,, we assume that a =g —kv’. !
The acceleration of a particle falling in the vicinity of the i
Earth’s surface can be approximated by an experimentally s i
obtained relation, namely that the acceleration proportionally !
decreases with respect to the square of immediate velocity. " M
This is actually a dynamic task, treated by a so-called .
phenomenological approach based on results of observation. h

: V...t

See Fig. K02.
Determine: Hit velocity v, and time to hit the ground, i.e. T . a

i v =" T =?

Fig. KO2. A falling particle in the air

The velocity as a function of the distance v =V(S) is obtained by the following procedure

vdv vdv rovdv ¢
— =g-kv*, =ds, =|ds.

ds ° g —kv* !). g —kv’ I
Matlab helps again

int(v/(g-k*v"2),v)=

2
log(-g + kv )

So,

_{lgeg + kv%] s [1g(—g +kv’) _lg-g)

=-s, lg(-=g + kv®) —1g(-g) = 2k
K K 2k} s, lg(-g +kv')—1g(-9) S,

0

_ 2
Ig g+kv _

-2ks,

2
—g_;kv: e—2ks’_ g+ kv2 = _ge—zks, sz =g- ge—zks — g(l—e_st)_

And finally, we get the velocity as a function of the distance

V= %(1 —e’m).

The velocity as a function of time Vv = V(1) is obtained from

—=g-kv’,
dt J
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dv

PR
Vv dV t
!ngdt.

Matlab gives int(1/(g-k*v~2),v)= 1/(g*k)*(1/2)*atanh(k*v/(g*kK)"(1/2)).

So, on the left hand of the equation we have

d arctanh\/klk
\
.[ —k2: : '
g—kv VoK

Example — a particle in gravitational field

Given: R,h,v,,k. The Newton’s gravitational law states that the +
gravitational acceleration at a distance X from the centre of the Earth M
is inversely proportional to the square of that distance

k
a= - (a)

X Vo
Determine: The velocity of a particle being shot upwards, from a .LMU §
location at the height h above the surface, by velocity v,, as a
function of the distance s, which is measured from the surface of the X h
Earth. See Fig. K03. W T
Integrating (a) R
vk

dx x>’ : 0

Fig. K03. A particle in gravitational field

v R+s dx Vz v 1 R+s
V.[vdv:—k J' el {7}% :—k{—ﬂ ,

R+h

v2:v02+2k( L1 j
R+s R+h

So

V= v§+2k( L1 }
R+s R+h

K, May 21, 2018 8



Example — minimization task

Given: h,b,c,,c,.There are two locations A

and B. See Fig. K04. The X axis represents a x'
paved road. One can travel along that road by B L
the velocity c,. Outside of the road there is a X
rough terrain where one can ride more slowly h
by the velocity ¢,<¢,.
A X

b X

Fig. K04. Road field trip

Determine: The location x, where one should leave to road, and then proceed directly, by a
straight line, to the point B in order to minimize the travel time between A and B.

Assuming that both velocities are constant, one can write

, 2 _ 2
t:t1+t2 214_&.
Cl C2

To find the extremum we compute a derivative of the above relation with respect to X

dt_1, 11 206-0CD
dx ¢ ¢, 2,/h’ +(b-x)’
and then equal it to zero

1 1 (b—x)

C_l_gw/hz-i‘(b—X)z

Solving it for X we get two roots with opposite signs. Taking the positive value only we get

=0.

x=hb-—20

c,h
¢ -c

It should be reminded that the above formulas are valid under two limiting conditions,
CZ

b
namely, C, >C, and — > ———.
2 2
h Ve — G

Choosing b =h =2km we might obtain the following table of x values (expressed in [km])
for different combinations of velocities C,,C, in [km/hour] needed to minimize the total travel
time.
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10 20 30 40 50 60 70
20 0.8453 * * * * * *
30 1.2929 0.2111 * * * * *
40 1.4836 0.8453 * * * * *
50 1.5918 1.1271 0.5000 * * * *
cl 60 1.6619 1.2929 0.8453 0.2111 * * *
70 1.7113 1.4037 1.0513 0.6074 * * *
80 1.7480 1.4836 1.1910 0.8453 0.3987 * *
90 1.7764 1.5442 1.2929 1.0077 0.6637 0.2111 *
100 1.7990 1.5918 1.3710 1.1271 0.8453 0.5000 0.0396

c2

10 20 30 40 50 60 70

20 0.2732 * * * * * *

30 0.2552 0.1412 * * * * *

40 0.2436 0.1366 * * * * *

50 0.2360 0.1317 0.0933 * * * *

cl 60 0.2305 0.1276 0.0911 0.0706 * * *

70 0.2265 0.1244 0.0888 0.0696 * * *

80 0.2234 0.1218 0.0868 0.0683 0.0562 * *

90 0.2210 0.1197 0.0851 0.0670 0.0555 0.0471 *
100 0.2190 0.1180 0.0836 0.0658 0.0546 0.0467 0.0404

See the program K02_time_to_destination.

%K02_time_to destination
clear

z = zeros(10,10);
t = zeros(10,10);
cl_to_c2 = zeros(10,10);

cl = 10:10:100;

b_to _h(i,j) = c2(i)/sgrt(cl(i)”2 - c2(J)"2);
% distance X
z(i,J)= b - c2@g)*h/sqrt(cl(i)”2 - c2(g)"2);
% compute time to destination
t(i,3) = z(i,§)/c1(@) + sqre(h"2 + (b - z(i,§))"2)/c2();

end
end
sz_z = size(z2)
sz_t = size(t)

% take only positive members of z
for 1=1:10
for j=1:10
if z(i,j)<0, z(i,j)=0; end;
it t©(i,j)<0, t(i,j)=0; end;
end
end

zZ,

t;
b_to_h
cl_to_c2

01040404040
(O A A i A A A A
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b=2; h=2; ccl = 20; cc2 = 10;

bb_to_hh = cc2/sqrt(ccl™2 - cc2n2);
XX = b - cc2*h/sgrt(ccl”™2 - cc2"2)
disp([ccl cc2])

z

figure(l);

map=[0.8 0.8 0.8];

colormap(map);

subplot(1,2,1); surf(cl,c2,z); ; grid; view(30,30)
subplot(1,2,2); surf(cl,c2,t);
view(30,30);xlabel("velocity c2%);
ylabel("velocity cl1"); title("distance x"); grid
print -djpeg -r300 fig_k4 cil

% end of k4_c2

The contribution of high velocities is small. This can also be documented on a trivial example.
Consider a distance composed of two identical parts, say S, and assume that a car travels the
first part by velocity v, while the second part by velocity v,. The time for the first part is

t, =s/v,. For the second part it is t, =S/v,. The overall time to destination is t=t +t,.
Then, the corresponding average velocity is

v 2s 2s 2wy,
Mt +t,  S/V,+S/V, V4V,

So, for v, =100 km/h and v, =1 km/h we get 1.9802 km/h.

K2.2. Motion along a curve

In Fig. KOS5 the particle L (sometimes we say
the point L) is constrained to the spatial curve
k.. We say that the particle follows the
curvek, with the velocity V. Presently, it has
the acceleration a. The velocity vector lies in
the tangent line, the acceleration vector is
confined to the plane formed by tangent and
normal lines. The curve k; 1is called a
trajectory of the particle L. The tangent line t,
the normal line n and the binormal
lineb determine  the  immediate  basic
kinematic orientation of the particle L.

Fig. KO5. Triple of normals

The motion of the particle is determined by its radius vector whose dependence on time is
known.

r=r({. (K 11)
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The velocity and acceleration are

g & (K_12,13)
dt dt B

The motion of a particle is then described either in the vector notation by

F=xi+yj+zk (K_14)

or in the scalar notation (scalar equations actually represents parametrical equations of the
trajectory) by

x=x(), y=yt), z=z(1). (K_15)
Arc length, measured from the initial position of the particle at t =t , is
t

s:jq/xz+y2+22dt. (K_16)

ty

Velocity

v, =X(), v, =y®), v,=2(1) ... velocity components, (K_17)
V= |\7| =V + Vj +V ... magnitude of velocity, speed, (K 18a)
V=V,i +V,]+Vvk ... velocity vector. (K_18b)
Acceleration

a, =V,(t), a,=v,(1), a,=V,(t) ...acceleration components, (K 19)
a= |§| = /& +a; +a, .. magnitude of acceleration, (K_20)
d=aj + ay] + azlz ... acceleration vector. (K 21)

Acceleration lies in the osculating plane being formed by normal and tangent lines. It could
also be decomposed into normal and tangent components. For magnitudes we write

a=.a’ +a;,

where
2
a =§= vav = a) ... tangential acceleration, (K 22)
ds  2ds
2
a, = v ... normal or centripetal acceleration, (K _23)
P
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P

We could also write

. dv: v.dv,
aX = VX =X= = ,
2dx dx
dv? v, dv
ay = Vy = y = _y = y y
2dy dy
o, dv; vy,
aZ = VZ =/= =
2dz dz

Example — motion along an ellipse

... curvature radius.

(K_25)

(K_26)

(K _27)

(K _24)

Given: The motion is expressed by X = X, coswt,y = y,sinwt , where @ is so-called angular

frequency.

Determine: Velocity and acceleration components.

X=—-X,wsinaot, y=yYy,wcosat,

X=-X,w cosat, y=-y,@ sinat.

y, ydot, y2dot

Edu UL 2013 KI 02 01

— clisplacarﬁent‘l
welocity
------- acceleration

-3 -2 -1 1 2 3 4

0
%, xdot, x2dot

Fig. K06. Displacement, velocity and acceleration

See the program KO3 _motion of a particle along an ellipse and Fig. K06.

% KO3 _motion of a particle along an ellipse
% original file name is Edu_UL_2013 KI_02 01

clear

omt = 0:pi/36:2*pi;

omega = 1.5;

X0 = 2; y0 = 1;

X = x0*cos(omt); y = yO*sin(omt);

xdot = -x0*omega*sin(omt); ydot = yO*omega*cos(omt);

x2dot = -x0*omega”2*cos(omt); y2dot =
figure(l)

plot(x,y, "k-", xdot,ydot, "k:",

-yO*omega”2*sin(omt) ;

x2dot,y2dot, "k-.",

title("Edu UL 2013 KI 02 01", "fontsize", 16)
legend(“displacement®, "velocity®, "acceleration®, "fontsize", 16)
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xlabel ("x, xdot, x2dot", "fontsize", 16);
ylabel("y, ydot, y2dot®, “fontsize®, 16);
print -djpeg -r300 fig_KI_02_01

Example — particle motion composed of rotation and translation

Given: The rod, see Fig. K07, rotates at a
constant angular velocity @. Along the Y
rod, a sleeve — simplified as a particle M —
slides by a constant velocity C.

Determine: The particle’s displacement,
velocity and acceleration of the point M as
functions of time. At the beginning the rod

was coincident with X axis, i.e. ¢ =0,

and the initial location of M was defined
by the distance | from the origin O.

o X

Fig KO7. The sleeve on a rotating rod
The coordinates of the point M are

X=(0+&)cosp, y=(+&)sing.

Due to our assumptions concerning constant velocities we get
E=ct, p=ot.

So

X=(l+ct)cosmt, y=(l+ct)sinat.

Velocity
dx | . .
vV, =—=X=Ccosat + (| + ct)w(—sin wt) = ccoswt — (| + ct)sinwt ,
dt
dy . ) )
v, = &t =y =_csinot+ (I + ct)@wcoswt = csinwt + o(l + ct)coswt .
Acceleration
dv, . o . . .
a, = dtx =V, = X = —Cwsin ot — cwsin ot — @ (| + ct)cos wt = —2cwsin wt — @’ (1 + ct) cos wt,
dvy . . 2 1 2 1
a, = i V, =y =Cwcosat +Cocosot — o (I + ct)sinaot = 2cocos wt — »” (I + ct)sinwt .
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Fig, K08. Displacements, velocities and accelerations

See the program KO3 _rotation and translation.m and Fig. KOS.

% KO3_rotation and translation

% original file name is Edu_UL_2013_KI_02_02
clear

1 =1; om=2; c =3;

t = 0:pi/64:pi;

len = length(t);

t_ones = ones(l,len);

x = (I*t_ones + c*t).*cos(om*t);

y = (I*t_ones + c*t)._*sin(om*t);

vx = c*cos(om*t) - om*(I*t_ones + c*t).*sin(om*t);
vy = c*sin(om*t) + om*(1*t_ones + c*t).*cos(om*t);
ax = -2*c*om*sin(om*t) - om"2*(1*t_ones + c*t).*cos(om*t);
ay = 2*c*om*cos(om*t) - om"2*(1*t_ones + c*t).*sin(om*t);

figure(l)

plot(x,y, "k-", vx,vy,"k:", ax,ay, "k-.", “linewidth", 2);
grid; axis("equal™)

legend(“disp®, “vel®, "acc",3)

xlabel ("x, vx, ax", “fontsize®", 16)

ylabel("y, vy, ay", "fontsize®, 16)

title("KIl 02 027)

print -djpeg -r300 fig_KI_02_02
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K3. Rotary and translatory motion of bodies

K3.1. Rotary motion of a body

K3.1.1. Scalar approach

The body is subjected to a rotary motion if one of its material lines (such a line is called the
axis of rotation or the rotation axis) always stays in rest. The trajectories of all the body’s

particles are circles lying in planes perpendicular to the axis of rotation and having their
centers at the axis of rotation.

b) c)

Fig. K09. Rotation

When solving planar problems, the axis of rotation appears to be a single point viewed from
above. The rotary motion can be identified by an angle, say ¢, between the radius vector of

an arbitrary point and a line being firmly connected to the rigid frame. See Fig. K09. The
angle of rotation is usually expressed as a function of time

p=p). (K_28)
Then, the angular velocity is defined as the time rate of the rotation angle.
do
olt)=—. K 29
) it (K_29)
And the angular acceleration is the time rate of angular velocity.

=d_a):d2(0:d(a)2):a)da).

t
O T 2dp  dp

(K _30)

The angle ¢ is usually measured in radians [1]. So, the angular velocity and acceleration are
measured in [radians/s] and [radians/s’]. Since the radian, as the measure of an angular
distance, is a dimensionless value, the above units are frequently expressed by [l/s] and

[1 /s’ ] , respectively.
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Rotary ‘speed’ is often measured by counting the number of revolutions per minute, known
under the abbreviation R.P.M. Realizing that one revolution equals the angle of 27 and that
there are 60 seconds into one minute, one can simply deduce that

w [1/s]= nn/30[revolutions per minute], (K 31)

where we denoted the quantity revolutions per minute by a symbol n .
K3.1.2. Vector approach is more general

The angular velocity and angular acceleration are actually vectors, denoted @,¢ , whose lines
of actions are identical with the axis of rotation, say 0, defined by angles (a, ,8,7/). See Fig.
K10. One can write

d)':a3x+a3y+a3zzwxf+wy]+wkk, ... (K 32a)
E=8 +8,+5 =¢cl+e,]+ek. ... (K_32b)
Z
o £
Denoting unit vectors by 1, J,K we can express the — [k v
velocity of a generic point, say L, by the vector product o
a\ |/
P7 K | G
L k
V=0oxT=o, 0, o,. (K _33) g T
X vy oz 0

}F

~1

The acceleration of the point L is obtained by the /

derivative of the above relation with respect to time

Fig. K10. Vectors of velocities and accelerations

g d@xF) _dé L o A ey (K_34)
dt dt dt 3 a,

The acceleration components are known as

and (K _35)

the tangent acceleration d =&xrT
a V=0OXxXoxT . (K _36)

the normal, or centripetal, acceleration

Decomposing the relation d=¢gxF+@xV into Cartesian components we get

K
a,=¢2-&YyY+oN, -0V, (K 37a)
a, =&X—&Z+ 0N, —0,V,, (K 37b)
a, =&Y —EX+taVN, —0)V,. (K 37¢)
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It is of interest to analyze a special case, i.e. the motion of the point, say L, along a circle with
the radius r.

The immediate Cartesian coordinates of the point L can be expressed by
X=rcos@,y=rsing, (K 38)

where the angle ¢, indicating the immediate angular position of the point L, is a function of
time and is measured from the X axis counterclockwise.

Generally, the angle ¢ depends on the angular velocity and the angular velocity depends on
time, namely ¢ = f(®), w=g(t). To express the Cartesian components of velocity and

acceleration of the point L as functions of time, we have to evaluate the first and second
derivatives of Eq. (K _38). Thus

V,=—Tosing=-oYy, (K 38a)

V, =+rocosp = +wX. (K _39b)

a, =—Tw’ cosp—resing=—-w’x—¢ey, (K_40a)
2 . 2

a,=—To sing+recosp=-w'y+eX. (K _40Db)

The above relations are simplified if @ = const, because it that case £ =0.

Often, the analysis is provided using not Cartesian but polar components, that are defined in
tangent (t) and normal (n) directions. For magnitudes vector quantities V,a we could write

S=ro ... arc displacement measured along the circle, (K 41)
V=ro ... velocity which has always the tangential direction, (K 42)
a=re ... tangential component of acceleration, (K _43)
a =ro’ ... normal, or centripetal, component of acceleration, (K 44)
a=ryo'+&”. ... magnitude of resulting acceleration d =43, + 4, . (K_45)
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K3.2. Harmonic motion

The term harmonic motion is frequently used in mechanics. Imagine that you project a radius
vector I, rotating counterclockwise by a constant angular velocity @, into the vertical
coordinate axis and then subsequently register the obtained values as a function of time.

See Fig. K11, the program K04_harmonic_motionand Fig. K12.

p
w
L
r Ly
wt
%o
Fig. K11. Rotating radius Fig. K12. Harmonic motion

% KO4_harmonic_motion

clear; omegal = 2; omega2 = 6; t = O:pi/l124:pi; t0 = pi/15;

yl = sin(omegal*t + t0); y2 = sin(omega2*t);

figure(l)

plot(t,yl, "linewidth®, 2); print -djpeg -r300 fig_harmonic_motion
figure(2)

plot(yl,y2, “linewidth", 2); axis([-1-1 1.1 -1.1 1.1])

print -djpeg -r300 fig_lissajouse _motion

The harmonic function is most frequently described by a sine or cosine functions of time. In
this case, we can write

X=r sin(a)t + goo), (K 46)

where we define

r amplitude of motion,

X immediate displacement,

0] angular frequency,

t independent variable, usually time,
®, initial angle, phase.
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Note: Composing harmonic motions

occurring in two perpendicular directions |
we get so-called Lissajouse curves. An o8
example for motions, whose frequencies o8
are in the ratio 1:2, we get Fig. K13. o4

Fig. K13. Lissajouse curve
K3.3. Translatory motion of a body

The body is subjected to a translatory motion if at least two of its nonparallel lines do not
change their angles during the rotation. In that case, all the particles of the body move along
identical curves. At a given moment the velocities and accelerations of all the body’s particles
are the same. Of course, in another moment they are different with respect to the previous
one.

When analyzing any translatory motion of a body, regardless of considering the motion along
a line, or along a planar, or spatial, curves, it suffices to study the motion of a single particle.

Example — translatory motion
Given: The body is attached to the ground by /T/_\k,-
two parallelogram links. See Fig. Kl14. The
members 2 and 4, having the length r, are A

. . k;; B kg
accelerating  with a  constant  angular /v_\ 3 /V—\

acceleratione =Kk .

Determine: The trajectory, velocity and (p/(\z \4
acceleration of the point T. 05)< 1

Fig. K14. Translatory motion

Since the body 3 is subjected to a translatory motion, all the particles follow the same
trajectory, i.e. the same circles, as the particle A.

Assuming the initial conditions as t =0, ¢ =0, = 0, the velocity of the particle A is the same
as that of other particles of that body. So, the magnitudes of velocities are

V=V; =V, =ro=rkt,
and consequently

w=ct=kt.
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Magnitudes of normal components of all the points is @, =a  =a,, = ro” = r(kt)z.

