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Preface

The Mathematics for Artificial Intelligence and Data Science course was created in the academic year
2021/22 as part of the MSc course on Artificial Intelligence and Data Science (MAID) organized jointly
by the University of South Bohemia in České Budějovice and Deggendorf Institute of Technology. This
collection of tutorial exercises accompanies the main textbook [1] and provides students with enough
practical exercises. If you have any questions or improvement tips, feel free to contact us.

T. A. Revilla, J. Valdman - the authors.
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1 Systems of linear equations

We aim at solving the system of linear equations

A x⃗ = b⃗,

where A ∈ Rm×n is a rectangular matrix with m rows and n columns, b⃗ ∈ Rm is the right-hand side
vector and x⃗ ∈ Rn is a solution vector. There are three options: there is either no solution, one
solution, or infinitely many solutions. We demonstrate is graphically for the problem in three space
dimensions. Then the solution of the linear system of equations corresponds to the intersection of three
planes. We consider three different problems (taken from [1], example 2.2, page 20) in forms 1 1 1

1 −1 2

2 0 3


 x1

x2

x3

 =

 3

2

1

 , (1.1)

 1 1 1

1 −1 2

0 1 1


 x1

x2

x3

 =

 3

2

2

 , (1.2)

 1 1 1

1 −1 2

2 0 3


 x1

x2

x3

 =

 3

2

5

 . (1.3)

The first system (1.1) corresponds to no intersection of all planes (although any pair of planes intersect
in various lines), the second system (1.2) to one intersection point and the third system (1.3) to
intersection of all plane in one line. See Figure 1.1.

(a) (b) (c)

Figure 1.1: The planes in (a), (b) and (c) correspond to the three equations defined by (1.1), (1.2)
and (1.3), respectively.
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1 Systems of linear equations

The distinction of three cases is easy to see from the corresponding reduced echelon forms of all
three system providing 1 0 3

2 0

0 1 −1
2 0

0 0 0 1

 ,

 1 0 0 1

0 1 0 1

0 0 0 1

 ,

 1 0 3
2

5
2

0 1 −1
2

1
2

0 0 0 1

 .

Exercise 1.1. Three masses c, h and 2 are balanced as shown below. What are the values of c and h?

c
2h

40 50

15

c
2 h

5025

25

Solution. Balance requires that torques on the left and right side of the lever are equal:

40h+ 15c = 50 · 2
25c = 25 · 2 + 50h

Divide both sides of the 1st equation by 2 and both sides of the 2nd by 25 to get

8h+ 3c = 20

c = 2 + 2h

Substitute c from the 2nd in the 1st and solve h

8h+ 3(2 + 2h) = 20 → 8h+ 6 + 6h = 20 → 14h = 14 → h = 1

Solve c = 2 + 2 · 1 → c = 4

Exercise 1.2. The following reaction between toluene and nitric acid produces TNT and dihydrogen
monoxide

x C7 H8 + y HNO3 −−→ z C7 H5 O6 N3 + w H2 O

Find x, y, z, w.

8



Solution. From the law of conservation of matter

conservation of C: 7x = 7z

conservation of H: 8x+ 1y = 5z + 2w

conservation of N: 1y = 3z

conservation of O: 3y = 6z + 1w

Or the same thing as
7x + 0y − 7z − 0w = 0

8x + 1y − 5z − 2w = 0

0x + 1y − 3z − 0w = 0

0x + 3y − 6z − 1w = 0

This system of equations is homogeneous because the independent terms are all 0. We solve this system
using row operations 

7 0 −7 0 0

8 1 −5 −2 0

0 1 −3 0 0

0 3 −6 −1 0


This is the augmented matrix of coefficients. The vertical line represents the equal sign (=). and the
columns on the left side correspond to the variables (the order maters!)

• Subtract row 1 multiplied by 8/7 from row 2, i.e., R2 = R2 − 8
7R1:

R2 8 1 −5 −2 0

−8
7R1 −8

7 · 7 −8
7 · 0 −8

7 · (−7) −8
7 · 0 −8

7 · 0
R2 0 1 3 −2 0

→


7 0 −7 0 0

0 1 3 −2 0

0 1 −3 0 0

0 3 −6 −1 0


• R3 = R3 −R2: 

7 0 −7 0 0

0 1 3 −2 0

0 0 −6 2 0

0 3 −6 −1 0


• R4 = R4 − 3R2: 

7 0 −7 0 0

0 1 3 −2 0

0 0 −6 2 0

0 3 −15 5 0


• R4 = R4 − 5

2R3: 
7 0 −7 0 0

0 1 3 −2 0

0 0 −6 2 0

0 0 0 0 0


This is a row echelon form (REF). The 4th row is redundant, we have three independent rows/equations

7x− 7z = 0

y + 3z − 2w = 0

−6z + 2w = 0
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1 Systems of linear equations

From the 3rd z = 1
3w, from the 1st x = 1

3w, and from the 2nd y = 2w − 3 · 1
3w = w.