Magnitudes of tangential components of all the points is @, =a,; =a,, =re=rk.

Magnitudes of the resulting accelerations is a = \/ a’+a’ = rk\/ 1+k2t* .

Of course, the directions of all the vectors vary, as they travel along the circles.

K4. Acceleration of a particle in a non-inertial frame of reference

r

Fig. K15. Kinematics of relative motions

Consider an inertial coordinate system (X,Y) labeled 1 in Fig. K15. In this coordinate system,
there is another system(¢£,77) , labeled 2. The position of the origin O of the system (&,77) is
determined by the vector T, . The origin O has the velocity V,. The system (&,7) moves
with respect to the system (X,Y) and also rotates around the origin O with the angular

velocity @ and with the angular acceleration ¢ . The point A, lying in the coordinate system
(&,nm), moves as well. Its position with respect to the coordinate system(X,Y) is defined by

the vector I, while the position with respect to the system (&,7) is defined by the vector .
The coordinate system (&,7) is obviously non-inertial.

The time derivative of the angular velocity @, i.e. the angular acceleration ¢ , is independent
of the choice of the coordinate system. So

{d“’zl} :{d“’ﬂ} = Z,. (K_47)
dt | [ dt |,

For the positional vectors we can write

F=Fy+F. (K_48)

The time derivative of a positional vector I is defined as a vector having the
direction of the trajectory of the motion of a point the positional vector is
pointing to. See Fig. K16. In the limit, we have

Fig. K16. Time derivative of a vector
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ar_dr_g. (K_49)

lim—=
At—0 At dt

So, the time derivative of a vector is the velocity of its end point. The velocity of a point A,
with respect to the coordinate system 1, is given by the time derivative of the positional vector
I in that system, i.e. (X,Y), which has to be equal to the sum of time derivatives of vectors

I, a ' in the same system, thus

_ dr dr, dr’ . . .
Vy=|—| =|—2]| +|—| = ... the first term is the velocity of the point O
dt |, dt |, [dt ]
_ r S : o
=V, + [—t} + @, xT' = ... the second term can be expressed as a time derivative
2
Rt r o
=Vy + @, xr’+{a} =Vy + @y, xT'+V =
Veier R 2 . reordering the terms we get
v,
= _’carrier + Vre]ative = qcarrier vr . (K_S O)

Let’s define

i

_ — " . . _ r . .
=V, + @, xT' — carrier velocity and V = [E} — relative velocity.
2

Vcarrier

The acceleration of a point A can be derived similarly. We start with
V, =Vy +V, + @, xT". (K 51)
Observing the rules for derivatives of products we arrive at

~ dv, dv, dv da,, . dr’
a, = =|—=1 + L +| 2| X'+ @, x|—| =
dt |, dt |, dt |, dt |, dt |,

%/_/

2 v g
ag dv ~ . Eq XTI - dr’ . .,
{‘T;L'Fwﬂxvr Wy X o 2Jra)2|><|’

- dv, oL r’ L,
:a.o+ d +a)21XVr+821XI’ +a)21>< d_ +a)21><r =
t 2 t 2

— —
r VT

=8, + 8, + @y, XV, + &y, X'+ @y, x (V. + @y, xT'). (K_52)

So, the acceleration of the point A is

= _ = - - —y - - —y — —
d, =ag+ a, +&,xr +a)21x(a)21xr)+2a)21xvr. (K 53)
T
relative tangential cenripetal Coriolis

In conclusion, we have derived the acceleration components of a point, subjected to a motion
in the non-inertial coordinate system. Evidently, the centrifugal acceleration — incorrectly
mentioned in certain textbooks — does not exist. See [1], [3], [5].
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K5. Generic motion of bodies in two-dimensional space

In this case, the trajectories, velocities, and accelerations of individual points of the moving
body are generally different. However, all the points, lying in lines perpendicular to the plane
in which the body lives, have identical trajectories, velocities and acceleration. This is our 2D
assumption.

The procedure for analyzing this type of body motion consists of the decomposition of the
motion into two parts, named carrier and relative motions, respectively.

Two methods, called the basic decomposition and the Coriolis decompositions, might
alternatively be used.

K5.1. Basic decomposition — the carrier motion is of translatory nature

We start by choosing a suitable reference point — usually, it is a point whose kinematic
properties are known. This point becomes an origin of a new coordinate system — we call it a
carrier system. Then we make a thought experiment assuming that overall motion of the body
is composed of translatory motion of the carrier system with respect to the fixed frame of
reference plus the relative rotary motion with respect to the carrier system.

The basic frame (Fig. K17) is defined by axes X,y . The carrier frame &,7 has its origin at the
point Q. Then, the velocity of the point L is

L: V., =V,+V,,

where its components are

Vo, carrier velocity, which is same as the velocity of the reference point Q,
because we assume that the body is temporarily subjected to a translatory
motion only. It is assumed that this velocity is known,

Lo relative velocity of L with respect to the reference point Q due to the rotary

<

nature of this part of motion.

Similarly for the acceleration of the point L.

n —
L V ag
L: & =4a,+4a,. VL > L
(o)
= L ar
Via aro
/1 7Lo
Vo 0= o,
Q e=¢
S ¢
o
ko
X

0
Fig. K17. Decomposition of motions
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Now, the basic decomposition in more detail.

The location of an arbitrary point L of a body, subjected to a general motion in plane, see Fig.
K18, can be described by

r=r,+r,, (K 54)
where

r ... location of L with respect to the basic frame (X, y),

I, ...location of L with respect to the carrier frame (5,77),

r, ...location of the reference point Q with respect to the basic frame.

The velocity of the point L is

V, =V, +V,, (K _55)
where
— — — . . — n -
Vi, =0xT, ...relative velocity, Vi ag L
v, ... carrier velocity. Vo
8 L ar,
The acceleration of the point L is Vio daro
. e
a, =a,,+d,, (K_56) Vo \a) —
E=§
L. : Q !
where &, is the carrier component A &
ag
and the relative acceleration &, could be e ko
decomposed into tangential and normal 0 %
components as
Fig. K18. Basic decomposition
8g=EXTM,+oOxV, . (K 57)
5,_/ 5,_/
a, a,

The overall angular velocity and overall angular acceleration are identical with the relative
angular velocity and with the relative angular acceleration

D=0, E=E&, - (K _58)

rel 2
The magnitude of the relative velocity is

(K_59)

Vig =le®,

where the magnitudes of above vectors are V,, :| als ha = |fm|. (K 60)
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Summary for the basic decomposition. See Fig. K19.

The carrier motion is of translatory nature, so all the points of the considered body have the
same velocity and acceleration as the reference point.

The relative motion is of rotary nature. The whole body rotates around the reference point.

Qf

ko

resulting motion = carrier (translatory) + relative (rotation)
Fig. K19. Basic decomposition
Example — crankshaft mechanism — basic decomposition

Given: The crank mechanism.
Determine: The velocity and the acceleration of the point B belonging to the connecting rod.
Use the basic decomposition depicted in Fig. K20.

The motion (3:1) of the connecting rod (3) with respect to the frame (1) is mentally
decomposed into the relative motion (3:5) of the rod (3) with respect to the reference frame
(5) plus the translatory motion (5:1) of the reference frame (5) with respect to the basic
frame(1). Sometimes, we simply write 31=35+51.

3:1 = 3:5 + 5:1
A 5 5
~ — ’; AY
F_;?/Q \\\ - B 3 A + ( ) A \\ \\
g B 1 B DN

Fig. K20. Basic decomposition for a crankshaft mechanism

The velocity of the point B is

)

B: = Vs + Vs,

[

The arrow means that only the direction is known, the underlining means that both direction
and magnitude is known.
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So,

e the direction of V;, is known, its magnitude is unknown,
e the direction of V., is known, its magnitude is unknown,
o the velocity V, =V, is completely known, since the relative motion is of translatory

nature.

The acceleration of the point B is

B: i‘, =855 + 8,
where
a,, .. the direction is known,
a,s .. the normal component is known completely, since
v
a.,,=AB®’,kde o=,
AB
.. while for the tangent component a,,; only the direction is known,
a,,  ...completely known since a,, =4, .

So, if a graphic approach were used, the velocity and acceleration could be found easily.
K5.2. Coriolis decomposition — the carrier motion is of rotary nature

Again, we start by choosing a suitable reference point — usually it is a point whose kinematic
properties are known. This point becomes an origin of a new coordinate system — we call it
the carrier system. Then we make a thought experiment assuming that overall motion of the
body is composed of rotary motion of the carrier system with respect to the fixed frame plus
the relative motion of the body with respect to the carrier system.

Example- crankshaft mechanism — Coriolis decomposition

Given: The crank mechanism

Determine: The velocity and the acceleration of the point B belonging to the connecting rod.
Use the Coriolis decomposition depicted in Fig. K21.

The motion (3:1) of the connecting rod (3) with respect to the frame (1) is mentally
decomposed into the relative motion (3:2) of the rod (3) with respect to the crank (2) plus the
rotary motion (2:1) of the crank (2) with respect to the basic frame (1). Sometimes, we simply
write 31=32+21.

Fig. K21. Coriolis decomposition
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The velocity of B is

B: V;, =V,, +V,, , where the magnitude v,, = OB w,, is known.

The acceleration of B is

2 2
o _ _ ) Vv Y
,, =8y, + 8, +3a., ,where the magnitudes are a,,, =—*, a,, =—=2- and a,, = 2@,,Vs, -
T n o BA BO
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Dynamics

Scope
1. Introduction to dynamics
Dynamics of a particle subjected to a straight line motion
Dynamics of a particle subjected to a motion along a curve
Dynamics of a particle subjected to a circular motion
Newton’s and d’Alembert’s formulations of equations of motion
Vibrations
Moments of inertia and deviatoric moments
Dynamics of rigid bodies
0 Translatory motion
0 Rotary motion
= Planar rotary motion
= Spatial rotary motion about an axis
0 Planar general motion
0 Summary to dynamics of rigid bodies
9. References

e A o

D1. Introduction to dynamics

The text is devoted to Newtonian mechanics that is valid for small velocities — small with
respect to the speed of light. Under these conditions, the mass of a moving body is
independent of its speed. In the theory of relativity, attributed to Albert Einstein, it is not so. It
is assumed that the current mass m depends on the rest mass m, by the formula

m,

i (D1_1)

1=/
where v is the current velocity of a moving body and c¢ is the speed of light.

It is known that the velocity of the Earth, when it moves along its elliptic orbit, is
approximately 30 km/s. In this particular case, the initial rest mass of 1 kg will change to
1.000000005000000 kg. Thus, for most of the earthbound tasks, we could safely accept the
statement that the mass is of a body is independent of its velocity.

D1.1. Newtonian mechanics

Dynamics is focused on the determination of the motion of bodies with respect to forces and
moments that are applied to them. Generally, the problems in dynamics lead to ordinary
differential solutions requiring solving them in order to find displacements, velocities, and
accelerations as functions of time. Consequently, the forces and moments are also functions of
time. Recall, that in statics the problems led to solving the system of algebraic equations.
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Newton described force as the ability to cause a body to accelerate. His three laws can be
summarized as follows.

First law: If there is no net force on a body, then its velocity is constant. The body is either in
rest (if its velocity is equal to zero), or it moves at constant speed in a straight line'.

Second law: The time rate of momentum® , i.e, p=mv, of a particle is equal to the acting
force F,ie., dp/dr=F.

Third law: When a first body exerts a force ]5l on a second body, the second body

simultaneously exerts a force F, = —F, on the first body. This means that forces F, and F, are
equal in magnitudes and opposite in directions.

In this simple formulation, Newton's laws of motion are valid only in inertial frames of
reference. That is in frames that are not subjected to acceleration or by other words in frames

that are either stationary or move (without rotation) with a constant velocity.

Newton’s second law, written for a particle of mass m, states that the time rate of momentum
is proportional to the external force

b _dmy) _p_ dms v (D1_2)
dt dr dt - de

If the mass of the particle does not change in time, i.e. m = konst, then the most frequently
used formulation of Newton’s law is

Lm=F=mi=F. (D1 3)

Another available formulation

d(mv) = Fdt, (D1 _4)
stating that the time rate of momentum is equal to the impulse of external force, is convenient
for cases when the mass quantity depends on time. A starting rocket, consuming its fuel at
high rates, is a good example.

Example — time rate of momentum equals the pulse of external force

Given: A loose freight car of mass m has initial velocity v,. Assume that the overall
resistance effects are approximated by a force which is mg /200 and acts against the motion.
Determine: Time interval after which the car stops.

'This law was initially deduced by Galileo. Before him, in agreement with Aristotelian mechanics, it was firmly
believed that objects that are not being pushed or pulled have a tendency to stop.
? By momentum, sometimes linear momentum, is understood the product of mass and velocity.
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For a freight car considered as the particle in the straight line motion, we can write
mdvy = Pdt

or
t

my, —my, = J.P(t)dt ,
tZ

where

.. v.,v, are velocities at the end and at the beginning of the observed phenomenon,
... t,,t, are times corresponding to the end and to the beginning of time interval.

Considering a force whose time distribution is constant we have

mv, —mv, = [ P(t)dt = P(5, —t,)= PAt, (a)
where
At =(t,—1,) ... is the corresponding time interval.

Using Eq. (a) and assuming that the resistance force is constant we get

—my :—EAZ = At=200vz.
200

’ g

Discussion.
In this simplified case the time to stop is independent of the mass of the freight car. What are
the limits of the accepted simplification?

D1.2. Important definitions to remember

Force — the cause of the change of motion.
Matter commonly exists in four states (or phases), i.e. solid, liquid, gas, and plasma. It has
many properties as volume, density, color, temperature, mass and also the weight.
Mass — the measure of the unwillingness of matter to change its state of motion. It is
independent of gravitational field. It is measured in [kg].
Weight — one of the matter properties. It depends on the gravitational field. It is
measured in [N].

D1.3. SI metric system
of units is the standard that is commonly used in this textbook. In the SI system the quantities

as mass, length and time are considered as basic mechanical units, in contradistinction to the
old technical system of units in which force, length and time were taken as the basic ones.
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SI metric system of units Old technical system of units

Basic units

mass [kg] ... kilogram force [kp] ... kilopond
length [m] ... meter length [m] ... meter
time [s] ... second time [s] ... second

Derived units

force [N]=[kegm/s’] ... newton mass [kps*/m] ... has no name

D1.4. Work, energy, power and corresponding units
D1.4.1. Work
Work = force x displacement. This simple statement is valid only if both vector components

are constant and have the same line of action. Otherwise, an incremental approach has to be
used.

The increment of work is dL = F - ds = F'ds cos¢@, where ¢ is the angle between F and 5 .

Example — increment of work

Given: A perfectly flexible rope of the length / hangs vertically in the gravitational field. The
‘longitudinal density’, that is the mass of one meter of the rope, is ¥ [kg/m].

Determine: The work needed to wind up the full length of the rope at its upper end.

The mass of the rope element dx, whose distance from the its upper end is x, is dm = ydx.
The elementary work needed for its raising by x is

dL = xgdm = y g xdx, where g is gravitational acceleration.

The cumulative effort for the task is obtained by integration

I}
L= ygjxdx = %yglz. Dimensional check: k—ggzm2 = kgr:—zm =Nm=J. Stimmt.
0

m S

Note: The weight of the rope of the length / is y g/ . The work needed to raise the whole rope

by the distance /, without the winding, is ¥ g/°. By the above reasoning, we came to one half

of it, only. Why? This is due to the fact that by subsequent winding a shorter and shorter
length of the rope is being raised.
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D1.4.2. Energy

SI system Old technical system

J=Nm, Joule = Newton x meter kpm, kp x meter
1J=0,102 kpm lkpm =9,81J

Recall also 1kpm = 2,343 cal, lkcal =427 kpm
D1.4.3. Power

is the rate of work, i.e. work exerted per unit of time. It is measured in SI watts [W] or in old-
fashioned horsepowers [hp]. One has to distinguish the metric horsepower, denoted
[hp =hp,,..;.] and the British or imperial horsepower [hp,, ... ], respectively.

W=J/s lhp=1hp, ... =75kpm/s
1kW = 0,736 hp 1hp i =735,5W, 1hp, i = 745,7TW ... )’
Ws=]

1kWh =3,6x10°J =367 000 kpm

D1.4.4. Potential and kinetic energies
Generally, we say that the energy is an ability to work.

If the body of mass m, in the Earth gravitational field, is raised (or lifted) to the height 4,
then the work required (or the work done) is

W=E,=mgh.
This way, the body being raised gains the potential energy £, .

If the body is released (with zero initial velocity) from the elevated position, defined by the
height £, it hits the initial position (ground) by velocity v, which might be determined from
the following equation of motion

ma =mg ,

dv?

2dv

v h

.[dvz = 2g.[dx ,

0 0

2

v2:2gh:>h=v—.
2g

? For a detailed explanation see https://en.wikipedia.org/wiki/Horsepower#British_horsepower.
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Work exerted (gained) by the falling body from the height 4 is also mgh , so

W =mgh .
2

Substituting s = ;— into the previous equation we get the kinetic energy in the form
g

E, =mgh :%mvz.

The sum of potential and kinetic energy, at any moment, is constant.

For the rate of kinetic energy (for a mass particle), using the vector notation, we can write

dv
mE = ZFZ ,

m%dr =Y F. dr,but dr=vdt, so

m VdV:ZE dr,
mIvdv:JZFi dr,

%m(v2 —V§)= w,
E ~E,=W.

[The change of kinetic energy is equal to the work done by exerting (applied) forces|

Since the work is defined as powerx time, we might use the formula W = PA¢*. Similarly, the
power could be defined as the time rate of energy, so

dE,
dt

dE, = Pdt = P,

[The time rate of kinetic energy is equal to the power of applied forces|

Example — difference of kinetic energies equals the work done by exerting forces

Given: A particle in the gravitational field of the Earth, having mass m , is released with zero
initial velocity from the height /. After a free fall of the vertical distance H the particle hits

a non-linear spring which resists the consequent motion of the particle by a force S =4k,
where & is the spring stiffness and y is the immediate deflection measured downwards from
the undeformed length of the spring. It is assumed that the spring is massless.

Determine: The maximum deflection of the spring, say y,_. , due to the motion of the particle

together with the spring.

* The formula is valid the power P is constant during the time interval Af .
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The difference of the final kinetic energy (which, at the moment of the maximum spring
deflection, is zero) and the initial kinetic energy (which is zero due to the zero initial velocity
as well) is equal to the work exerted by external forces, i.e. by work done by the spring force
and by the force of gravity, so

H Ay nax

Ymax
0—0: Imgdy_ J‘kydea Ozmg(H-i_ymax)_%kyilaX :>ymax'
0 0

Example — difference of kinetic energies equals the work of exerting forces

Given: To a crane truck is attached a vertically positioned rope of — O .
the length / that could freely swing. At the end of the rope there is
a particle of mass m . Assume, that the truck suddenly stops.
Determine: After the truck stops, find the maximum horizontal

distance x to which the load is displaced. /
[—h

From Fig. DO1 one sees the geometrical relation between x and 4
coordinates.

x=+=(-n) =n21-h) h

Fig. DO1. Crane truck suddenly stops

X

After the crane truck is stopped the initial kinetic energy of the particle Emv2 is transferred

into its potential energy mgh . So,

2
lmv2 =mgh = h=""
2 2g

Rearranging and substituting we get

2 2
X = V—(ZI _v_] .
2g 2g

Example — energy conservation

Given: A circular pulley (radius », mass m,, moment of inertia
with respect to its centre J) turns with constant angular velocity
@ about the axis passing through the joint S. A massless rope is
wound around the pulley. At the end of rope, there is attached a
load of mass m,. See Fig. D02. At the beginning of the observed

situation the driving torque applied to the pulley is suddenly
stopped. Due to inertia the load m, for a moment still goes up

before it stops.
Fig. D02. The weight moves upwards due to inertia
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Determine: The necessary initial angular velocity @ needed for the load to continue in its
upward motion and to stop at the distance #. We have learned that in the absence of
resistance the change of kinetic energy equals the change of potential energy, so

AK =AW,
or
K,-K,=W,-W, ..indices b and e indicate the beginning and the end of the observed
situation.
In our case
1 S
K, =—J,o, +—my,, K, =0,
2 2
w, =0, W.=mgh.