We are left with w, it can be anything! Positive, negative, zero! Of course, since we are dealing with
matter here, let us consider a “sensible” value, like w = 3. Then z = 1, x = 1 and y = 3. Now

C7 H8 + 3 HNO3 −−→ C7 H5 O6 N3 + 3 H2 O

is mass balanced.

Remark. In the mechanical example there is only one solution. There are three masses and two
constraints, i.e., the two equations, but one of the masses (“2”) was already set. In the chemical
example, there are infinite solutions because the total mass of the system is not constrained.

Exercise 1.3. Solve the system from the mechanical exercise 1.1 using Cramer’s rule.

Solution. Given [
8 3

−2 1

]
︸ ︷︷ ︸

A

[
h

c

]
︸ ︷︷ ︸

X⃗

=

[
20

2

]
︸ ︷︷ ︸

b⃗

h =
∆h

∆
=

∣∣∣∣∣ 20 3

2 1

∣∣∣∣∣∣∣∣∣∣ 8 3

−2 1

∣∣∣∣∣
=

20× 1− 2× 3

8× 1− (−2× 3)
=

14

14
= 1

c =
∆c

∆
=

∣∣∣∣∣ 8 20

−2 2

∣∣∣∣∣∣∣∣∣∣ 8 3

−2 1

∣∣∣∣∣
=

8× 2− (−2× 20)

8× 1− (−2× 3)
=

56

14
= 4

• ∆: the determinant of A

• ∆h: like ∆ but 1st column replaced by b⃗

• ∆c: like ∆ but 2nd column replaced by b⃗

Exercise 1.4. Solve the system from the mechanical exercise 1.1 using multiplication by the inverse.

Solution. Given [
8 3

−2 1

]
︸ ︷︷ ︸

A

[
h

c

]
︸ ︷︷ ︸

X⃗

=

[
20

2

]
︸ ︷︷ ︸

b⃗

We want to do this

AX⃗ = b⃗ → A−1AX⃗ = A−1⃗b → IX⃗ = A−1⃗b → X⃗ = A−1⃗b

where I is the identity matrix

[
1 0

0 1

]
Find the matrix inverse. There is a very simple formula for 2× 2 matrices

A =

[
8 3

−2 1

]
→ A−1 =

1

8 · 1− (−2 · 3)︸ ︷︷ ︸
determinant

[
1 −3

2 8

]
︸ ︷︷ ︸

adjugate matrix

=
1

14

[
1 −3

2 8

]
=

[
1
4

−3
14

2
14

8
14

]

Then

X⃗ = A−1⃗b =
1

14

[
1 −3

2 8

][
20

2

]
=

1

14

[
20− 6

40 + 16

]
=

1

14

[
14

56

]
=

[
1

4

]

10



Exercise 1.5. Solve the system from the chemical exercise 1.2 by gaussian elimination.

Solution. Start with the REF (disregard the last row full of zeros) 7 0 −7 0 0

0 1 3 −2 0

0 0 −6 2 0


The numbers with squares are pivots, they are the first non-zero elements of their rows and the last
non-zero elements of their columns. We want the reduced row echelon form (RREF) where all pivots
are equal to 1 and the only entries of their columns

• R1 =
1
7R1 and R3 = −1

6R3  1 0 −1 0 0

0 1 3 −2 0

0 0 1 −1
3 0


• R1 = R1 +R3 and R2 = R2 − 3R3  1 0 0 −1

3 0

0 1 0 −1 0

0 0 1 −1
3 0


Now see  1 0 0 −1

3 0

0 1 0 −1 0

0 0 1 −1
3 0


︸ ︷︷ ︸

RREF

→
1x + 0y + 0z −1

3w = 0

0x + 1y + 0z −1w = 0

0x + 0y + 1z −1
3w = 0

→
x = 1

3w

y = w

z = 1
3w

The general solution of the equation MV⃗ = 0⃗ is

V⃗ =


x

y

z

w

 =

α


1
3

1
1
3

1

 |α ∈ R



Exercise 1.6. (ex. 2.5a from [1]). Find the general solution of
1 1 −1 −1

2 5 −7 −5

2 −1 1 3

5 2 −4 2




x1

x2

x3

x4

 =


1

−2

4

6


Solution. Write the augmented matrix

1 1 −1 −1 1

2 5 −7 −5 −2

2 −1 1 3 4

5 2 −4 2 6


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1 Systems of linear equations

Perform gaussian elimination
1 1 −1 −1 1

2 5 −7 −5 −2

2 −1 1 3 4

5 2 −4 2 6

→ · · · →


1 0 2

3 0 7
3

0 1 −5
3 −1 −4

3

0 0 −2 2 −2

0 0 0 0 1


The last row of the REF tells us that 0 · x4 = 1 which makes no sense. This system is inconsistent, it
has no solutions.

Exercise 1.7. (ex. 2.5b from [1]). Find the general solution of
1 −1 0 0 1

1 1 0 −3 0

2 −1 0 1 −1

−1 2 0 −2 −1




x1

x2

x3

x4

x5

 =


3

6

5

−1


Solution. Notice that the matrix of coefficients is not squared, there are 5 variables but just 4 equa-
tions. Yet, we can find a general solution by gaussian elimination.

1 −1 0 0 1 3

1 1 0 −3 0 6

2 −1 0 1 −1 5

−1 2 0 −2 −1 −1

→ · · · →

 1 0 0 0 −1 3

0 1 0 0 −2 0

0 0 0 1 −1 −1


The last one is in reduced row echelon form (RREF), and we can ignore the last row. Put it back into
matrix–vector form and as equations

 1 0 0 0 −1

0 1 0 0 −2

0 0 0 1 −1




x1

x2

x3

x4

x5

 =

 3

0

−1

→
x1 −x5 = 3

x2 −2x5 = 0

x4 −x5 = −1

Notice that x3 does not appear on the right version. This means that any x3 = α ∈ R is valid. Next,
x5 can be chosen arbitrarily, and x1, x2, x4 be given in terms of x5 = β ∈ R, i.e., x1 = 3 + β, x2 = 2β
and x4 = β − 1. Now watch the “miracle”

x1

x2

x3

x4

x5

 =


3 + β

2β

α

β − 1

β

 =


3

0

0

−1

0


︸ ︷︷ ︸

U⃗

+α


0

0

1

0

0


︸ ︷︷ ︸

V⃗

+β


1

2

0

1

1


︸ ︷︷ ︸

W⃗

The general solution is

X⃗ = {U⃗ + αV⃗ + βW⃗ |α, β ∈ R} =


x1

x2

x3

x4

x5

 =




3

0

0

−1

0

+ α


0

0

1

0

0

+ β


1

2

0

1

1

 |α, β ∈ R


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Exercise 1.8. Use gaussian elimination to find the inverse of

A =

[
8 3

−2 1

]

Solution. The inverse has four unknown entries x, y, z, w[
8 3

−2 1

]
︸ ︷︷ ︸

A

[
x y

z w

]
︸ ︷︷ ︸

A−1

=

[
1 0

0 1

]
︸ ︷︷ ︸

I

→

[
8 3 1 0

−2 1 0 1

]

Perform row operations until the left side of the augmented matrix is the identity matrix I[
8 3 1 0

−2 1 0 1

]
×4

→

[
8 3 1 0

−8 4 0 4

]
+R1

→

[
8 3 1 0

0 7 1 4

]
×7

×(−3)

→

[
56 21 7 0

0 −21 −3 −12

]
+R2

×(−1)
→

[
56 0 4 −12

0 21 3 12

]
×1/56

×1/21

→

[
1 0 4

56
−12
56

0 1 3
21

12
21

]
→

[
1 0

0 1

][
x y

z w

]
=

[
1
14

−3
14

1
7

3
7

]
→ A−1 =

[
1
14

−3
14

1
7

3
7

]

Remark. We actually solved a system of four equations in four unknowns

[
8 3

−2 1

][
x y

z w

]
=

[
8x+ 3z 8y + 3w

−2x+ z −2y + w

]
=

[
1 0

0 1

]
→

8x+ 3z = 1

8y + 3w = 0

−2x+ z = 0

−2y + w = 1

Exercise 1.9. (ex. 2.10a from [1]). Check if the following vectors are linear independent

X⃗1 =

 2

−1

3

 , X⃗2 =

 1

1

−2

 , X⃗1 =

 3

−3

8


Solution. Let 0⃗ be the zero vector. Vectors X⃗1, X⃗2, X⃗3 are linear independent if the solution of

aX⃗1 + bX⃗2 + cX⃗3 = 0⃗,

can only be a = b = c = 0.

a

 2

−1

3

+b

 1

1

−2

+c

 3

−3

8

 =

 0

0

0

→

 2a+ b+ 3c

−1a+ b− 3c

3a− 2b+ 8c


︸ ︷︷ ︸
this is a single column!