The kinematic relations are

v, =Tra,.

Substituting we get

1 1 . C .
EJ (@) + Emlrza)z2 —0=0—(-mgh) ... the minus sign indicates that the work is consumed,

= 0.

D1.4.5. Potential forces

By potential forces are understood the forces whose directions and magnitudes depend on
their positions only. As examples, the gravitational forces or the spring forces could be
mentioned.

Example — exerted work does not depend on the trajectory

A particle of mass m with initial
velocity v, slides along the

frictionless trajectory depicted in p

Fig. D03. %

Fig. D0O3. Motion in gravitational field
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Given: m,vy,R,I', [ =0.
Determine:
a) The height # needed for the normal reaction between the particle and the circular part

of the trajectory to have the reaction magnitude at the point A equal to N, = %mg .

b) The position s, where the particle loses it contact with the circular part of the
trajectory if the particle is released from the height 4" < R.

Add a)
The equation of motion written at A in the normal direction is

ma, =N, +mg. (a)

The normal acceleration at the point A is
a =—=. (b)

The required ‘half-value’ condition is

NA=%mg. (©)
So,
1 3 3
ma. =—mg+mg =—m =aq =—g. d
n =5 Mg mg =omg =58 (d)

The velocity satisfying the condition (c) is obtained by comparing Egs. (b) a (d), thus

3
Vi zaRg. (e)

The difference of kinetic energies is equal to the work exerted by external forces,

%mvﬁ —%mvg =IPds.

No resistance forces are considered, so the only working force is the force of gravity i.e. the
weight. Since the gravitational force is of potential nature, then the work done by the weight
force does not depend on the trajectory but on a difference of potential levels only. So

%mvﬁ —%mvg =mg(h—R). ()

It is obvious that mg(h— R) > 0= h > R and that the result does not depend on the mass of
the considered body.
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The unknown height /4 is obtained from Eq. (f), so

2 2
Va =Y

2g

h= +R.

Add b)
In a generic position, denoted by so far unknown angle «, we can write the equation of
motion for the normal direction in the form

ma, =N +mgsina .

2
D v
The normal acceleration is given by a, = ?A .

The loss of contact is given by the condition of zero contact force, thus
N=0.

From it follows that the release velocity has to be
2

1% . ) .
Ezgsma = Vv =Rgsina.

Again, the difference of kinetic energies is equal to the work exerted by external forces
between two potential levels. that is s = 4" — Rsin« . Thus

1 2 2 _
—my —Emvo =mgs,

2
1 . 1, , .
ERgsma—EvO =g[h —Rsma],

ve +2gh’
3Rg

sing =

The condition of the existence of the release point within the first quadrant,i.e. 0<a <7/2,
requires

2 '
0< Y ¥28W o<y < [gBR-2K .

3Rg
Alternatively, if R =/', then for a = 7/2 the initial velocity has to be v, =/2gh’" .

D1.4.6. Momentum, sometimes linear momentum

Momentum for a particle is the product of mass and its velocity, i.e. p=mv .
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D1.4.7. Angular momentum, sometimes moment of momentum or rotational momentum

Angular momentum for a particle is the cross product 7 x p, where 7 is the particle’s
position vector relative to a specified origin.

D1.4.8. Velocity and speed

These terms are often distinguished. In this text it is understood that velocity is a vector and
that the speed is just its magnitude. In this sense, we might write v = |\7| .

D2. Dynamics of a particle subjected to a straight line motion

In this case, one can write
2B+ R =ma, (D2_1)
i=1 j=l

meaning that external forces plus reaction forces are equal to the inertial force.

If the motion is assumed in the direction of the x coordinate axis only, then the scalar
notation yields

X: ZPxi+Zijzmax,
y: Y. P+ R =0, (D2_2)

z: Y P,+) R, =0.

Example — particle on an inclined plane

Given: A particle of mass m, having the
initial velocity v,, moves downward an

inclined plane defined by the angle & and the
length /. See Fig. D0O4. When the particle
reaches the point 1, then continues to move
along the straight horizontal line. Friction
phenomena are characterized by the
coefficient of friction f .

Determine: The distance s, indicated by the
point 2, where the particle stops.

Fig DO04. The particle on a slope

It is convenient to choose a suitably defined coordinate system — at first, the positive direction
of x axis should be introduced in the assumed direction of the particle motion. Also, the
analyzed particle should be considered at a generic position, defined by the indicated x
distance — not at the beginning, nor at the end. It is also a good habit to set the unknown
positive direction of acceleration in the directions of positive coordinate axes.
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As in statics, a free body diagram approach is used. In this case, the external forces acting on
the particle consist of the normal force, the gravity force and the friction force. And according
to Newton’s law, the vector sum of these forces has to be equal to the vector of inertia force.
Instead of equilibrium equations, as in statics, we write the equations of motion. Their scalar
form, for the situation between points 1 and 2, is

x:mgsina — Nf =ma,
y:N—-mgcosa=0.

Extracting the normal force from the second equation and substituting it into the first one we
get

mg(sine — f cosa)=ma .

Observing this equation of motion we deduce that the solution is independent of the mass of
the particle since the equation can be reduced by a factor of m. Thus, the quantity a is
constant, so the particle moves with a constant acceleration. But for the assumed downward

motion this acceleration has to be positive, so the condition of the task solvability is

sina

(sina— fcosa)>0, = f< =tana .

cosa
. : . vdy : : .
Known kinematic relation, i.e. a = o allows expressing the equation of motion in term of

velocity, i.e.

g(sina—fcosa):%.

Integrating the last equation, between points 0 and 1, gives

So, the velocity at the end of the inclined plane, i.e. at the point 1, is

v, =\/2gl(sina—fcosa)+v§ .

What happens next? The final velocity of the first part of the motion becomes a starting
velocity for the second part of the motion. Denoting new kinematic quantities and the new
coordinate system by primes, we have a new equation of motion, which is valid between
points 1 and 2. It has the form

—mgf =ma’,
vidv'
g = e (a)
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Initial conditions are
t=0x"=0and X' =v,.

When the particle stops, its final velocity is equal to zero. So, integrating Eq. (a) within the
proper limits gives

0

— gfjdx' = Iv’dv'
0

Vi

and we get the answer in the form

V2 2

Y1
2 2gf

where the velocity at point 1 was found earlier as

v, =\/2gl(sina—fcosa)+v§ .
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D3. Dynamics of a particle subjected to a motion along a curve
is explained using a simple example.
Example — oblique throw in plane

Given: A projectile, considered as a particle of mass m , is shot (thrown) from the origin of
the coordinate system with initial velocity v, under an angle o . The air resistance is

neglected. The ‘terrain’ is idealized by a straight line originating at the origin and defined by
the angle £ . It is assumed that & > . See Fig. D05.

Determine: The trajectory of the projectile, the hit point coordinates, and the hit velocity.

A dy P

Vo D _--

Fig. D05. Oblique shot

Again, we start with a particle being considered at a generic position defined by x and y
coordinates. The positive directions of acceleration components are assumed in positive
directions of coordinate axes. The only external force, the weight of the particle, points
downwards. A particle in the plane has two degrees of freedom. Thus, two scalar equations of
motion are written in x and y directions respectively, and consequently integrated within the
proper limits, i.e. from the beginning (#=0) to the current position at the time ¢,
characterized by x and y coordinates and by generic values of velocities and accelerations.

ma_ =0, ma, =—mg,
dv dv
X 0, Y — _g’
dr dr
vy vy t
J.dvx =0, J. dvy = —gJ.dt,
Vo COsa Vo sina 0
v, =V,cosa, v, =v,sina — gt.

The above result shows that the x component of velocity is constant, while the y component

is a linear function of time. Another integration gives the parametric components of the
trajectory in the form
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: 1
X=vicosa, y=visina —Egtz.

To get the trajectory of the motion in another form, i.e. y = f(x), we have to extract time ¢
from the first equation

f=—— (a)

Vv, cosa

and substitute it into the second equation. Thus, the trajectory of the particle is described by a
parabolic function

Vv, sina
=0 X—— g 5 xzzxtana—%xz. (b)
v,cosa  2vycos’a 2v, cos” a

We have defined the ‘terrain’ by the equation
y=xtan(f) . (©)

The hit point coordinates, say (xD, Vb ), can be obtained by equaling y coordinates in Egs. (b)
and (¢). So,

- g 2
Xp tan f = x, tana ———=>——x;,
2v, cos” a

tan f —tana = —%xlj
2v, cos” a
2(tana — tan S)v, cos’ a
Xp = ( P)i and consequently  y, =x,tanf.
g

The time to hit, obtained from Eq. (a), is

x
— D
ty = :
V, cosa

The components and the magnitude of the hit velocity are

Vp, =V, €08,

Vp, =V SINa — gl
_ 2 2
Vb =1/ Vi +Vp, -

Check that the magnitude of the hit velocity, in the absence of the air resistance, is the same
as that of the initial velocity.
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Fig. D06. Hit point coordinates

See the program DO1_oblique_throw.m and Fig. D06.

% DO1_oblique_throw

% original file name is edu_UL_2013_DY_02_01_sikmy_vrh

clear

m = 5; vO = 250; alf = 45; bet = 20; g = 9.81;

alfa = alf*pi/180; beta = bet*pi/180;

x_range = 0:1:6000;

% projectile trajectory

yp = x_range*tan(alfa) - x_range.*x_range*g/(2*v0"2*cos(alfa)”"2);

% surface

ys = x_range*tan(beta®);

% hit point

xD = 2*(tan(alfa) - tan(beta))*v0"2*cos(alfa)”2/g;

yD = xD*tan(beta);

% hit time

tD = xD/(vO*cos(alfa));

% hit velocity

vDx = vO0*cos(alfa);

vDy = vO*sin(alfa) - g*tD;

vD = sqre(vDx"2 + vDy~2);

figure(l)

plot(x_range,yp, "k-", Xx_range,ys,"k--", xD,yD,"0", "linewidth®, 2, "markersize®, 10);
axis("square®); axis("equal™)

title(°DY 002 017, “fontsize®", 16)

t>xtl = [*'v.0 = ° num2str(v0) °, alpha = " int2str(alf) ", beta = " int2str(bet)];
t>xt2 = [*x_ D = * num2str(xD), ", y. D = * num2str(yD) ", v.D = " num2str(vD)];
legend("projectile trajectory®, "surface®, "hit point®, 2)

text(500,-250, txtl)

text(500,-500, txt2)

xlabel ("horizontal distance [m]", "fontsize®, 16); ylabel("[m]", "fontsize", 16)
print -djpeg -r300 fig_DY_02_01_02
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Example — long jump record, a theoretical limit

Determine: The theoretical maximum length of a long jump record, assuming that the
contestant, immediately before the recoil, has the velocity, corresponding to the average
velocity of Usain Bolt during his world record on 100 m. Assume the recoil angle of 20
degrees. The jumper is considered as a mass particle and the air resistance is neglected. The
world record holder on 100 m (2014) is Usain Bolt and his time is 9.58 s.

Compare the computed long jump result with the present (2014) record which, is 8.95 m and
is attributed to Mike Powell. Consider other recoil angles for comparison.

Hint: Use the relations derived in the previous example, where the parametric equations of the
trajectory were obtained in the form

. 1
x=vitcosa, y=visina —Egt2 :
Eliminating the time variable from the first equation

X
=

(a)

V,Cosa

and substituting it into the second equation, we get an alternative form y = f(x) in the form

= NS zg - xzzxtana——zg —x’. (b)
vocosa  2vycosTa 2v, cos” a
Equation of the surface was defined by y = xtan(ﬂ ) (c)

Now, the ‘terrain’ is a straight line again, but defined by £ =0.

Impact point, with coordinates (xD, Vb ), is obtained by equaling y-coordinates in equations (b)
and (c), respectively. Thus

- g 2
Xp tan f = xp tana ———=>—5—x;,
2v, cos” a
_ g
tan f—tana = ————=>—5—Xx;.
2vycos” a

Impact coordinates are

2(tan @ — tan B)v? cos® a o
Xp = ( B , Vp = Xp tan 3, but in this case f=0.

g

See the program D02 long_jump.m, which we obtain as a slight modification of
DO1_oblique throw.m. The program solves the task for a single initial velocity, but for three
different recoil angles, i.e. 20, 20.844 and 45 degrees respectively. The respective long jump
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‘records’ are 7.12, 8.95 a 11.11 m respectively. The middle recoil value was chosen in such a
way that it corresponds to Powell’s world record. The results are in Fig. D07.

Analysis

The length of the jump is generally longer for a greater initial velocity and a greater recoil
angle as well. The maximum theoretical value for any initial velocity is obtained for the recoil
angle of 45 degrees. In this case, the jumper would have to reach the height of almost three
meters. It is obvious that such a value is physiologically unattainable.

DY 02 01 long jump c¢1

I I
4 = -
3 = -t
— 2 N
E
O L i
— 1
(]
=
=
L
o 0
o
o
“@ -1 Circle denotes the value of the world record by Mike Powell, ie. 8,95 m
o
b= Starting velocity corresponds Usain Bolt record, ie. 9.58s/100m
g.') -2 - Three different recoil angles, measured in degrees, are considered
S
ald— alf1 = 20; jump1=7.1385 |
alf2 = 26.844; jump2 = 8.9501
alf3 = 45; jump3 = 11.1071
1 1 1 1 |

0 2 4 6 8 10 12
horizontal coordinate [m]

Fig. DO7. Long jump limit

Program DO2_long_jump_cl.m

% DO2_long_jump_cl.m

% original file name is edu_UL_2013_DY_02_01_ long_jump_cl

% find the theoretical value of the long jump

% assume that the initial speed is given by Usain Bolt record for 100 m
% three values of recoil angle are consiered

clear
time_Usain_Bolt = 9.58; % [s/100 m] ... time for the world record
velocity_U B = 100/time_Usain_Bolt; % ... velocity In m/s

v0 = velocity U B;
m = 5; alf = 25; bet = 0; g = 9.81; beta = bet*pi/180;
alf_all = [20 26.844 45]; % try three different recoil angles
alfa_range = alf_all*pi/180;
X_range = 0:0.1:12;
% projectile
i=0
for alfa = alfa_range
=1+ 1;
% trajectory
yp(:,i) = x_range*tan(alfa) - x_range.*x_range*g/(2*v0"2*cos(alfa)”2);
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% surface idealized by a straight line
ys(:,1) = x_range*tan(beta®);
% hit point

xD(i) = 2*(tan(alfa) - tan(beta))*v0"2*cos(alfa)”2/g;
yD(i) = xD(i)*tan(beta);
% hit time

tD(1) = xD(i)/(vO*cos(alfa));
% hit velocity
vDx (i) = vO0*cos(alfa);
vDy (i) = vO*sin(alfa) - g*tD(i);
vD(1) = sqre(vDx(i)"2 + vDy(i)"2);
end
%
XD_Mike_Powell = 8.95; % long jump world record in [m]
yD = 0;
%
Ffigure(l)

plot(x_range,yp, “linewidth®, 2);

hold on

plot(x_range,ys, "k-","linewidth®, 1);
axis("square®); axis("equal”)

title(°DY 02 01 long jump cl®, “fontsize", 16)

txtl = ["Circle denotes the value of the world record by Mike Powell, ie. 8,95 m"];

txt2 = ["Starting velocity corresponds Usain Bolt record, ie. 9.58s/100m"];
txt3 = ["Three different recoil angles, measured in degrees, are considered"];
labl = [falfl = ° num2str(alf_all(l)) ~: Jumpl = * num2str(xD(1))1;
lab2 = ["alf2 = " num2str(alf_all(2)) ~; Jump2 = ° num2str(xbD(2))1;

lab3 = ["alf3 = ° num2str(alf_all(3)) ~: Jump3 = " num2str(xD(3))1;

legend(labl, lab2, lab3, 3)
text(0.2,-1, txtl)
text(0.2,-1.5, txt2)
text(0.2,-2, txt3)

plot(xD_Mike_Powell, yD, "ok®, "linewidth®, 2, "markersize®, 10)

hold off

xlabel ("horizontal coordinate [m]", “fontsize®", 16);
ylabel("vertical coordinate [m]", “fontsize", 16)
print -djpeg -r300 fig_DY_02 01 _02_long_jump_cl

Example — moon landing

Given: a,f,v,,H,m . A moon probe of the mass m is
presently at the height H above the Moon surface.
The moon gravity is considered as g, = g/6. See Fig.

DOS.
Determine: The magnitude of the braking force F,
sufficient for decreasing the initial velocity v,, in such

a way that the vertical direction of the landing velocity
is zero.
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Equations of motion and their consecutive integrations give

ma_ =—Fsinf, may:émg—Fcosﬂ,
av:—isinﬂ, ayzg—ﬁcosﬂ,

’ m 6 m
dv, F | dv, _g

x = _Zin B, —=———cos

dt m p dt 6 m p

jdv ——smﬂ.[dt J.dv —(———cosﬂ)Idt
V.=V, sina—ﬂsinﬂ, (a) v, =v0cosa+(§—£cos,8)t, (b)
’ m 6 m

t

J.ds J-vdx J.(vosma—ismﬂj

0
Sy t t F
J-dsy = J-vydt =J-{v0 cosa + (% - Ecosﬂjt}dt

0 0 0

2

s, =ytsina —Esinﬂ , (c)
s, :votcosa+%(%—§cosﬂ)t2. (d)

Simultaneous satisfaction of two conditions is required. After traveling the vertical distance
H , the vertical component of the landing velocity should be zero. Using Eqgs. (b) and (d) we
get

Ozvocosa+(§—ﬁcosﬂjt, (e)

6 m

H=votcosat+l g—ﬁcosﬂ £ (9
2\6 m

These two equations allow to determine the time to landing #, and the magnitude of the
braking force F'. Excluding time from Eq. (e)

t= ‘}";:& and substituting it into Eq. (f) we get
% ——cosf
m
2 2 2 2
e vo cos ag N ;[i ——cosﬂ} vy cos’ B 2
—cos,B " (Fcosﬂ - gj
m 6
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This leads to a quadratic equation for the variable F' in the form

aF? +bF +¢=0,

where

2
. H COS p ’

m

b _2gHcos 8 v, cos® acos f3 . v, cos” acos B

6m m 2m ’
o= g’H N gvg cos’ a B gvg cos’ o

36 6 2
—h+ 2 _
From the relation F = b 2b dac only a positive root is meaningful. You might check
a

that the vertical component of the landing velocity is really equal to zero. But, a more detail
analysis of the solution reveals that the horizontal component is generally non zero. So, the
above conditions are not sufficient for a successful landing.

See the program DO3_moon_landing.m and Fig. D09.

DY 03 01 lunar landing
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Fig. D09. Moon landing — the results we are not satisfied with
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% DO3_moon_landing

clear

H = 5000; % height In metres
alfa_d = 10; beta_d = 10; % angles in degrees
alfa = pi*alfa_d/180; beta = pi*beta_d/180;

m = 1000; % mass of lunar modul

g = 9.81; % gravitional acceleration at earth
vO = 100; % initial modul velocity

tmax = 120; % maximum time

% Find the braking force
a = H*cos(beta)”2/m"2;

= -2*g*H*cos(beta)/(6*m) - vO~r2*cos(alfa)”2*cos(beta)/m + ...
vOn2*cos(beta)*cos(alfa)”~2/(2*m);
c = gN2*H/36 + g*v0™2*cos(alfa)"2/6 - g*vO0"2*cos(alfa)”2/12;
FF1 = (-b + sgrt(b”2 - 4*a*c))/(2*a);
F = FF1;

t_ones = ones(l,len_t);

vx = vO*sin(alfa)*t_ones - F*t*sin(beta)/m;

vy = vO0*cos(alfa)*t_ones + (g/6 - F*cos(beta)/m)*t;

sx = vO*sin(alfa)*t - 0.5*F*t."~2*sin(beta)/m;

sy = vO0*cos(alfa)*t + 0.5*(g/6 - F*cos(beta)/m)*t."2;

td = vO*cos(alfa)/(F*cos(beta)/m - g/6) % time of landing

F _krit = m*g/(6*cos(beta));

vx_d = vO*sin(alfa) - F*td*sin(beta)/m % vx velocity at landing
sx_d = vO*sin(alfa)*td - 0.5*F*td"2*sin(beta)/m % x coor of landing
figure(l)

xx1 = [0 tmax]; yyl = [H H];

xx2 = [td td]; yy2 = [-vO vO]; yy3 = [-1.1*H 1.1*H];

yy4 = [0 0];

subplot(2,1,1)

plot(t,vx,“"k-.", t,vy,"k-", td,0,"0", td,vx_d,"s", "linewidth",2.5, "markersize”,10);
title("DY 03 01 lunar landing ", "fontsize", 16)

ylabel("velocities [m/s]", “fontsize", 16)

txtl = ["vxd = " num2str(vx_d) ° [m/s]"]; text(81,-70,txtl, "fontsize", 14)

hold on

plot(xx2, yy2, "k", xx1,yy4, “k%)

hold off

legend("v_x", "v_y", "at this time v_y = 0", "at this time v_x \neq 0", 3);% grid

subplot(2,1,2)

plot(t,sx, "k-.", t,H-sy,"k-", td,0,"0", "linewidth",2.5, "markersize®”,10);
ylabel("height [m]", “fontsize®", 16)

legend("s_x", "s_y", "at this time the modul hits the surface®, 3); % grid
xlabel ("time [s]", "“fontsize®, 16)

hold on

plot(xx1,yyl, "k", xx2,yy3, k", xx1,yy4, "k")

hold off

print -djpeg -r300 fig_DY_03 01_03

% the end of edu_UL_2013 DY_03_01_moon_Jlanding

Not being happy with the above result we have to add another condition to satisfy the third
requirement, namely that the horizontal component of the landing velocity has to equal to zero
as well. So,

. Ft .
0=v,sina ——sin .
m

This equation, together with Egs. (e) and (f), suffices for the determination of three
unknowns, i.e. ¢, F,f. The system of equations is, however, nonlinear. The solution is

lengthier, but not difficult.
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The correct value S could also be found by a trial and error approach as shown in the
program D03 _moon_landing.m. For f=3.75° the vertical component of the landing
velocity is very small as indicated in Fig. D10.

DY 03 01 lunar landing
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Fig. D10. Moon landing — improved

D4. Dynamics of a particle subjected to a circular motion

Let’s remind what kinematics says about the motion of a particle along the circle with a radius
r. If the current angular displacement is ¢, then the Cartesian coordinates of a generic point

can be expressed by
X=rcosp,y=rsing, (D4 1)

where the angle ¢ is generally a function of time. It is convenient to measure it from a
suitably chosen axis counterclockwise.

Generally, the angle ¢ depends on the angular velocity while the angular velocity depends on
time, namely@ = f(w), ®=g(t). To express the Cartesian components of velocity and

acceleration of the point L as functions of time we have to evaluate the first and second
derivatives of Eq. (D4 _1). Thus
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v, =—rosing=-oy,

vV, =+rocosg =+ox. ...(D4 2)
a,=-r@’ cosp—resingp=—w’x—¢y,
a,=—ro’sing+recosp=—a’y+ex. ... (D4 3)

The above relations are simplified if @ = const, because it that case £ =0.

Often, the analysis is provided using not Cartesian but polar coordinates, that are defined in
the tangent (t) and the normal (n) directions. For magnitudes of vector quantities v,a we

could write

V=rao ... velocity which has always the tangential direction,
a,=re ... tangential component of acceleration,

a, =ro’ ... normal, or centripetal, component of acceleration,
a=rio'+&’ ... magnitude of resulting acceleration G =d, +d, .

Example — a particle moving along a circular trajectory

Given: R,m, f,,f,. At the N>
beginning, i.e. for ¢ =0, the

particle has an initial tangent 7 Vs
velocity v,. Assume that there - > 7

is a different coefficient of
friction between the particle
and cylindrical wall, say ( f,)
and between the particle and
the horizontal support, say

(f>). Consider the
counterclockwise motion. See
Fig. D11.

Determine: The location, where
the particle stops.

Fig. D11. A particle moving along a circular trajectory
Cylindrical coordinates are considered. Recall that the particle has a zero radius, so all the

forces actually act within a single ‘contact’ point. The equations of motion are written in the
direction of the tangent (t), and in directions of two normals, i.e. in directions of (n)and (b).
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t: ma, =—=N,f, =N, f,,
n: ma, = N,,

n

b: 0=N,-mg.

Kinematic relations for tangent and normal accelerations are

2
v

a,=Rp=Re,a,=Rp=Raw’ =E=R¢.

2

The angular acceleration can be expressed as € = do”
4

Using the above kinematic relations, extracting the reaction forces and substituting them into
the equation of motion, written for the tangent direction, we get

ma, =-ma, f, —mgf,,
Re=-Ro’ f, — gf,,

dew’ . g
—=-0"fi-%f,.

240 h="g />

We are looking such a value of angular coordinate, say ¢_, where the particle stops, i.e. for

the moment when the angular velocity reaches the zero value, i.e. @ =0. Integrating the last
equation in proper limits we get

0 2 P
=2 an.
woa)f1+Ef2 0

%{ln(a)zfl +%fzﬂ =-20,,

[2)

2 g
o, f, += f, 2
(pC:L R _1 In wORfl+1 , Where a)O:v—O,so
2f1 gf 2f1 2 R
R 2
2
(DC:LIH(VO_J({_FIJ
2f, \Ref,
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Example — from the motion along an outer surface of a cylinder to the first cosmic velocity

Given: r,m,v,. A particle of mass m , being at the v
beginning on the top of a cylinder of the radius 7,
is released with horizontal velocity v, . Friction is Pk

neglected. See Fig. D12. a
Determine: The release and hit points.

The equations of motion for the first part, i.e. K Vg
from initial position to the point K, where the
particle loses its contact with the cylinder, written >
for a generic position denoted by angle ¢, are
written in the direction of tangent and normal
directions, respectively

t: ma,=mgsing, (a)

n: ma, =mgcosp—N. (b)
Fig. D12. Motion along a cylinder surface and consecutive oblique throw

Eq. (a) indicates that the tangential component of acceleration is independent of the particle
mass.

Kinematic relations are

2
a, =re, a, =ra’, g=do (c)
2de
Rearranging Eq. (a) we get
2
r =gsing. d
2dp &SP (d)

We start with ¢ =0 and with initial angular velocity @, =-". Let the release point is
r

indicated by so far unknown angle ¢, — the corresponding angular velocity is o, . Integrating
Eq. (d) we get

o Py

jda)z _28 Isingp do,
? "%

2
o~ =2 eos ]

2 2 2g

W, — 0, =—7[1—c05(pk] ,
2
o =, +Tg[1—cosgok] : (c)
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So far we know neither @, nor ¢, . The relation between them is obtained from Eq. (b). Also,
we know that in the moment of release the normal reaction N should attain the zero value.
So,

m(a,), = mgcosg,, where (a,), = ra)kz

and consequently
0 =L cosg, . (d)
r

Substituting (d) into (c) we get

gCOS(/)k =, +2—g[1—cosq0k] ,
r r

The cosine of the release angle is

rw§+g
3

cosQ, =

We know that @, =v,/r, so

cos —i+g (e)
P 3rg 3

Solvability condition. The angle ¢, have to be a real number, so the argument of arcus cosine
function have to be less or equal to one. On the edge of solvability we have

veoo2
L +==1. 63)
3rg 3

Considering for a moment the quantity » to be the Earth radius, i.e. » =6378000 m, and

taking the gravitational acceleration as g =9.81 m/s”, we get
vy =+/rg =7,91km/s.

On the verge of solvability, we surprisingly obtained the first cosmic velocity — the initial
horizontal velocity needed for a particle to circle the Earth and never fell to the ground.

And now, back to our task.
For the zero initial velocity, there will be no motion. For infinitesimally small velocity the

particle starts to move ‘downward’. The release point then will be computed from Eq. (¢). We
get
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cos @, =§ =@ = arcsin% =0.7297. This, expressed in degrees, is 45.0280.

The corresponding tangent velocity at the point K would be v, =ro, . Using the relation (d)

we obtain

Vi =478 COSQy .

From now on, we can solve the standard ballistic problem for a particle being shot from point

K with the initial velocity v, and look for the impact or contact point D.

The magnitude of initial velocity is v, =rw, — its direction is in a tangent line at the point K

to the surface. The initial location has the coordinates

Xy =1rSmaey ,

Vo =FCOSQy .

The components of initial velocity are

Vo = Vx COS Py,

Vo, = Vi SIN@y .

Equations of motion and their solution

ma, =0,
dv
X — 0 ,
dt
Idvx =0,
Vox
vV, =V, = Vg COS@y =const,
ds,
= vr’
de -

Tdsx = j.vxdt ,
X, 0

S, =X, =VI=V,.1,

ma, =-mg,
o

dt ’

vy, t

j dv, = —gJ‘dt ,
Vo, 0
v, ==V, — gt =-Vv singy —gt,
@,

a7

t

;fdsy = j-vydt = I(— Voy — gt)dt ,
Yo 0

0

1
S, =Y :—voyt—Egt .

Parametric equations of the particle trajectory are

S =Xy TV, l,
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The impact point is determined from the condition that s, =0. So

1,
Yo _v()yt_Egt =0

and finally
b*> £\b* —4ac g
fy= D where a=Z.b=vy 0=
a

Only the positive root is meaningful.

For details see the program D04 circular_orbit. The results are graphically depicted in
Fig. D13.

% DO4_circular_orbit
mtl_DY_02_04

clear

r =2; vO =5; g =9.81; % input data

omega = vO/r; % initial angular velocity

arg = omegan2/(3*g) + 2/3;

fik = acos(arg); fik_deg = Fik*180/pi; % release angle

xk = r*sin(fik); yk = r*cos(fik); % point of release

omegak = omega”2 + 2*g*(1 - cos(fik))/r; % release angular velocity

vk = r*omegak;
t_range = 0:0.05:0.25;

release tangential velocity
time range

XX

% initial conditions for the second part of motion
X0 = r*sin(fik); y0 = r*cos(fik);
vOx = vk*cos(Ffik); vOy = vk*sin(fik);

% the second part of the motion
% trajectory of the free fall with prescribed initial conditions

it = 0;
for t = t_range
it =it + 1;
sx(it) = x0 + vOx*t; % (a)
sy(it) = yO - vOy*t - 0.5*g*t"2; % (b)
end

% hit point is defined by sy = 0;

% express t from (b), which leads to quadratic equation

% only plus root is applicable in this case

a = 0.5*g; b = vOy; c = -yO;

td = (-b + sqrt(b”™2 - 4*a*c))/(2*a);

% alternatively, use matlab roots function

rr = roots([a,b,c]); % the second root has no meaning
% and substitute it into (a)

sxd = X0 + vOx*td;

sxd2 = x0 + vOx*rr(1); % imaginary hit point

% plot it

txtl = [FVO = ° num2str(v0) * m/s \phi_K = * num2str(fik_deg) ° deg-];
txt2 = ["sxd = " num2str(sxd) ° m"]; tX>xt3 = ("\phi_K");

% auxiliary lines

xx1 = [-r 4.2]; yyl = [0 O];

xx2 = [0 0]; yy2 = [0 r];

xx3 = [0 xk]; yy3 = [0 yKk];

figure(l)

fi = 0:pi/90:2*pi;

X = r*sin(fi); y = r*cos(fi);

plot(x,y, "k-", xk,yk,"ko", sx,sy, "k--", xx1,yyl,"k-.", xx2,yy2,"k:",
xx3,yy3, "k:", sxd,0, "sk-”, -
"linewidth", 2, "markersize®, 10)

legend("circle”, “release point®, “"free fall trajectory”, "ground”,
“linel®, "line2", "hit point®, 3)

axis(“equal™); title("DY 02 047)

text(1.7,-1.8,txtl); text(1l.7,-2,txt2); text(0.15,1,txt3)

print -djpeg -r300 fig_DY_02_04_02
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Fig. D13. Matlab output

D5. Newton’s and d’Alembert’s formulations of equations of motion

The fact that the product ma, describing the inertia force, has the dimension of force, was
used by d’Alembert for introducing so-called apparent inertia force in the form

D=-ma. (D5_1)

This allows rewriting the Newton equation of motion ma = ZFl. into the form
D+) F =0. (D5_2)

So-called d’ Alembert’s principle states that the apparent inertia forces and other acting forces
are in the state of ‘dynamic equilibrium’.

This is, however, an apparent equilibrium characterized by the fact that time in our minds is
temporally frozen. For a given moment we might consider the solved task as an apparent
‘equilibrium’ case. In the following moment we also have an apparent equilibrium, but a
different one. In an inertial frame of reference, the d’Alembert formulation is just a simple
mathematical reformulation of the classical Newton’s formulation of the equation of motion
requiring to take inertia force and shift it to the other side of the equation with an opposite
sign and call it the apparent inertia force. In a non-inertial frame of reference, it is not so
simple. We will show that it is the observer’s point of view that plays a crucial role.
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Inertial and non-inertial frames (systems) of reference

The inertial system is a useful engineering approximation defined by the assumption that it is
a system which is stationary with respect to fixed stars’. The non-inertial system moves with
acceleration with respect to an inertia system. In many engineering application, an observer
might safely consider the Mother Earth as an inertial system. A coordinate system firmly
connected to a rotating merry-go-round is a good example of a non-stationary system of
reference.

An example, which might shed light on the difference

Let us examine a simple example. Consider a stone being whirled around on a string, in a
horizontal plane. The effect of gravity is neglected here. There are two alternative and
equivalent ways how to tackle the problem — using either Newton’s or d’Alembert’s
formulations. See Fig. D14.

Newton d'Alembert

€ =mro?

@ = const w = const

Vi

Fig. D14. Observer’s view — Newton and d'Alembert

Newton’s formulation, i.e. the equation of motion in the form ma, =S, with a, being the

normal or centripetal acceleration, is applicable for an observer in an inertial frame of
reference, for somebody who is located at a fixed point of the Universe. Newton’s second law
has a form of equivalence of forces. For a mass particle, it states that a product of mass and
acceleration is equal to the sum of acting forces. Newton calls the force on the left-hand side
of the equation, i.e., ma,_, the inertial force, while the constraint force, the force in the string,

i.e. S, he denotes by the term centripetal force. We have to pull on the string to keep the
stone in the circle. In this case, both forces have the same direction and the same magnitude,
but they are not identical. They are of different origins.

D'Alembert’s formulation is applicable for an observer in the non-inertial frame of reference,
for somebody, who is sitting on the rotating particle. D'Alembert showed that one can write
equations of motion by means of equivalent, seemingly static, equilibrium equations, by
adding the so-called apparent’ inertial force. Generally, the apparent inertial force is a
product of mass and negative acceleration. See [1], [2].

> Of course, we know that the Universe is expanding and constantly accelerating. So, there are no fixed stars
available and generally, no inertial frame of reference exists. Nevertheless, the Earth can be for many
engineering applications approximately considered as the inertial frame of reference since its orbital
accelerations, due to Earth's daily and annual rotations are small.

% Other terms used for the adjective ‘apparent’ are d’Alembert, fictitious and pseudo-force. See [1].
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To use Newton’s law correctly in a non-inertial frame, the apparent inertial force must be

added. In this case, the apparent force is the centrifugal force C=-mad_, where

a,= |c70| =re’ is the magnitude of the centripetal acceleration. See [2], [3]. D’Alembert’s

formulation has a form of the equilibrium of forces — meaning that the sum of all forces is
equal to zero. In scalar notation, where arrows indicate the direction of accelerations and

forces, we might write, S—C =0, where C=mro’ is the magnitude of the centrifugal

force. See Fig. D14. Notice that the centrifugal force C, as a vector, has an opposite sign with
respect to the vector of centripetal acceleration a,. The corresponding scalar equation

§—C=0 comes from the idea of the free-body-diagram reasoning, which is based on the
idea of replacing the effects of constraints by equivalent forces — in this case, the string is
mentally cut and replaced by an equivalent force, say S . To an observer sitting on the rotating
particle, the centrifugal force appears to be the external force — not ‘apparent”’ at all’,

Newton’s and d"Alembert’s formulations, written in scalar notations with directions of forces
indicated by arrows in Fig. D14, are

Newton: ma, =S and d'Alembert: S—C=0, where C=ma,a =ro’.

Equations describing the motion, lead to same conclusions, are seemingly identical but have a
completely different background, so

mre’ =S < S—mro’*=0.

To summarize briefly:
In Newton’s formulation, the term ma, is the inertial force. In d’Alembert’s formulation, the

variable C 1is the centrifugal force. In both formulations, the term a, is the normal or
centripetal acceleration and the constraint force, denoted S, is the force in the string.

To summarize at length:

For an observer in the inertial frame of reference, who is using Newton’s formulation, the
product of mass and acceleration should be called the inertial force. Calling it the centripetal
force is misleading because this term is usually reserved for the constraint force. It should be
emphasized that for an observer in the inertial frame of reference the term centrifugal force
has no meaning.

An observer in the non-inertial frame of reference, who is using the d’ Alembert’s formulation,
and writes dynamical equations of equilibrium, has to add apparent inertial forces to
existing external forces. Apparent inertial forces are defined as a product of mass and negative
acceleration of the non-inertial frame. These apparent inertial forces seemingly arise out of
nothing — yet they do have a sound origin based on the transformation of coordinates between
the stationary (inertial) and accelerating (non-inertial) frames of reference. In our example
with the rotating particle, the role of the apparent inertial force is played by the centrifugal

7 The problem is a little bit obscured by two contradictory meanings of the adjective 'apparent'. In the Webster
dictionary, you might find two sentences with opposite explanations. In the first sentence 'He is apparently rich'
it is understood that his richness is obvious, clearly visible, nobody doubts it. In another example, the term
'apparent horizon' is used as an antonym to the 'real horizon'.
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force, while the external force is the constraint force in the string. The term apparent is used
by stationary observers. For observers in the accelerating frame of reference, the centrifugal
force can be felt and could be measured and appears not apparent but quite real. This might be
a source of confusion.

One of the reasons leading to this confusion of tongues is due to the ambiguous terminology
used for the description of the rotation of bodies in mechanics. Not only are the same terms
often used for different kind of forces, sometimes different terms describe identical forces. In
addition, confusion might also arise because of two possible observation points. These are
either from the stationary inertial frame of reference or from the accelerating — i.e. the non-
inertial — frame of reference. Newton’s and d’Alembert’s formulations are proper tools
corresponding to these two viewpoints and lead to identical results.

Generally, there are other apparent forces, such as Euler, centrifugal and Coriolis forces
which are proportional to negative tangential, centripetal and Coriolis accelerations
respectively that were thoroughly treated and explained in kinematics.

To be clear and consistent, we should distinguish the terms inertial force and apparent
inertial force. The inertial force is a product of mass and acceleration. The apparent
inertial force is a product of mass and negative acceleration. Not many authors observe
this simple terminological rule and in the latter case, the adjective apparent is often dropped.
Regrettably, the term inertial force is used for whatever meaning a particular author finds
suitable. Compare [2] and [6].