=

 0

0

0

→

 2 1 3

−1 1 −3

3 −2 8


 a

b

c

 =

 0

0

0



Gaussian elimination  2 1 3 0

−1 1 −3 0

3 −2 8 0

→ · · · →

 1 0 2 0

0 1 −1 0

0 0 0 0


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1 Systems of linear equations

Now we have

a

 1

0

0

+ b

 0

1

0

+ c

 1

−1

0

 =

 0

0

0

→
a+ 2c = 0

b− c = 0
→

a = −2c

b = c

There are infinite solutions, pick any c and you get valid a and b. For instance, try c = 1, a = −2,
b = 1. Thus, the vectors are not independent. You can conclude this from the fact that one of the
rows from the REF is full of zeros.
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2 Vector spaces

Exercise 2.1. Check if R3 = {(x, y, z)|x, y, z ∈ R} is a vector space.

Solution. Let a, b, c, d, e, f, λ ∈ R. Then u = (a, b, c) ∈ R3 and v = (d, e, f) ∈ R3

1. Closure under addition:

u+ v = (a+ d, b+ e, c+ f) ⇒ a+ d, b+ e, c+ f ∈ R ⇒ u+ v ∈ R3

Check.

2. Closure under scalar multiplication:

λu = λ(a, b, c) = (λa, λb, λc) ⇒ λa, λb, λc ∈ R ⇒ λu ∈ R3

Check.

3. Contains zero element:
0 = (0, 0, 0) ⇒ 0 ∈ R ⇒ 0 ∈ R3

Check.

R3 is a vector space.

Exercise 2.2. Check if S = {(x, ax) |x, a ∈ R; |a| ≤ 1} is a vector space.

y=
x

y=
-x

x

y

S

Solution. Let x, y, λ ∈ R and |α| ≤ 1. Then u = (x, αx) ∈ S and v = (y,−αy) ∈ S

1. Closure under addition:

u+ v = (x+ y, αx− αy) ⇒ Let x = 1, y = −1 ⇒ u+ v = (0, 2) /∈ S

Nope.

2. Closure under scalar multiplication:

λu = λ(x, ax) = (λx, a · λx) ⇒ λx ∈ R ⇒ λu ∈ S

Check.

15



2 Vector spaces

3. Contains zero element:
(0, a · 0) ∈ S ⇒ (0, 0) = 0 ∈ S

Check.

S is not a vector space.

Exercise 2.3. Check if the collection of 2×2 matrices with 0’s in the upper right and lower left entries{[
a 0

0 b

] ∣∣∣∣ a, b ∈ R

}
is a vector space.

Solution. Let a1, a2, b1, b2, λ ∈ R

1. Closure under addition:[
a1 0

0 b1

]
+

[
a2 0

0 b2

]
=

[
a1 + a2 0

0 b1 + b2

]

has 0’s in the upper rigth and lower left entries. Check.

2. Closure under scalar multiplication:

λ

[
a1 0

0 b1

]
=

[
λa1 0

0 λb1

]

has 0’s in the upper rigth and lower left entries. Check.

3. Contains zero element: let a = 0, b = 0 [
0 0

0 0

]
has 0’s in the upper rigth and lower left entries. Check.

It is a vector space.

Exercise 2.4. Check if the collection of cubic polynomials with no quadratic term,

a0 + a1x+ a3x
3

is a vector space.

Solution. Let λ ∈ R, p =
[
1 x x3

] a0

a1

a3

 and q =
[
1 x x3

] b0

b1

b3


1. Closure under addition:

p+ q =
[
1 x x3

]
 a0

a1

a3

+

 b0

b1

b3


 =

[
1 x x3

] a0 + b0

a1 + b1

a3 + b3


= a0 + b0 + (a1 + b1)x+ (a3 + b3)x

3

is a cubic polynomial with no quadratic term. Check.

16



2. Closure under scalar multiplication:

λp = λ
[
1 x x3

] a0

a1

a3

 = a0λ+ a1λx+ a3λx
3

is a cubic polynomial with no quadratic term. Check.

3. Contains zero element: let a0 = a1 = a3 = 0

[
1 x x3

] 0

0

0

 = 0 + 0 · x+ 0 · x3

is a cubic polynomial with no quadratic term. Check.

It is a vector space.