In Newton’s Principia the term centripetal force is reserved for the external forces, which
might be of different origins — a constraint force, gravitational force, magnetic force, etc. In
this respect, most publications follow that lead, but at the same time they often claim that the
centrifugal force is ma_ . According to Newton’s terminology, the product of mass and

acceleration ma_ is the inertial force, not the centrifugal force. The inertial force and the

centripetal (constraint) force have the same size and direction but are distinct in nature
and not identical.

Example — mathematical pendulum

For a mathematical pendulum, see Fig. D15, consisting of a
particle of mass m, swinging on the rope of length /, the
equations of motion, written into tangent and normal
directions, are

D, +mgsinp=0,

D +mgcosp—S5=0.

mg

Fig. D15. Mathematical pendulum — FBD

The rope force is denoted S, while the apparent tangential inertia force, whose direction is
opposite to the assumed positive tangential acceleration, is

D, =ma,=mle =mlp.
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The apparent normal force, also called the centrifugal force, is denoted O. Its direction is
opposite the assumed positive normal (centripetal) acceleration

D, =0=ma, =mlw’ =ml@’.

D’Alembert’s formulation states that the vector sum of all the forces is equal to zero. In the
scalar notation, we have

mlp+mgsinp =0,
mlgp* + mgcosp—S=0.

These non-linear equations are frequently linearized for small displacement angles, i.e. for
@ < 5°, assuming that

singp — @, cosp —> 1.

Then, we have two linear ordinary differential equations of the second order with constant
coefficients, instead. The first equation is then rewritten into

lp+gp=0,
b+ 9=0.

p+o’'p=0, where o= \/% is so-called angular frequency.

It should be reminded that @ =27/ =2?7T, where f[1/s] is the circular frequency having

dimension [1/s] which is also denoted [Hz]. The quantity T [s] is called period.

What is the period of a one-meter pendulum? It comes from the relation 7' =27 \/z .
g

From Matlab we get

> 1 =1; g =9.81; T = 2*pi*sqrt(l/g); T = 2.0061.

The result is in seconds.
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Example — pendulum in accelerating lift, a steady state solution.

Imagine a pendulum in the lift which is ascending with a
constant acceleration a,. In this case the positive

direction of acceleration a, goes against the positive

direction of the gravitational acceleration g. See Fig.
D1e.

Two scalar component equations of motion, written in
tangent and normal accelerations, are

t: T+m(g+a,)sing=0, s f’
n: O-S+m(g+a,)cosp=0.
m
Kinematics relations are
T= mf.‘_‘.
£=e 0=9 0=mlw? ng
The apparent inertia forces, i.e. the tangential and normal
(centrifugal) forces, are
Y D=ma,

T =mle, O=mlw’.

Fig. D16. Pendulum in an ascending lift

The equation of motion could be alternatively obtained by writing a moment equation of
motion about the centre of rotation. Thus,

Tl+m(g+a,)lsing=0.
Rearranging we get

ml’e+m(g+a,)lsing=0,
ml*@+m(g+a,)lsing=0,
gta,

o+ sinp=0,
P+Q°sinp=0.

For small angular displacements, we approximately assume sin@ — ¢ and thus

P+ Q2%0=0.

The period of vibration is 7' = 2 =2r / ! .
Q g+a,
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Discussion for pendulum clocks using a pendulum, as the timekeeping element.

e Increasing the value of the acceleration a, , the period of vibration decreases. The

corresponding pendulum clock in the lift gains time.
o Ifthe lift is descending with acceleration a, <0, the period of vibration increases and

the pendulum clock in the lift loses time.
o In the falling lift, i.e. for a, =—g, the period of vibrations increases above all limits —

the pendulum actually, stops.

Conclusion: A pendulum clock in the falling lift is not a suitable time keeping device.

Example — ascending lift, a transient solution

a,
Again, consider an ascending lift with a ‘[
constant acceleration a,. But in this case,
we intend to analyze not a steady state as
before, described by a, =const, but a

transient process. That is what happens
when the lift starts to accelerate from zero
initial conditions until it reaches steady
state conditions. See Fig. D17.

D = ma,

Imagine a person, whose mass is
m =80 kg, standing on a bathroom spring E | Estar

scale. We usually, and rather imprecisely, 4 tj b
say that the mass of a body is measured by k g
weighing. On spring scales we actually lo
measure not the mass but the weight of the
body, balancing it against a force in the
spring which is damped.

T L S
Fig. D17. Vibrating scale in an ascending lift

What is actually measured is the spring deflection and knowing the spring stiffness and the
local value of gravitational acceleration, we can associate the deflection with the force and
then to assign the force in the spring to the mass value by a process of linear calibration. So,
using a spring balance we are actually measuring the gravitational force of a body in newtons
but are observing the dials calibrated in mass units in kilograms instead. Everything works
well if the weighing process is carried out in a stationary frame of reference. But the
accelerating lift is a typical example of a non-stationary frame of reference.

When the lift is stationary, the person’s rest weight is mg . You should not be confused by the
fact that the balance is calibrated not in [N] but in [kg]. After the lift starts to accelerate
upward the person’s actual weight (this is what the spring balance actually measures) for a
short time temporally increases and then it subsequently returns to a certain stationary value.
Of course, its mass of our person does not change at all.
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In this example, the stiffness of our spring balances & is chosen in such a way that
k&, =mg, where &, is a static deflection of the spring due to the loading by the person’s

weight mg in a stationary lift.

The spring balance is idealized by a vibrating system with one degree of freedom consisting
of the particle of mass m , the spring with stiffness & and of the linear damper, characterized
by a parameter b. See Fig. D17. The equation of motion for our simplified system in a
stationary frame of reference, i.e. in the lift which stays in rest or moves with a constant
velocity, is described by the ordinary differential equation of the second order with constant
coefficients in the form

m§+bf+k§:mg. (a)

For a lift ascending upwards with acceleration a, we have to add an apparent inertia force

whose magnitude is D =ma, and is directed downwards. See arrows in Fig. D17, so
mgg+b§'+k.§:mg+mav. (b)

Rearranging we get

LY S ©
m m

To find out what would be the weight of a person standing on the spring balance in the
accelerating lift we have to evaluate the deflection &, relate it to k&, which is actually related

to the current weight. These quantities are evidently functions of time. To solve for them the
differential equation (b) has to be integrated.

For this purpose, Matlab integration procedures will be utilized. They require that the
differential equation to be solved have the form of the first order differential equations.

We start by introducing

E=z2=é=1z.

Then, the Eq. (c) becomes

: b k
i=——z——¢+g+a,.
m m

Also, we introduce

h=E=y =€,
yzzz':yzzz.
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So, instead of one differential equation of the second order, we have two differential
equations of the first order in the form

=X

. b k
V== ——ntg+a,.
m m

See the program DO5_accelerating_lift_transient_solution, and its output presented

in Fig. D18.
alift=5, T=0.19869, b = 1000, bcrit = 5059.6443
?g‘ 0.03 T T T T
.El 002- /\_’f -
'..% 0.01 ~——
() 0~ = dynamic spring deflection [m] ||
% static spring deflection [m]
o -0.01 1 1 1 I
0 0.1 0.2 0.3 04 0.5 0.6
time [s]
) T T T T T
"‘E“ 0.4 — velocity [m/s] L
‘- 02p -
S O
92 o2
o
> _04 1 1 1 1 1
0 0.1 0.2 0.3 04 05 06
time [s]

m—— spring force [N]
==smasene static ‘weight' [N]
------ steady state value [N]
I

spring force [N]

0.3 0.4 05 0.6

Fig. D18. Matlab output — vibrating bathroom scale in an accelerating lift

DO5_accelerating_lift_transient_solution
% original file name is edu_UL_2013_DY_03_vaha_ve_vytahu_en

%

% program requires procedure function dy = vaha(t,y)

%

clear

global av k m g B;
av = 5;

k = 80000;

m = 80;

g = 9.81;

b = 1000;

omega = sqrt(k/m);
B = b/m;

T =2*pi/omega;

ksi_stat = m*g/k;
ksi_dyn_ust = m*(av + Q);
t_span = [0 0.6];
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y0 = [-ksi_stat 0]; % initial conditions
b_krit = 2*m*sqrt(k/m) % critical damping

[t.y] = ode23("vaha®, t_span, y0);

xx = [0 0.6];

yy = [ksi_stat ksi_stat];

yyy = [m*g m*g];

yyyy = [ksi_dyn_ust ksi_dyn_ust];

figure(l)

subplot(3,1,1)

plot(t,y(:,1), xx,yy, “linewidth®, 2)

legend("dynamic spring deflection [m]", "static spring deflection [m]~, 4)

lab = [falift = " num2str(av), ", T = " num2str(T) ", b = *, num2str(b), *, bcrit = *
num2str(b_krit)];

title(lab, "“fontsize", 16); axis([0 0.6 -0.01 0.03]);

xlabel ("time [s]", “fontsize®, 16); ylabel(“deflection [m]*", "fontsize", 16)
subplot(3,1,2)

plot(t,y(:,2), " linewidth", 2)

legend("velocity [m/s]"); axis([0 0.6 -0.4 0.6])

xlabel ("time [s]", “fontsize®, 16); ylabel(“velocity [m/s]", “fontsize®, 16)
subplot(3,1,3)

plot(t,S, XX,yyy, "k--", xXxX,yyyy, "k:","linewidth", 2)

ylabel ("spring force [N]°, "fontsize®, 16)

xlabel ("time [t]", "“fontsize®, 16); axis([0 0.6 -1000 2500])

legend("spring force [N]", "static "“weight"" [N]", "steady state value [N]", 4)
print -djpeg -r300 fig_vaha_ ve_vytahu_en

% end of edu_UL_2013_DY_03_vaha_ve_vytahu_en

function dy = vaha(t,y)

global av k m g B;

dy = zeros(2,1);

dy(1) = y(2);

dy(2) = -B*y(2)-k*y(1)/m + av + g;
% end

One sees, that the transient solution converges to the stationary one. This is reminded by the
following example.

Example — ascending lift, a steady state solution

Given: A person, considered as a particle

of mass m , stands on the spring balances l D

firmly connected to a lift, which ascends

by a constant acceleration a, .

Determine: The normal reaction N from

the balances to the person. See Fig. D19. N

Equation of motion is N X, X, X, ay
-D+N-mg=0, ” ” - T

D =ma,,a, =const,

N= m(aV + g).

Fig. D19. Weighing a person in a lift

The normal force N represents the value of the ‘apparent weight’ in an ascending lift. Of
course, the mass is not changed at all. If the lift falls down (i.e. a, = —g), then the force

D, 21 May 2018 39



acting between the person and the balances is equal to zero and the state of weightlessness, or
the absence of weight, is felt.

Extended Example A1 — the same phenomenon as viewed by inertial and non-inertial
observers

Newton's law, in its simple form, i.e. F =ma, is only applicable to a particle in a so-called
inertial frame of reference. In older textbooks, the term inertial frame reference was nicely
defined as a system which is attached to fixed stars. Such a system can be either absolutely
still or moving with a constant velocity with respect to fixed stars. A non-inertial frame of
reference 1s a frame which undergoes acceleration with respect to an inertial frame.

Since the Universe is expanding and constantly accelerating, there are no fixed stars available
and generally, no inertial frame of reference exists. Nevertheless, the Earth can be — for many
(but not all®) engineering applications — approximately considered as the inertial frame of
reference since its orbital accelerations, due to Earth's daily and annual rotations are small.

Consider a simple task where the Earth is considered as the inertial frame of reference while
the streetcar, accelerating on tracks laid on the flat Earth's surface, serves as an example of a
non-inertial frame.

Let the coordinate system x,y represent our approximate inertial reference system, firmly

connected to the Earth. Our task is to analyze the trajectory of a particle having the massm ,
being propelled by a constant force F (imagine a small rocket engine attached to the particle),
which resides in the street car moving in x-direction with constant acceleration a along a
straight horizontal track, while the non-inertial system of reference, i.e. x',)', is firmly
connected to the accelerating streetcar. See Fig. D20. The initial velocities of the particle with
respect to the street car are known. Only the planar motion is considered and also the Earth's

gravity is taken into account. y y Fy
Fy
Using Newton’s formulation, the equations me
of motion, relative to the Earth, are ,
g L Yymg y

mx =Fcosa, my=Fsina—-mg. (Al _1)
. F . F . hooX
X=—cosa, y=—sina—-g. ,

m m X X

Fig. D20. A particle in an accelerating streetcar

Initial conditions of the streetcar.
At the time ¢ =0the axes yand )'coincide, while there is a constant distance / between the

axes x' and x. The street car’s initial velocity is zero.

¥ Foucault’s pendulum or the South-North oriented rivers or the trade winds are examples, where the Earth’s
cannot be considered as an inertial frame of reference, since its rotation and consequent acceleration cannot be
neglected.
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Initial conditions of the particle.
At the beginning, the particle resides at the origin of x',)" system and its initial velocity

COmpONENts are v, = V..,V 5 =V -

Taking into account the prescribed initial conditions, the double integration of Egs. (Al 1),
with respect to time, gives the particle velocities and the particle coordinates as functions of
time, as seen by an outside observer.

Ft Ft .
Vy =Vyt——COSa, vV, =V, +—sina—gt. (Al _2a)
m m
2 2
t Fto . 2
X=v o +—cosa, =y t+—sina——gt". Al 2b
x0 2m Y 0 2m 2g ( — )

Due to the prescribed constant acceleration of the streetcar, the transformation of the
coordinates, between the Earth coordinate system and the streetcar’s coordinate system, is as

follows.

x=x"+s, s=%at2, y=y'+h, h=const. (A1 3)

The velocities v,V ,, belong to the particle. Hence

i=x¥"+§, §=a.
i=xX"+a, y=y. (Al 4)

Substituting the last relation of Eqgs. (A1 _4) into Egs. (A1 _1) gives the equations of motion of
the particle relative to the accelerating street car

mX' = Fcosa —ma, mjy' =Fsina—mg. (A1_5)

The equations (A1 _5) have the form of the equivalence of forces. The left-hand side force (the
inertial force) is equal to the sum of right-hand side, i.e. external, forces. Using the
d'Alembert's principle we might write the equations of motion in an alternative form

—mX'—ma+ Fcosa=0, —my'—mg+Fsina=0. (A1_6)

Now, the equations of motion (Al _6) are expressed in the form of an equilibrium of forces.
The sum of all forces is equal to zero. Of course, it is not the proper ‘static’ equilibrium; it is a
sort of virtual equilibrium, expressed for a moment frozen in time.

An additional force i.e. —ma appears on the right-hand side of equations of motion, in Eq.
(A1_6), written for the non-inertial frame of reference. Cornelius Lancozs [2], calls it an
apparent force or d’Alembert force, which — for an observer attached to the Earth — seemingly
emerges out of nothing’. Evidently, it is the acceleration of the moving frame of reference
which is responsible for the existence of that force.

? In literature one can find other terms for this kind of force, as pseudo-force or fictitious force.

D, 21 May 2018 41



This force might be considered fictitious only for outside observers, who are firmly standing
on the Earth and build up their reasoning without knowing that the particle is in the
accelerating streetcar, which leads them to Eq. (A1 _1).

For the inside observer that force — being often paradoxically called fictitious — is almost real
since it could be physically felt and experimentally measured. So the currently used term, i.e.
fictitious, might appear rather misleading to observers living in a non-inertial frame of
reference, 1.e. in the accelerating street car.

Such contradictory terminology appears frequently. For example, Dare A. Wells in [6] states
that we shall, throughout the book, refer to the product (mass)x (acceleration) as an ‘inertial
force’, while for C. Lancozs in [2] the inertial force is —ma. These two authors, as well as
many others, are using the same term, i.e. inertial force, for two forces of the same magnitude
differing, however, by a plus or minus sign.

Double integration of Egs. (Al _6) with respect time, gives the velocity and coordinate
distribution as functions of time with respect the accelerating street car — the distributions
seen by an inside observer.

Ft Ft .
Vy =Vt ——COSa—at, Vv, =V, +-—sina—gt. (Al _7a)
m m
12 1 1?
X' =v. ot +——cosa ——at*, y =Vl + ——sina ——gt’. (A1 _7b)
2m 2 2m
outside observer
— 6 T T T
= |
L4t 1
: |
;=
Bt 1
: |
[&]
> 0 | 1 L
0 5 10 15 20 25
x cordinate [m]
inside observer
— B T T T T T1
< |
2, |
£ |
£
B2 |
o
8 |
‘>\ G 1 1 1
0 5 10 15 20 25

x' cordinate + street car displacement [m]

Fig. D21. The trajectory of a particle as viewed by two observers

In the upper subplot of Fig. D21 there is a trajectory (see Eq. (Al_2b)) of the particle, fired
from the accelerating street car with prescribed initial velocities, as seen by an outside
observer. In order to compare the results with those of a simple oblique shot case, the value of
the rocket force F was temporarily set to zero. The data in the lower subplot of Fig. D21
show the trajectory as seen by the inside observer. The curve, plotted according to Eq.
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(A1 _7b), is intentionally shifted to the right by the distance the car had traveled during the
period of the time being considered so that one can see that the coordinates of the ‘hit’ point,
are identical for both observers. Of course, the time that elapses before the ‘time to hit’ is
identical for both observers too.

Extended Example A2 — equatorial express

Imagine a train running on the track with a constant speed ~ o
around the equator of the Earth in the opposite direction to
the Earth’s rotation, i.e. clockwise. A simplified sketch is
in Fig. D22. The train, represented by a sleeve, is denoted
by the number 3. The equatorial track, firmly connected to
the Earth, depicted as a part of the circle, is denoted by the
number 2. The number 1 is a fixed point in the Universe —
an inertial frame of reference.

Fig. D22. Velocities and accelerations

Given: The radius of the Earth is r, the speed of the train with respect to the track is
, the angular velocity of the Earth for its counterclockwise rotation is defined by a

Vi = |‘732
vector of angular velocity @,, pointing up vertically out of the picture plane. Its scalar
magnitude is @,, = |67)21|. The corresponding surface speed of a point on the equator, say A, is

v, =ra,, . The situation is schematically depicted in Fig. D22, where the directions of the
speeds are indicated as well. The mass of the train m is concentrated at the point A.

Determine: Evaluate the force reaction between the track and the train — i.e. the actual weight
of the train — as a function of its relative speed with respect to the Earth.

Simplifying assumptions

Since the relative differences in the actual weight of the train, depending on its location and
speed, are of the order of a fraction of one percent, the precise simplifying assumptions have
to be carefully listed.

e The Earth is assumed to be a perfect sphere with a constant radius; » = 6378 km .
e The gravitational acceleration on the Earth’s surface is constant and equal to
2=9.81m/s’.
o . 2
e The Earth’s angular velocity is approximated by @ = —— 1/s
s v 1R app T 24%60% 60

e The orbit of Earth around the Sun is disregarded.

e The actual weight of an object depends on its location on the Earth. When weighing
the object of mass m by a spring balance on the pole, the balance shows the value of
mg . Using the same spring balance and the same object at the equator the weight is

diminished (due to the Earth rotation) by the value of the centrifugal force, i.e. by
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mre®. The relative difference of these two values is 0.0034. The same object,
measured at the equator would be lighter. Its actual weight would be 0.9966 mg .

e The actual weight also depends on its velocity with respect to the surface of the Earth.
e Resistance and friction phenomena are not considered.
¢ In Newtonian mechanics, the mass of an object is considered independent of its speed.

Kinematics

The train moves with respect to the Earth, which simultaneously rotates underneath the train.
In this particular case, the decomposition of motions could be expressed by a symbolic
notation in the form

31=32+21. (A2 1)

This means that
e the absolute motion of the train 3 with respect to inertial frame 1 is composed of
e the relative motion of the train 3 with respect the track 2 plus
e the motion of the track 2 with respect to the inertial frame 1.

For velocities, we can write

Vi =V, + V. (A2 2)

The speed (the magnitude of velocity) of the train v,, = |\732| is constant and known. The speed

of the surface point just below the train is constant as well

vy, = |\721| = w,,r , where @, = |(7)21|. (A2 3)

The resulting acceleration [9] with respect to the inertial frame is expressed by

Ay =ay, +a, +d,,. (A2 4)
Generally, the acceleration vectors a,, and a,, have both tangential and normal components.
In our case, both the rotation of the Earth and the velocity of the train with respect to the track

are considered constant, so the tangential components of these accelerations are identically
equal to zero, i.e.

Ay =05, =0. (A2 5)
What remains are normal (centripetal) components of accelerations. Their magnitudes are
a,, =vs,/r and a,,, =v;,/r, (A2_6)
while their directions are indicated by arrows in Fig. D22.

The Coriolis acceleration is defined as a vector product of the angular velocity of rotation and
the relative velocity. In our case
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A ooy= 20y, X Vs, . (A2 7)

1S

Since the vectors @,, and v,, are perpendicular, the magnitude of the resulting vector

aCOI’
A, =20,V5, =2V, v, /7. (A2 )

For the accepted clockwise train rotation the vector a_ . points out of the centre of rotation as

cor

indicated in Fig. D22. In this case, it is in the opposite direction with respect to directions of
normal acceleration vectors a,,, and a,,,. The vector a_, would have the same magnitude

but an opposite direction if the train rotation were considered counterclockwise. So the
magnitude of the resulting radial acceleration with respect to the inertial frame is

ay =mvi, | r+mvi [ r=2mvyv,, /r. (A2 9)

Evaluating Eq. (A2 9), for the train speed v,,varying from zero to 2v,,, we obtain the

resulting normal acceleration of the train as a function of its speed. Its normalized value,
related to the gravitational acceleration, i.e. a;, /g, as a function of the normalized relative

, 1s plotted on the left-hand side of Fig. D24.

speed |v32 /vy,

Dynamics

The forces acting upon the mass particle, act along a single
line connecting the center of rotation and the point A, at
which the mass particle, representing the train, is located. See
Fig. D23. Hence, in the subsequent analysis, it suffices to
express the equilibrium of forces in the scalar form.

Fig. D23. Forces

Sitting on the train, we write the equations of motion using the d’Alembert approach [2]
requiring us to consider the apparent inertia forces. Each apparent inertial force is defined as a
product of the mass and the appropriate negative accelerations as follows

0,,= mv322 / ¥ — centrifugal force due to the relative motion 32 with centripetal acceleration as,,,

O,, = mv3, / r— centrifugal force due to the carrier rotation 21 with centripetal acceleration a,,,,

F. . =2mv,,v,, /r— Coriolis force due to the carrier rotation @,, and the relative speed v, .

cor

Furthermore, due to Newton's gravitational law, there are the reaction force R, between the
track and the train, and the train's actual weight W, which also has to be taken into account.
Forces and their directions are shown in Fig. D23.
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The equation of motion of the train (considered as a particle) has a form of ’dynamic’
equilibrium

R+0,,+0,~W-F, =0. (A2_10)

cor

So the reaction force is
R=W +F.—0,, -0, =mg+2mvy,v,, [r —mvi, /| r —mv;, /7. (A2 11)

The reaction force between the track and the trains corresponds to the train’s actual weight. Its
relative value, i.e. R/mg, as a function of the absolute value of the relative speed |v32 /vy,

plotted in the right-hand side of Fig. D24.

, is

«10° Relative normal acceleration ... a31l/g Actual weight related to 'correct’ weight ... R/(mg)
3.5 T T T T T 1 T T T T =) T T T T
(

accelaration as a function of speed
O valueforw2=0

O  value for v32 = 21

3t ¢ value for 32 = 2421 B 0.9995

0.999 -

0.9985 -

0.998

0.9975

0.997 = weight as a function of speed
O \alueforvd2=0
O value for V32 = v21

¢ \alue for \32 = 2421 b

0 0‘2 0‘4 016 O.‘S T 1.‘2 1.‘4 1.‘6 1.‘8 2 : 0 O.‘Z O.‘A O.‘G 018 ‘1 1‘.2 1‘4 1‘6 1‘8 2
Train speed related to surface speed Train speed related to surface speed

Fig. D24. The normal acceleration and the actual weight of a train circling the equator
clockwise as functions of relative speed.

Now, a few singular cases are discussed in detail.

Case 1 — stationary train at the pole, i.e. v;, =v,, =0.

If a stationary object (train) is weighed at the Earth’s pole using a spring balance we would
get the value of its weight (the force of gravity) which is influenced neither by the Earth’s
rotation nor by the object’s speed. Under these conditions the reaction between the object and
the Earth is R =mg . This location might serve for the definition of the value of the ‘correct’

weight.

Case 2 — stationary train at the equator, i.e. v;, =0.
The train is stationary with respect to the Earth, so v,, = 0. In this case, the ‘correct’ weight of
the train is diminished by the centrifugal force O,, = mv;,/r due to the rotation of the Earth.

Thus, the actual value of the weight is R = mg — mrao’.
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Case 3 — the train circling the equator clockwise with v, =—v,,.

The train runs on the track around the equator in the opposite direction to the Earth’s rotation.
For velocity vectors we have v;, =—v,,. Their magnitudes, called speeds, are identical, i.e.
v =v;, =V,,. The resulting velocity of the train v,,, with respect to fixed stars, is identically
equal to zero, which directly comes from Eq. (A2 _2).

The resulting acceleration a;,, with respect to fixed stars, according to the rearranged Eq.
(A2 9),is

ay =mv’/r+mv’/r=2mw/r=0

and is equal to zero as well.

So, the outside observer, firmly attached to the fixed stars, i.e. to the inertial frame of
reference, sees the train as a stationary object with zero velocity v,, and with zero

acceleration a;, .

In the inertial frame of reference, the train is stationary and is subjected to no acceleration. As
a result, there are no inertial forces and there is no need to talk about dynamics. The only
forces acting on the train are the reaction force R between the track and the train and its
weight W resulting from Newton’s gravitational law. Applying the static conditions of
equilibrium leads to R=mg . So, in this case, the actual weight of the train, circling the

equator clockwise withv,, = —v,,, is the same as that measured on the pole.

What about the inside observer, travelling on the equatorial train? Of course, he/she uses the
same equation (A2 4) as far as the acceleration is concerned, but his/her attention is
concentrated on the right-hand side of the equation. The resulting zero on the left-hand side is
composed of three non-zero components. And according to d’Alembert’s principle, each
acceleration component is complemented by a corresponding apparent (fictitious) inertial
force, defined as a product of mass and negative acceleration, in agreement with Eq. (A2 11).
So in this case, we have

R=W+F,_ -0, -0, =mg+2mv’ [r—mv’/r—mv’/r.

cor

The Coriolis force and the two centrifugal forces cancel themselves out and thus the reaction
force is

R=mg.

We have obtained the same result both for inertial and non-inertial observers independently of
the method of observation. This is rewarding.

Finally, what is the speed v, of the train with respect to the Earth satisfying the conditions of
Case 3? As far as the magnitudes of vectors are concerned we have
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V=V, =V, =ro, = 63780002411% =463.8m/s =1670 km/h .
X X

This is a high value, but not excessively so. At the expense of this relatively high relative
speed, needed for satisfying Case 3 conditions, we get the same weight as that measured on
the pole. With respect to the weight of the stationary train (Case 2,v,, = 0), the train traveling

clockwise, with v, =—v,,, is heavier by 0.34 %.

Case 4 — train circling the equator clockwise with v,, = -2v,,.

Both the acceleration and the reaction force are the same as in the Case 2. See Fig. D24. The
detailed analysis of this case is left to the reader.

Example — stationary merry-go-round problem
A chain merry-go-round turns with a °
constant velocity @. The seat plus the
person sitting on it, having the mass m, —
are considered as a particle. The massless Z
rope of the length / is attached to the
frame of the merry-go-round at the
distance r from the rotation axis. The free
body diagram is in Fig. D25.

Given: r,l,0,m O = m(r+Isin 05)032

Determine: o > >

Fig. D25. Merry-go-round
Using the d’ Alembert approach, the equations of motion are

O-Ssina =0,

Scosa—mg =0.
where

the rope force is denoted S and the centrifugal force is O = m(r + [sin)w” . Rearranging we
get

mg
cosa

mro* + mlo® sina — sina =0,

tan

re’ +lo° —————gtana =0.
V1+tan’ o

To simplify the solution we introduce a new auxiliary variable, say x = tan« , and then
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ro* + lo*

ad -0

For given values of 7,/ itis easier to evaluate angular frequency @ as a function of x, i.e. as

gax
Ix

VI+x?

a function of angle « . So the inverse formula, i.e. ® = , 1s programmed, instead

r+

of the required function x = f(w).

For details see the program DO6_merry_go_round_stationary_solution and its graphical
output shown in Fig. D26.

RPM vs. deflection x10*" Data:ir=51=5 m=100
80 T 6
5 L
60 —
= = 4t
E g
= e
£ 40 c 3
= @
(5]
@ s 2
20 L
1 L
0 . : : : 0 ; : 2
0 20 40 60 80 100 0 20 40 60 80 100
Angle in degrees Deflection in degrees
Apparent weight vs. RPM Deflection vs. RPM
60 " " " 100 - . .
= Dimensionless force in rope
2 50| s=essssss | jfe threatening value 80t
2 I
‘S =
= g 60y
o el
e &=
g o 40}
=] o
= c
= <
o 20+t
S
w
0 . - : 0 . : ;
0 20 40 60 80 0 20 40 60 80
RPM in [1/min] RPM in [1/min]

Fig. D26. Matlab output. Results for =5, /=5, m = 100

% DO6_merry_go_round_stationary_solution
% original file name is merry_go_round_c5

clear

% alpha ... angular deflection

% x ... tan(alpha)

% r ... radius

% n . number of revolutions per minute (RPM)
% om = pi*n/30 ... angular velocity
% 1 ... length of rope

% g . gravitaional acceleration

% m . mass

%

% alpha_r ... angle in radians

% alpha_d ... angle in degrees
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r = 5; %[m]

1 = 5; % [m]

g = 9.81; % [m/s™2]

m = 100; % kg

% range of possible angular deflections

alfa_d = 0.1:0.1:89; --- in degrees
alfa_r = pi*alfa_d/180; ... In radians

R = r + I*sin(alfa_r);
om2 = g*tan(alfa_r)./R;
om = sqrt(om2);
% x = tan(alfa_r);
% om = sqrt(g*x./(r + I*x. /sqrt(l + X-*x)));

n = m*30/p| % RPM from angular velocity

S = m*g./cos(alfa_r); % ... force in rope

SO = m*g; % ... initial weight

S rel = S/SO; % ... Fforce related to original weight
figure(l)

= [90 90]; yy = [0 80];
subplot(2,2,1); plot(alfa_d,n, "“linewidth®, 2); grid;
xlabel ("Angle in degrees®); ylabel("RPM in [1/min]")
title("RPM vs. deflection®)

txt = ["Data: ","r = " num2str(r), “, I = " num2str(l) *, m = ° num2str(m)];
subplot(2,2,2); plot(alfa_d,S, "linewidth®, 2); % grid
title(txt)

xlabel ("Deflection in degrees®); ylabel("Force in rope [N]")

xxg =[0 30]; yyg = [6 6];

subplot(2,2,3); plot(n,S_rel,"b-", xxg,yyg, "k--", “linewidth", 2); grid
title("Apparent weight vs. RPM®)

ylabel ("Force in rope related to mg [1]"); xlabel("RPM in [1/min]*)
legend("Dimensionless force in rope®, "Life threatening value®, 2)
subplot(2,2,4); plot(n,alfa_d, "“linewidth", 2); grid

ylabel ("Angle in degrees®); xlabel("RPM in [1/min]*)

title("Deflection vs. RPMT)

print -djpeg -r300 merry_go_round_c5_ fig_1

% simplified problem with r = 0
R = I*sin(alfa_r);

v_s = g*R.*tan(alfa_r);

om_s = sqrt(v_s./R);

n_s = om_s*30/pi;

figure(2)

plot(n,alfa_d,"b-", n_s,alfa_d,"b--", "linewidth", 2)
title("Compare solutions®);

ylabel ("Angle in degrees®); xlabel("RPM in [1/min]*)
legend("Full solution®, "Simplified case”, 4)

axis([0 100 0 90])

print -djpeg -r300 merry_go_round_c5_fig_2

The dimensionless force in the rope, shown in the subplot (2,2,3) of Fig. D26. is the actual
force related the force in the rope when the merry-go-round is in rest, i.e. to mg . Its value,

depicted as a function of revolutions, shows how many times the tension in the rope is greater
than its rest value and is clearly correlated to the riding comfort of a passenger. The values
above five of six would be unacceptable. Recall the troubles of fighter pilots when subjected

to high acceleration tests carried out on centrifugal machines.

Observing the value of the dimensionless tension force in the rope as a function of number of
revolutions, one might estimate the safe range of operating conditions of the merry-go-round.
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The problem is simplified if »=0 and
R=Isinax. See Fig. D27. Then, the
equation of motion are

mRw* = Ssina,
mg =Scosa,

2
= tana =

g

Fig. D27. Merry-go-round
Since w =v/R we get the required velocity to attain the inclination « in the form

v =gRtanc .

Compare solutions
90 | T T I I 1 — I T

T Ll
annnne R
ann!

e 4] [+}]
o o o
T T I

algle in degrees

30

10

= full solution with r NE. zero

===emns simplified case
1 1 1 1 1 1 I I I

0 10 20 30 40 50 60 70 80 90 100
RPM in [1/min]

Fig. D28. Merry-go-round — two solutions
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From the engineering point of view the mathematically simple case with » =0, would be
difficult to realize. The comparison of two discussed cases is in Fig. D28.

Example — a collar sliding along the rotating rod

Given: A collar, considered as a particle of mass m,

could freely move along a rod, being perpendicularly ZZ

welded to a shaft, which rotates by a constant angular ) _ 0 T m
velocity @ . Its magnitude is |c?)| =w = m,,. See Fig. D29.

The gravity and friction effects are neglected. The X
immediate position of the particle is denoted by x -

coordinate. The initial conditions: For # =0 the position ZE

and velocity are x = x,,x =v,. T

Fig. D29. A collar sliding along the rotating rod

Determine: The equations of motion, solve them and express the distance x as a function of
time and of the rotation angle, say « .

If the particle is labeled by the

number 3 and the rotating shaft ZIZ
by 2, and the fixed frame by 1,
then the motion of the particle VM T w2

eor

may be schematically described
as

31 =32+21,

meaning that the resulting
motion of the particle with
respect to the frame (31) is
composed of the relative motion

of the particle with respect to the -
I

*'f'r-m'

rotating rod (32) plus the carrier
motion of the shaft (21) with
respect to the frame 1.

Fig. D30. Kinematics and dynamics
See Fig. D30. The resulting velocity of the particle is expressed by
V3 = Vi + ¥y,
where the corresponding scalar values are

Vi, =X, V) =X0.

Since the carrier motion is of rotary nature the resulting acceleration contains the Coriolis
acceleration term, so
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ay) =ay, +a, tae,,
where the relative acceleration is
a,, =X.

Since the angular velocity @,, = const, then the tangent component of the carrier acceleration
d,, =0. The carrier acceleration a,, is given by its normal component a , only since

®,, = const and thus &,, =0.

2
=X

|a21| = %21
Finally, the Coriolis acceleration is

ey = 20, X Vs, .

Since the vectors @,,,V,, are perpendicular, the magnitude of Coliolis acceleration is simply

Aeor = |aCor =2, vy, =2w,,X .

For dynamics of non-inertial systems, D’Alembert introduces apparent inertia forces being
multiples of mass and corresponding negative accelerations. In this case we have d’Alembert

apparent inertia force F, =mi, centrifugal force is F, =mx®; and Coriolis force is
F

ooy = Mac,, . Directions of velocities, accelerations and forces are indicated in Fig. D30 by

arrows. Since there are no forces acting within the direction of the rotation axis, two scalar
equations of motion for the considered particle in 3D space are needed only.

.. 2
mx —mxwy, =0,
N -2ma,x =0,

where N is the normal reaction between the particle and the rotating rod.

Note: If the friction is taken into account, then the friction force Nf, where f is the friction
coefficient, will act along the x axis as it is indicated in Fig. D30, where N =2ma®, x. Then,

the first equation of motion would have the form mx + 2mfw, x — mxw3, = 0.

Dividing the first equation of motion by m and simplifying the notation by o = w,, we get
F-0’x=0.

The equation could be solved by means of so-called characteristic equation

P-0'=0, = i,=10
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and then the solution is expressed in the form
x =Cexp(4t) + C,exp(A,t) = Ce™ + C,e™™.

The unknown integration constants are obtained from two initial conditions.
Fort=0, x=x,,so0

x,=C, +C,.
(2)

Fort=0, x=v,.

The second condition for finding unknown integration constants requires evaluating the
derivative of the assumed solution x = C,e” + C,e™, which gives

x=Cwe” —C,we™™.

Substituting the initial conditions into the derivative of x we get
v, =Co-C,o. (b)
From (a) and (b) we obtain

X0+ V X0 —V
_ 70 0 _ 70 0
c,=202"0 o 2@

20 2w

So, the displacement of the particle, sliding along the frictionless rotating rod, as a function of
time, 1S

X,@+, Xg0—V, _
x==0 0 420 Qe
2w 2w

The program DO7_projectile rotating_barrel generates Fig. D31 depicting the
displacement of the projectile as a function of time and also as a function of the angle of
rotation « = wt. It is assumed that the initial conditions are: t =0, a=0.

See the program projectile_rotating_barrel_edu_UL_04_kmi_odpudiva_sila

% projectile_rotating_barrel_edu_UL_04_kmi_odpudiva_sila
clear

incr = 0.01;

X0 = 2; vO = 3; om = 0.5;

t = 0:incr:7;

alpha = om*t;

Cl1 = (x0*om + v0)/(2*om);
C2 = (x0*om - v0)/(2*om);
x1 = Cl*exp(om*t);
X2 = C2*exp(-om*t);

X = X1 + X2;
xdot = Cl*om*exp(om*t) + C2*om*exp(om*t);
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Ffigure(l)

subplot(1,2,1)

plot(t,x, k", "linewidth®, 2.5)

title("projectile in rotating barrel®, “fontsize®, 16)

xlabel ("time [s]", " fontsize", 16); ylabel(“displacement x [m]", " fontsize", 16)

subplot(1,2,2)
polar(alpha,x, "ok"); grid
title("polar plot of displacement x*, "fontsize®, 16)

print -djpeg -r300 fig_projectile_rotating_barrel

projectile in rotating barrel
140 T T T

120 . polar plot of displacement x

90 150
100 1
£ 150,
> .
= 80 1
()
= 180
3
& 60 .
0 210
o

40

270

20

time [s]

Fig. D31. Matlab output — displacements as functions of time and of angle
Example — motion of a particle in gravitational field

Newton gravitational law states that the A a
attraction force between two bodies is m
directly proportional to the product of v a,
masses and indirectly proportional to the
square of their distance. Let’s apply the
law to the motion of the Earth around the a

Sun, which is assumed to be in the origin X
of the coordinate system. See Fig. D32.

v

F=x mlll = ﬁz , Fig. D32. Motion of a particle in gravitational field
r r

where 7 = /x> + y* is the immediate distance and the gravitational constant is k = xmM .
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Constants

K=6.67x10" m’kg™'s?, M =1.99x10° kg.

Initial conditions
a) Position
x, =r=15x10"m

Yy =0.

b) Velocity of the Earth
v,=0,

Vo =2.9x% 10* m/s.

Equations of motion are

... initial distance of the Earth from the Sun,

sina=y/r=ﬁ,
X +y

0’ =kim=xM
®* =1.3273e + 020

mx =—Fcosa, h / X
. where cosa =x/r = ——;
my =-Fsina, \/x2 +J’2
mx__kcosa _ kK X
r X +y2 \/xz +y2 9
i — ksina k y
)y 2 X +y2 \/xz +y2 ’
ek X g X
m (2 4 2 2 42 b’
( y ) ( Y ) where we have introduced
y:_g Y Y
ner ]

ODE integrating procedures of Matlab require a system of the first order equations. A suitable

substitution mightbe x=2z; y=w.
From it follows
) X )
=0 e, W=t
(x +y )2 (x +y )2

Rearrange, rename and relate to original notation.
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_ 2 X . _
zZ=—@w B z=Dp, z=p, Vi,
(x2+y2)2
y=w y=p; Y=p; ¥
Wz_wZ# W=p4 W=p4 cee vy'
(x +y )2

Assemble newly named variables and equations in an array fashion

b1 = P

: -w’p,

D=7 +>
© (ot p2)

D3 = Dus

. — @’ p,

by=
C (o)

Rename again

N =D

. -0’y
W=7 >
©orearf
V3= Va4
, = "09?V3

C i)

Matlab implementation of equations of motion is provided by the function central .m.

function dydt = central(t,y)
Omega2 = 1.3273e+020;

dydt = [y(2); -Omega2*y(1)/sqrt((y(1)"2 + y(3)"2))"3; --.
y(4); -Omega2*y(3)/sqart((y(1)"2 + y(3)"2))"3];

% end of function dydt = central(t,y)

The main program is

% test_central_cl

% numerical integration of equation of motion

% describing a motion of a particle in gravitational field

% force of gravitaton F = kappa*m*M/r~2 = k/r”2; Newton"s law
% kappa is gravitational constant, mass of Sun is M, mass of Earth is m,
% r is the distance

kappa = 6.67e-11 % m"3 kg™N-1 sec™-2;

M = 1.99e30 % kg

r = 1.5ell % m

% k = kappa*m*M

% Omega2 = k/m = kappa*M;

Omega2 = kappa*M

Omega = sqrt(Omega2)
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% m*ddotx = -F*cos(alpha)/r~2;

% m*ddoty = -F*sin(alpha)/r"2;

% r = sqrt(x"2 + y"2);

% cos(alpha) = x/r; sin(alpha) = y/r;

% Omega2 = k/m;

% xddot = -Omega2*x/((x"2 + y"2)"(3/2));
% yddot -Omega2*y/((x"2 + y"2)"(3/2));

year = 365*24*3600
tspan = [0 year]; % timespan

% initial conditions

X0 = 150e9; % m ... initial position of Earth, distance from Sun
vx0 = 0;

yo = 0;

vy0 = 29600; % m/s ... initial starting velocity of Earth

yO = [x0 vx0 yO vyO]; % initial conditions for ode function
[t.y] = ode23(@central,tspan,y0);

% Relation to original coordinates

% y(:,1) ... X

% y(:,2) ... vX
% y(,3) --. Yy

% y(,4) -.. vy
figure(l)

subplot(2,2,1); plot(t,y(:,1)); title("x coordinate®); axis([0 year -2ell 2ell]);
xlabel ("time in [s]")

subplot(2,2,2); plot(t,y(:,2)); title("vx velocity"); axis([0 year -4e4 4e4]);
xlabel ("time in [s]")

subplot(2,2,3); plot(t,y(:,3)); title("y coordinate”); axis([0 year -2ell 2ell]);
xlabel ("time in [s]7)

subplot(2,2,4); plot(t,y(:,4)); title("vy velocity®); axis([0 year -4e4 4e4]);
xlabel ("time in [s]")

figure(2)
xxS = 0; yyS = 0;
XXE = x0; yyE = 0;

% plot circle

tt = 0:pi/64:2*pi;

xX = X0*cos(Omega*tt);

yy = X0*sin(Omega*tt);

plot(y(:,1),y(:,3), "0-", xxS,yyS,"ok", xxE,yyE,"sk", xx,yy,"--", "linewidth®, 2.1)
xlabel("[m] ", “fontsize®, 14); ylabel("[m]", "“fontsize®, 14)

legend("computed elliptical orbit®, "Sun®, "Earth initial position®, “circle”, 3)
axis(“square”); axis([-1.6ell 1.6ell -1.6ell 1.6el1])

text(-0.05e11,-0.1el11, "Sun®)

title("Earth elliptical orbit and a perfect cirle®, “fontsize", 18)
% orbital velocity

v_orbit = (y(:,2)."2 + y(:,4)."2).~N(1/2);

Ffigure(d)

subplot(2,1,1)

plot(y(:,2), y(:,4)); axis("square”); axis([-4e4 4ed4 -4e4 4e4])
title("vx versus vy")

subplot(2,1,2)

plot(t,v_orbit)

title("abs. value of orbit velocity vs. time"); xlabel(“time in [s]")
% end of test_central_cl

Computed and plotted data in Fig. D33 are for following inputs. Data are highly approximate.

Gravitational constant K=6.67x10" m’kg”'s? ,
Mass of the Sun M =1.99x10" kg.
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Initial conditions

a) Position

x, =7 =1.5x10"m ... initial distance of the Earth from the Sun,
Y, =0.

b) Velocity of the Earth

v,=0,

V,o =296 10* m/s.

1ot Earth elliptical orbit and a perfect cirle

15r

0.5+

—©— computed elliptical orbit
O Sun
O Earth initial position
LS H === circle
T

[m] x 10

Fig. D33. Trajectory of the Earth around the Sun is almost circular

D6. Vibration

The subject is fully described in the chapter Vibration of the electronic publication prepared by
Stejskal, V., Dehombreux P., Eiber, A., Gupta, R., Okrouhlik, M.: Mechanics with Matlab, pp. 301 —
461. Faculté Polytechnique de Mons, Belgium, April 2001, ISBN 2-9600226-2-9, see also
http://www.geniemeca.fpms.ac.be.

D7. Moments of inertia and deviatoric moments

The moments of inertia and deviatoric moments are
measures defining how the mass is distributed within

a rigid body.

0
In statics, we have dealt with similar quantities called H *f{"
linear (static), and quadratic (also called the second) ‘ g h
moments of area — we computed these quantities | |l Ld_\' x
considering moments of planar or volumetric

elements with respect to coordinate axes. Let’s
remind how we computed the quadratic moment of L b X
the cross-sectional area with respect to the x-axis. See Fig. D34.

Fig. D34. Quadratic moment of a rectangular cross section
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b/2h/2 1;/2)}_3”/2 1b/2h3 4 b/2 4
24 24 2 12

Jo=4[ [y dedy=4] dx = —j—dx:—h3jdx_—h[]g’2 A b Ly
0 0 0

In dynamics, instead of summing quadratic moments of elementary planar elements dxdy, we
are evaluating sums of quadratic moments of masses belonging to mass elements, i.e.
p ¥ dxdy , where quantity p is the planar density measured in [kg/mz]
y

Generally, the moment of inertia of a body of the

mass m composed of n material particles m, (or d i
of all infinitesimal elements dm) about an axis, Ri o(a,B,7)
say o, is defined by the relation j

Y

= R m =R dm, (D7_1)

m 14 o
where R’ is the square of the shortest distance of / *
each elementary mass dm from the considered Xi
axis. See Fig. D35.

&

Fig. D35. Moments of inertia

Sometimes, another quantity named the gyration radius used. It is defined by the relation

ro= o (D7 2)
m

I —J(y +z )dm
= [+ 5 Jam, (D7 3)
=.[ x>+ y? dm

Sometimes, an alternative notation for moments of inertia is used, namely

I =1,1=1,I_=I. (D7_4)

x2 Ty yo Tz

The moments of inertia with respect to coordinate planes are

1. = [()am, 1., = [(y*)am, 1,, = [ (z* )am. ..(D7.5)

Observing the above relations, it is obvious that

L=l 41 0, =1 _+1,1 =1_+1I,_. (D7_6)

x>y xy? "z yz
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The moment of inertia with respect to the origin of coordinate system is

I +1 +1.
jx + )+ 2 dm:[w+1yz+12x=+. (D7 _7)

The deviatoric moments are defined by

D, = Ixydm, Dyx = Iyxdm = ny’

m

D, = j yzdm, D, = j zydm=D,, ..(D7.8)

D_ = J.zxdm, D_ =J.xzdm =D,_.

The moments of inertia and deviatoric moments are often assembled into a single matrix
known as the inertia matrix

Ix _ny _sz Ixx _ny _sz
1=|-D, I, -D.|=|-D, 1, -D,| (D7_9)
_sz _ny ]z _sz _ny ]zz

Notice that the matrix is symmetric. The dimensions of elements of the inertia matrix are
mass x square of length, i.e. [kgm2 ]

Example — moments of inertia

Given: A cone having its apex in /
the origin of the coordinate system
x,y 1is defined by its dimensions
and the density p . See Fig. D36. r
Determine: Moments of inertia dy
with respect to coordinate axes y
X,),Z. <

To simplify the computation the
mass element is considered as a

ring with the radius y, the height . o
dy and the thickness dx.

Fig. D36. Moment of inertia for a conus

[

/
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Then, the moment of inertia about x axis is

I = J‘yz dm, where dm = p27z ydxdy.

horx/h h 4]k h r4x4/h4 p 4 h -
I :2ﬁpj J‘y3dxdy:2ﬂp_[{y7} dx=27rpj 2 dx = ;’;; Ix4dx=—phr4.
0 0 0 0 0

kg

Dimensional check: —3rn5 =kgm”.
m

In this example the density p was put in front of the integral sign since it is assumed that it is
distributed homogeneously within the considered body.

In cases where the density is a function of spatial coordinates then it must stay behind the
integral sign and be properly integrated with spatial coordinates describing the body’s shape.

2

) . . . 3
In engineering textbooks, one can find an alternative formula, ie. I :—Omr , Where

m= %ﬂpl”zh is the mass of the cone. Check, that the formulas are identical.

Moment of inertia about y axis
I, = Irzdm = I(xz + Zz)dm = szdm +I22dm =1,+1,.
We know that

I.=1,+1,.Andalso that due to symmetry /=1

xz 2

= [ =21 _and finally

[.=112="Lp*.
: 20

Still, we have to determine

yz

I_= J.xzdm, dm = pny*dx, y=rx/h.

Now, the mass element is taken as a circular plate of the radius y and the thickness dx. So,

h 2
r

I_= J‘pﬂ?xzxzdx

TP 2,3
)z =P
0

Finally, 1, =1, +1,. = %hr‘* +ﬂ—§0h3r2 JL=1,.
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Example — deviatoric moments y

Given: A blade, depicted in Monge’s

projection with its dimensions according in
Fig. D37, has the density p.

Determine: Deviatoric moments.

Due to symmetry we have D,_ =0, D_=0.

Xz

D, = J‘xydm ,

dm= psdxdy,
y=£x—£a :%(x—a)x.

b b

a+bc(x—a)lb

D

xy

at c(x—a)lb
= I !psxydxdy = ps J‘bx{y?z} dx =

0 a 0

2 a+b
J.x(x2 —2ax + az)dx =

0

_ psc
2b°

2 a+b
= gsbcz J.(x3 —2ax’ +a’x)dx =

0

Example — moment of inertia

Given: [, and p — density per unit length. See Fig. D38. Y

Determine: 1 ,D,,.
I = _[yzdm, D, = J-xy dm.

dm = pds, ds=+/(dx) +(dy) .

sin
y=kx, k=tana =

, NI+

cosa
dy=kdx=ds=dxV1+k*.

lcosa

lcosa
I = jyzdm = Jp(kx)zx/l +k% dv = phN1+ k2 szdx =
0 0

1 sin‘a 1 1 )
=— Pcos’a==pl’sin*a.
3'Ocosza cosa 3'0
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ds

dx

X

Fig. D38. Moment of inertia

%pklel +k’Pcos’a =

63



lcosa

Similarly D, = Ixydm = Ix(l@c)p\/l+k2 = ...:%,013 sinacosa .

0

To understand the subject of mass distribution of rigid bodies we have presented a detailed
procedure how moments of inertia are calculated. Usually, the formulas for moments of
inertia as well as deviatoric moments are not computed from the scratch but are readily found
in engineering textbooks instead. As an example, a few of frequently used formulas are
presented below.

Moments of inertia of rigid bodies of mass m

body axis 1
thin rod, length L perpendicular axis through centre émL2
thin ring, radius R perpendicular axis through centre mR*
circular cylinder, radius R axis of cylinder %mR2
thin disk, radius R transverse axis through centre lmR2
4
. . 2
sphere, radius R any axis through centre ngz
thin spherical shell, radius R any axis through centre %mR2

thin rectangular plate, a x b ... axis through centre perpendicular to plate ém(a2 + bz)

D8. Dynamics of rigid bodies
It should be reminded that

e rigid bodies do not deform due to applied forces and moments,
e mass distribution within a body is characterized by
0 the location of the centre of mass,
0 the moments of inertia,
0 the deviatoric moments,
e usually, it is assumed that the density is distributed homogeneously within a body,
e afree body in 3D space has six degrees of freedom, thus six equations of motion are
required (at least three of them have to be of moment nature),
e afree body in 2D space has three degrees of freedom, thus three equations of motion
are required (at least one of them have to be of moment nature).
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D8.1 Translatory motion

All the material points (particles) of the considered body have (in a given moment) the same
trajectories, velocities, and accelerations. The angular velocities and angular accelerations are
equal to zero.

Momentum p=mv,

Angular momentum about the centre of mass S Ly=0, ..(D8_ 1)
Angular momentum about a generic point O L,=r;xmv,

Kinetic energy E = %mvz. (D8 2)
Vector equations of motion about a generic point O are

ma=YF, (DS_4)

ryxma= ZMI.O or about the centre of mass S 0= ZM,.S .

The above vector relations are generic. They are valid universally. For a body in 3D space we
write six scalar equations instead. Equations of motion about a generic point O are

max = ZE‘C >

ma, =Y F,, .. (D8_5)
ma, =Y F.

m(ysaz —zsay):ZM[x O:ZM[SX s

m(zga, — xqa.)= ZM i or about the centre of mass S 0= ZM Sy (D&_6)
m(xsay —ysax):ZMiz O=ZM,.SZ.

Hint — apparent inertia forces for a translatory motion

The apparent inertia forces and moments for a body
subjected to a translatory motion, written with respect
to the centre of mass S, are

D=-mi,M>=0.

The vector D and the upper right index D stands for

d’Alembert. See Fig. D39. Notice, that in
accompanying pictures the shown vectors are denoted
by oriented lines with arrows, showing the direction,
and by letter labels having no above arrows. So the
labels indicate just the magnitudes of particular vectors.

&}

Fig. D39. Inertia forces — translation
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Example — a skidding car on a slope

Given: Dimensions m,l,h,b,a , the coefficient of friction f and gravitational acceleration g .
A car of the weight O =mg, whose wheels are fully braked (no rotation), is skidding
downwards the slope inclined by an angle « . The initial velocity of the car is v,. See Fig.
D40, where the free body diagram forces are indicated.

}.'

Fig. D40. Motion of a skidding car
Determine: The final velocity v, at a distance / from the beginning.

Scalar equations of motion are

X: —D-N,f—-Ngf+0Osina=0,
y: N, +Ny—-Qcosa =0,
M,: —Qbcosa—Qhsina+2bN, +Dh=0.

where D=ma, Q=mg.

By subsequent rearranging and integration, we get

2

a=-g(fcosa—sina), % =g(sina - fcosa), v = \/vg +2gl(sina — fcosa).
x

The task has a meaningful solution only if @ >0, i.e. if sina > fcose, that is if tana > f'.

Notice that as far as the acceleration is concerned, the result is identical with that of the
particle sliding down an inclined plane.
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Example — translatory motion.

Given: A rod of weight G is constrained to the
frame by two ropes of the same length /. See
Fig. D41. ¢ Y

Determine: The equations of motion. Sa Sg

All the points of the rod are subjected to the \\jA I S IZ\Q

same trajectory, velocity and acceleration. Thus, [\ I
by definition, the whole body is subjected to a /n
translatory motion. The equation of motion for G

the centre of mass, written in a vector form, is
ma=G+S, +8S;.
Fig. D41. Swinging rod

Newton’s formulation of the equation of motion expressed in a scalar form for tangential and
normal components and for the centre of mass §, are

t: mlp = —mgsin @,
n:  mlg’ =S, +8, —mgcosg,
Mg: 0=8,+S; —mgcose.

We have used the known kinematic relations for tangent and normal acceleration components
Le, a =1lp, a,=lp.

Example — translatory motion N

Given: A block of given dimensions and of the Poax =
weight G slides along the horizontal plane '
being towed by a constant force P to the right.
The coefficient of friction is f. See Fig. D42, D v>(0 h
where the free body diagram forces are
depicted.

~3

Determine: The maximum possible magnitude
of the force P which does not cause the block
to tilt.

Fig. D42. A Sliding block
The equations of motion, written in d’ Alembert’ style, are

x: P—-ma-Nf =0,
y: N-G=0,
Mg: Nn—P(h—s)—Nfs=0.

We have three equations for three unknowns, i.e. a,n, N. The ‘non-tilt’ requirement comes
from the fact that the normal reaction should stay within the contact area, thus n </. From
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[-fs

-8

this we get P<G

. Of course, there is another condition, i.e. % >s, which has to be

satisfied.
D8.2 Rotary motion

Summary of kinematics rules for a particle at the radius R subjected to the rotation with
angular velocity @ and angular acceleration ¢ .

The velocity v=Row.
The tangential acceleration a,=Re=Ro.
The normal (centripetal) acceleration a,=R&’ =Vv'/R.

DS8.2.1 Planar rotary motion

is described by the fact that the considered body has its symmetry plane perpendicular to the
rotation axis. In that case, it is sufficient to write three equations of motion in which inertia
effects of individual particles are expressed by three overall effects — by the apparent
centrifugal force, by the apparent tangential inertia force and by the apparent inertia moment.
D’Alembert style is used for the explanation.

There are three possibilities.

a) Apparent inertia effects (forces and moment) related to the centre of rotation O.
See Fig. D43.

T =ma, =mRg ¢ ... apparent tangential inertia force, ©.€

perpendicular to the OS line, acts at the centre of /
rotation; its direction is opposite to that of tangent
acceleration.

O=ma =mR.@* ... apparent normal inertia force
n S

(centrifugal force) acts against the direction of the
normal (centripetal) acceleration.
My =1, ... apparent inertia moment acts against

the direction of angular acceleration.
Fig. D43. Apparent inertia forces for the centre of rotation

R is the distance between the centre of mass and the axis of rotation and

1, is the moment of inertia about the axis of rotation.

D, 21 May 2018 68



b) Apparent inertia forces related to the centre of mass S. See Fig. D44.

T =ma, = mRqe ... acting at the centre of mass,
O =ma, = mRw’,
M, =Ie¢.

R; 1is the distance between the centre of mass and the

axis of rotation, M, is the apparent inertia moment

and /g is the moment of inertia about the centre of
mass.

Fig. D44. Apparent inertia forces for the centre of mass
¢) The third possibility is rarely used.
It is based on the fact that a force and a moment could be generally replaced by a laterally
shifted force. In this case, the centrifugal force is the same as before, but apparent tangential
force, whose magnitude is same as before, acts at the distance / from the centre of rotation.
Its location is obtained from
Tl=1,c=>1=1,e/T=1,e/mpe=1,/mps.

And now, why it is so.

A body of the massm rotates around the point O by angular velocity @ and by angular
acceleration ¢ . The distance of the centre of mass S from the centre of rotation O is 7. See

Fig. D45.

The apparent normal inertia force, i.e. the
centrifugal force, acting on the i -th particle is

O =mro".

1 1

Summing these forces all over the body we get

- _ 2_ 2 _ 2
O—ZQ —Zmirl.a) =w .[1;. dm =mro” .
m

static moment

The resulting force is aligned with OS line.

Fig. D45. Resultants of apparent inertia forces
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The apparent tangent inertia force acting on the i -th particle is
T, =mre .

When this force is transferred laterally to the origin O, a corresponding couple has to be
added, i.e.

M,=Tr,=mrc.

Summing it up for the whole body we get

— firstly, the apparent tangential inertia force that acts at the centre of rotation and is
perpendicular to OS line

T=Z]} =Zm,.rie=8 J-r,. dm =mre,

m
.
static moment

— and secondly, the apparent inertia moment

M=%M=>mrc=¢ Irfdm =1,

moment of inertia

where [, is the moment of inertia about the centre of rotation.

As before, the resulting tangential force could be laterally shifted to the centre of rotation.
Then, the additional couple, i.e. 77, has to be added. Thus, the apparent inertia moment is

M=1¢c-Tr,= (IS +mrS2)g—mrszg =,
where [ is the moment of inertia about the centre of mass.

Notice that the directions of apparent inertia effects, in agreement with d’Alembert’s
principle, always act against the directions of corresponding accelerations.

One has to carefully distinguish two close terminological terms appearing in the relation
M = Ig. The term M on the left-hand side is the apparent inertia moment — it is measured in

Nm = kgm?®/s*. On the right-hand side we have the geometrical quantity / which is called

the moment of inertia — it is measured in kg/m’. Knowing that the dimension of ¢ is 1/s’
one 1s satisfied.
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Example — swinging rod

Given: The rod is constrained to the frame by a # r
frictionless joint. In its vertical position, it is held by 3))_\/\/\/\/\/\ ry
two initially unstretched springs. The values of string
stiffnesses, dimensions, mass and the moment of I Y
inertia with respect to the centre of mass, i.e.

€,,Cy, 1,1, b, m, J, are known. In Fig. D46 the rod is | Ao nion A (E )
depicted in a generic position, characterized by the | [y

angle ¢, with corresponding free body diagram
forces and moments. Ray
Determine: Period of vibration under the assumption

of small rotational displacements. Rax A
If apparent inertia effects are considered with respect S‘]

to the centre of mass S, then the scalar equations of ¢
motion are

X: R, =8, —-S,-Tcosp+Osing =0, /

: m %2
y: R,,—mg—Tsinp—COcosp =0, 8 Ae
S
M, : Trg+Jse+ S cosp+S,r,cosp+mgrsing =0, &.
~ wE

Fig. D46. Rotating rod

where centrifugal and apparent tangent inertia forces, spring forces and the relations between
the moment of inertia with respect to point A and to the centre of mass, are

O =mrw’ =mrg’, T = mre = mry,

S, =cnsing, S, =c,r,sing,

J,=mrg +J.

The last relation is sometimes referred to as the parallel axis theorem or the Steiner’s rule.

Note: When elongations of spring forces S,,S, are evaluated a small arc due to the rod

rotation is approximated by a straight line. For small angles, this is an acceptable
approximation.

The third equation leads to

@(mry + J )+ (017”12 +o,r )sin(zJCOS(p +mgr,sing =0.

Ia
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For small angles, we use the following approximations, i.e. sing = ¢, cos@ =1, so

J 9+ (clrl2 +o,r )(o +mgryp =0,
N i +cyry + mgr; o=
JA
QZ
And finally, the period of vibration is

727 _ Ja ,
Q o +c,ry +mgr

0.

Example — falling rod

Given: r;,m,g,J ,,S ... the centre of gravity. Fig. D47.
Determine: How the rod bar falls from the vertical position, i.e. find the function @ = @ ().

y
Equations of motion are 9, 0,€
— 0 = mrs?
X: R, —Tcosp+Osing =0, éiﬁ?g

y: R,, +Tsinp+Ocosp—mg =0,
M, : mgrgsing—J,s=0.

Normal and tangential accelerations are
rs

Rax
Fig. D47. Falling rod

Apparent normal (centrifugal) and tangential inertia forces and inertia moment are

_ _ 2
O =ma, =mr,w,
T = ma, = mre,

M =J,e. Recallthat J, =Jg+mr.
Kinematic relations

Ly, _Gp_do_dw

0=—, &=— = .
dt 2 dr 2de
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From the moment equation of motion, we subsequently get

o= 8l sin @ do’ _ mgrgsing
J, 2de J,

s
¢

J-da)2 :%J.sin(p dp, o = —@(cowp—l).

0 A 0 A

So the angular velocity @, expressed as a function of angle ¢, is

A

W= \/%n;ﬁ(l—cosw).

D8.2.2 Spatial rotation of a body about an axis

The coordinate system &,77,4 is firmly connected m
to the rotating body. See Fig. D48. A generic 0 = mipi?
mass particle m,, subjected to the rotation around

~

. . Ny, Ti = mipi€
the £ axis by the angular velocity @ and by the 4

m; = (.M, &)

. ‘I ,.
angular ‘ acceleration 2{;‘ , has the normal 0 \\ _
acceleration  q, = p,® and the tangent // i
acceleration a, = p.&. According to d’Alembert “ ¢
principle, there are the apparent centrifugal force

O, =m,p,»" and apparent tangential inertia force

I'=mp.e. The directions of forces O, T are

1

opposite to the directions of corresponding
accelerations a, ,a, .

Fig. D48. Spatial rotation
In the chapter devoted to kinematics, we have derived

a,:=0,
= —?n
a,, =—01, =&,

2
a, =-w°¢ +en,.

It should be reminded why it is so. The velocity of a particle defined by the radius vector
F=xi+y/+ zk ofa body subjected to rotation defined by the angular velocity

o=wl+o,j+k is given by the cross product

~.]

<l
Il
IS
X
~)
Il
= £

= ;(wyz - a)zy)+ Jox—wz)+ lg(a)xy - a)yx).
- N [ ———

v,
Vx y V.

< & ~u
N8
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The acceleration components are obtained by expressing the derivatives of velocity
components with respect to time

X

a, = i OZ+OI—0Yy—0Y=EZ+OV,—EY—0V,,
a,=EX+0Y, —EZ2-0V, =X+ 0, (a)yz - cazy)— E.z— a)x(a)xy - cayx),
| — [ —

VX VZ
a.=&y+oy,—Ex—0y =&y+ o (0x-wz)- ExX—, (a)yx - a)zy).
— | —

vy
y Vy

In our case, we have 0, =w, =¢,=¢. =0, éo
a,=0,a, =0’ y-€2,a =—@.2+&,).
The similarity is obvious. It suffices to rename variables in such a way that
x>&y-onz—>E.

Now, back to the resulting force which would arise due to summation of elementary forces
0,,T,. These forces could be expressed by components in &,77,{ directions as

D, =-mga,,,

D, =-ma, , where
2

iy =—WOT]; — &5

i

_ 2
Qy =—0 é,i +&mn;.

Using the definition of static moments, coordinates of the centre of mass 7,{ and the
overall mass of the body m we get the apparent inertia forces in the form

Df? = _zmiaiﬂ = Zmiwzni + zmigé/i = 602”1775 + mé/s 5 (D8_7)
D, = _zml’ai§ - —Zmi(— a)zé/i + ‘9771'): a)zmé/s —émijg . (D8 8)

The above relations could be easily verified by a simple Oi
geometric consideration depicted in Fig. D49. The T

projections of elementary forces O,,7; into the coordinate 7
i
axes are
(2
2 2
01'77 =0, co8p, = m,®" p, COs Y, = m°1];,
: 2 : 2
01‘; =O;sing, = mo”p;sing, = ma°g,, pi n;
T, =T;sing, = mép,sing, = méq,, o;
Ty =T, cosg, = mgp, COSP; = m;er;.

Fig. D49. Components of apparent forces
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The forces were summed up and transferred into the origin of the coordinate system.

requires a few moment components to be added.

The moment of apparent inertia forces is

I
_Zﬁxmia:_zmi /A

~
Ll

The components of this apparent vector related to the coordinate axes are

é: : _Zmi(niaz[ _é/iain)’
n. -— zm,( ,a,g - §iai§)’
é’ : —Zmi(é:iam _niai.f)’

where Zmlni, Zml.é’ - Zmié. are static moments about coordinate axes.

Substituting

_ 2
a,, =—1n,—8&,,

2
q=-0 g +en,,
into previously derived relations we get three moments.

1) The moment of apparent inertia forces about the & axis

Mé = _Zmi(m‘aig _Ciain>: _zmi[ni(_ a)zé/i + 577,')_4/,'(_ a)277i _gé/,-)]:
—52”1[(77[2 + é/iz): _8Zmip[2 = _].5 2

2) The moment of apparent inertia forces about the 7 axis

This

... (D8_9)

M, ==Y mlc0-&(- ¢ +en)=-0* S m&d + €3 mén, =-’C, +£C, ... (D8_10)

3) The moment of apparent inertia forces about the ¢ axis

M, == mle(-o’n, - e)-0|= @Y mén, +63 més, =?C, +6C,. .. (D8_11)
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The quantity /, is the moment of inertia about the rotation axis.
If 1, =0, we say that the body is statically balanced. It means that the centre of rotation of

that body ‘sits’ at the axis of rotation.
The quantities C, =C,, a C, =C,, are deviatoric moments.

A dynamically balanced body requires the deviatoric moments to be identically equal to zero
as well.

D8.3. General planar motion

We proceed the same way as in kinematics and complement each acceleration component
with a corresponding apparent inertia force.

In a given moment the motion of a generic particle of a body subjected to general planar
motion is assumed to be described by the velocity and acceleration of the reference point plus
by a relative rotational velocity and acceleration of the considered particle around the
reference point. In kinematics, we have described the basic and the Coriolis decomposition.

D8.3.1. Basic decomposition

It is advantageous to decompose the overall motion into two parts, i.e. the carrier motion of
the translatory nature plus the relative rotational motion around the chosen reference point.

There are two ways how to proceed.

First. The decomposition is carried out
with respect a generic reference point K,
whose trajectory, velocity v, and
acceleration a,, as well as relative

angular velocity @ and relative angular
acceleration, are known. See Fig. D50.

Fig. D50. Dynamics of general planar motion — 1
Then, the magnitudes of apparent inertia forces and of apparent inertia moment are
D =may (D8 12)

... the apparent inertia force due to the carrier translatory motion, it is situated in the center of
mass S of the considered body, its direction is opposite to that of the carrier acceleration a,,

O = mew’ (D8 _13)

... the apparent relative normal force (called the centrifugal force), situated in the reference
point, its direction is opposite to that of relative normal acceleration of the centre of mass S.
The quantity e is the shortest distance between the centre of rotation and the centre of mass.
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T =me¢ (D8 14)

. the apparent relative tangential force, situated in the reference point, its direction is
opposite to that of relative tangential acceleration of the centre of mass S.

M=Je (D8_15)

... the apparent relative inertia moment, its direction is opposite to that of relative angular
acceleration ¢, where J, is the moment of inertia of the body with respect to the reference

point K.

Second. The situation is simplified if the centre of
mass is chosen as the reference point. See Fig. D51.

In this case, the forces O and T become null, since

the distance e is zero. What remains is the apparent 3
o ) : ®,€
inertia force due to the translatory carrier motion.

The magnitude of this force is

D =mag (D8 16)

Fig. D51. Dynamics of general planar motion — 2
and the apparent inertia moment due to the relative rotation. The magnitude of this moment is
M =Je, (D8 _17)
where J, is the moment of inertia of the considered body with respect to the centre of mass.

Example — cylinder rolling down an inclined
plane

Given: mass m , moment of inertia J with respect

to the center of mass S, radius 7, angle « .
Determine: equations of motion

In Fig. D52 is depicted a cylinder at a generic
position x, the immediate quantities are the
velocity v, acceleration of the centre of cylinder
a.

Fig. D52. Rolling cylinder

A free body forces are the normal force N, the weight mg, the rolling resistance force 7 . It
should be reminded that the rolling resistance force differs from the force of friction.

The apparent inertia effects consist of the force D due to the translatory motion and of the
apparent inertia moment Jq¢ whose direction is against that of angular acceleration ¢ .
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We can write the kinematic relations in the form
Vg =re, dg=ré&

and then the equations of motion are

X: mgsina —T —mag =0,
Vv —-mgcosa+N=0,
Mg: Tr—Jge=0.

=T,N,¢&,a.

When the unknowns are calculated, the condition of pure rolling has to be checked. The
rolling resistance should be always less than the force of friction, i.e. 7 < Nf', where f is the
coefficient of friction.

The rolling of a body might be imagined as a combination of a translatory motion of the body,
characterized by the translatory motion of the centre of mass, plus the rotary motion of the
body around the centre of mass. The kinetic energy is obtained by summing the translatory
and rotary energy contributions, thus

E :lmvs2 +lJSa)2 :
2 2

This expression is sometimes referred to as the Konig’s rule.

The velocity at the location x might be alternatively computed from the condition that the
difference of kinetic energies (at the end minus that at the beginning) is equal to the work
exerted by external forces. It is only the body’s weight which works here.

Ex_Ex=0:W7

|| ) ,
Emvs+5JSa) —0=mgxsina,
1

Js\ 2 .
—(m+—)v{ =mgxsina = vy.
2 r

D, 21 May 2018 78



D8.3.2. Coriolis decomposition

The general planar motion could also be decomposed into the carrier motion of rotary motion
plus the relative motion which could be of translatory or rotary nature.

Example — a pendulum on the merry-go-round.

A pendulum is attached at joint A to the @21
rotating frame. See Fig. D53.

Given: @,,,r,l,m Z
A rod, attached to an arm rotating by a
constant angular velocity ,, = const,
could freely swing about the joint A.

Determine: Apparent inertia forces
The motion (31) of the particle of mass
m at point S can be decomposed into the
carrier rotation (21) plus the relative
rotation (32). ZJE

V32

- 032 = may3;
T'|= may32

ymg

teor = 2(02] X V32
2]

an21 V32C08Q O = ma,n|

Dcor = 2maniv3p cos @
Fig. D53. Pendulum attached to merry go round

Kinematics — velocities and accelerations.

Velocitity of S with respect to the frame (1)

S: vy, =V, +Vy,,

where the magnitudes of velocities are

v, =lg, Vi =(r+lsin(0)a)21.

Acceleration of S with respect to the frame (1)

S: a,,=a,+a, +a

cor ?

a3y =0y + Ay, Ay =0y 4y, Aoy =200, X Vs,

where the magnitudes of accelerations are

D, 21 May 2018 79



ay, =19, a5, = l¢2 sy, =0,ay, = (r + lsm@)wzzl s Qoo = 200V, Sin(%_¢} =2w,lpcose.

Dynamics — vectors of apparent inertia forces and their magnitudes.

|

., = —md,,, , Oy, =mlp> ... apparent normal inertia (centrifugal) force due to relative rotation,
]:32 =-may,, , T, =mlp ... apparent tangential inertia force due to relative rotation,
21 = TMdyy,,

w0, = m(r + sin (o)a)zzl ... apparent normal inertia (centrifugal) force due to carrier rotation,

T, = 0, 7,,=0,(&,=0) ... apparent tangential inertia force due to carrier rotation.
And finally
D, =-ma, , D, =2w0,l¢pcose .. apparent Coriolis inertia force.

D8.4. Summary to dynamics of rigid bodies

At first, consider a system of
individual particles of mass m,,

later we will deal with elementary
mass elements dm .

Let x,y,z is an inertial coordinate
system and £&,77,4 is another

coordinate system which translates
and rotates with respect to the
former. The origin of &1,

system is defined by a radius
vector r,. The system &,1,4
rotates with respect to x,y,z with

IS
Uy

the angular velocity ® and the
angular acceleration ¢ .

Fig. D54. External and internal forces

External and internal forces acting on the particle m, are F",F, .
Radius vector p, determines the location of m, with respect to the origin of the coordinate
system&,7,¢4 . See Fig. D54.

Equations of motion are

Y ma,=>F, (D8_18)
> xma =Y rxF.. (D8_19)
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In kinematics, we have derived that the velocity and acceleration of the i -th particle can be
expressed by

V.=Vo+toxp,+vV, .. =V, . +v, . .. carrier and relative velocity, (D8 20)
ai = aQ +oXx pi + X ((’0 X pi ) + 2((’0 X Virelative)+ aire]ative = aicarrier + az'Coriolis + airelative . (D8_21)

a itangential A jnormal QAjCoriolis

Ajcarrier

... carrier, Coriolis and relative accelerations.

Indices relative, carrier denote relative and carrier components, respectively. Substituting Eq.
(D8 21) into Eq. (D8_18) we get

E
Z mi (aicarrier + aiCoriolis + airelative) = ZFl
and after introducing apparent forces the equations of motion have
E E
0 = ZFZ - Z mi (aicarrier + aiCoriolis + airelative) = ZFl + zDicarrier + ZDiCoriolis + ZDirelative

.. (D8 22)

Evidently, we have introduced

D, =-ma,,.,. ... apparent forces due to carrier motion,
D, =—-ma, ... ... apparent forces due to relative motion,
D.=-ma,, ... ... apparent forces due to Coriolis acceleration.

Moment effects are obtained by substituting (D8 21) into (D8 _19).

0 = Zrz x FIE + Zri x Dicarrier +zri x Direlative +Z l-i x DiCoriolis . (D8_23)

Expressed in words

Writing equations of motion in a non-inertial coordinate system requires adding apparent
inertia forces due to the carrier, relative and Coriolis accelerations.

If the carrier motion of translatory nature, then there are no Coriolis forces since ® =¢=0.
Example — dynamical balancing

In Fig. D55 there is depicted a machine part originally consisting of two cylindrical shafts,
denoted by number 1 and 2. The first has the length a and the diameter d, while the second

has the length » and the diameter d,. To that part, which is dynamically balanced, two

additional small cylinders, denoted by numbers 3 and 4, are attached. The rotating body is
supported by two bearings — radial on the left, axi-radial on the right. There are two
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coordinate systems. One stationary, the other rotating with the body, the latter is distinguished
by primes.

Given: Dimensions, @, & .

Determine: The magnitudes and positions of two counterweights to be added in order to
secure the dynamical balancing of the depicted machine part. The counterweight masses
should be positioned in planes I and II, respectively. See Fig. D55.

\ A J?
3
Ra Ry
5
' l(bdl
» | |
7771 Rp, \O4
W /ﬁ% B
_t
Z $d R;;-
[ a b c [
L
Vi y2
] 11
12
1l
Lm
Z1 I _<|'
m

Fig. D55. Dynamical balancing
The cylinders 3 and 4 are considered as particles. Then, the tangential and centrifugal

apparent inertia forces, acting on them during the rotation with angular velocity @ and
angular acceleration ¢, are

T, =mhe, O,=mhw’

T, =mhe, O,=mho’.
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The scalar equations of motion are

M. : M=Jc¢,

x: Ry =0,

M,: R.L-0,(L-1,-c/2)-T,(L-1,-¢c/2)=0,
M.: O(L-1,-c/2)-T,(L-1,-c/2)+ Ry L=0,
M,: R,L-T,(l,+c/2)-04(,+c/2)=0,
M,: R.L-Ty(l,+c/2)-0,(l,+¢c/2)=0

We intend to balance the body by adding two so-called counterweights in the form of two
mass particles in planes I and II. The balancing particles should be located at distances p', p"

from the rotation axis and oriented by angles «',a" from the vertical plane.

The body is in the state of dynamic equilibrium if the moment effects of apparent inertia
forces are null. Let’s simplify our effort by assuming that @ =const. Then e=0=T7T=0.
So, the following conditions have to be satisfied

O,(a+b+c/2)+0"asina" =0,

0,(b+c/2)-0'asina' =0,

M O,(a+b+c/2)-0"acosa" =0,

M_: O)b+c/2)+0'acosa' =0,

where O' =m'p'w*and 0" =m" p"w”. After substitution and cancelling by @’ there remain
six unknowns, i.e. m',m", p', p",a',a" , in previous four equations.. Choosing the values of

' o" . then the remaining four, i.e. m',m",a',a", could be determined.
9 9 9 b 9 9 b
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