Exercise 2.5. (ex. 2.9 from [1]). Which of the following sets are subspaces of R3

A = {(λ, λ+ µ3, λ− µ3) |λ, µ ∈ R}
B = {(λ2,−λ2, 0) |λ ∈ R}
C = {(ε1, ε2, ε3) ∈ R3 | ε1 − 2ε2 + 3ε3 = γ}
D = {(ε1, ε2, ε3) ∈ R3 | ε2 ∈ Z}

Solution. For A:

A =


 x

y

z

 = λ

 1

1

1

+ µ3

 0

1

−1

 ∣∣∣∣∣λ, µ ∈ R


Setting λ = µ = 0 we have the zero vector [0, 0, 0]T. Let

u⃗1 = λ1

 1

1

1

+ µ3
1

 0

1

−1

 , u⃗2 = λ2

 1

1

1

+ µ3
2

 0

1

−1



u⃗3 = u⃗1 + u⃗2 = (λ1 + λ2)

 1

1

1

+ (µ3
1 + µ3

2)

 0

1

−1

 = λ3

 1

1

1

+ µ3
3

 0

1

−1


where λ3 = λ1 + λ2 ∈ R and µ3 =

3
√

µ3
1 + µ3

2 ∈ R. The set is closed under addition. Now let r ∈ R

u⃗4 = r

λ

 1

1

1

+ µ3

 0

1

−1


 = rλ

 1

1

1

+ rµ3

 0

1

−1

 = λ4

 1

1

1

+ µ3
4

 0

1

−1


where λ4 = rλ ∈ R and µ4 = µ 3

√
r ∈ R. The set is closed under multiplication by scalar. A is a

subspace of R3. A is a plane inside a volume.

Solution. For B:

B =


 x

y

z

 = λ2

 1

−1

0

 ∣∣∣∣∣λ ∈ R


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2 Vector spaces

Setting λ = 0 we have the zero vector [0, 0, 0]T. Let

u⃗1 = λ2
1

 1

−1

0

 , u⃗2 = λ2
2

 1

−1

0



u⃗3 = u⃗1 + u⃗2 = (λ2
1 + λ2

2)

 1

−1

0

 = λ2
3

 1

−1

0


where λ2

3 = λ2
1 + λ2

2 ∈ R. The set is closed under addition. Now let r ∈ R

u⃗4 = rλ2

 1

−1

0

 = |r|λ2

 sign(r)
−sign(r)

0

 = λ4

 sign(r)
−sign(r)

0


where λ4 = |r|λ2 ≥ 0 and sign(r) is the sign function. If r < 0 the 2nd entry of u⃗4 is negative and
u⃗4 /∈ B. The set is not closed under multiplication by scalar. B is a not subspace of R3. B is a ray in
the z = 0 plane where y = −x and x ≥ 0.

Solution. For C:

C =


 ε1

ε2

ε3

 ∈ R3

∣∣∣∣∣ [ 1 −2 3
] ε1

ε2

ε3

 = γ


The zero vector [ε1, ε2, ε3]

T = [0, 0, 0]T exists if γ = 0. Let γ = 0 then

x⃗ =
[
1 −2 3

] ε1

ε2

ε3

 = 0⃗ , y⃗ =
[
1 −2 3

] ϵ1

ϵ2

ϵ3

 = 0⃗

x⃗+ y⃗ = 0⃗ + 0⃗ = 0⃗

The set is closed under addition. Now let r ∈ R

rx⃗ = r0⃗ = 0⃗

The set is closed under multiplication by scalar. C is a subspace of R3 if and only if γ = 0.

Solution. For D: If an element of D is multiplied a non-integer number such as 1
2 or π, the result is

not in D. Thus, D is not a subspace of R3.

Exercise 2.6. Consider the following subspace of R4

U = span




1

1

−3

1

 ,


2

−1

0

−1

 ,


−1

1

−1

1




Determine a basis for U .
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Solution. First check linear independence of

v1 =


1

1

−3

1

 ,v2 =


2

−1

0

−1

 ,v3 =


−1

1

−1

1


by proving there is a nontrivial solution for λ1v1 + λ2v2 + λ3v3 = 0

1 2 −1

1 −1 1

−3 0 −1

1 −1 1


 λ1

λ2

λ3

 =

 0

0

0

→


1 2 −1 0

1 −1 1 0

−3 0 −1 0

1 −1 1 0

→ · · · →


1 2 −1 0

0 −3 2 0

0 0 0 0

0 0 0 0


from this we get λ1 + 2λ2 = λ3 and 3λ2 = 2λ3. You can solve the 2nd with λ2 = 2, λ3 = 3, then it
must be λ1 = −1 in the first. Since this solution is non trivial the vectors are not independent, i.e.,
you can get any by combining the other two. Now consider the first two vectors

α1


1

1

−3

1

+ α2


2

−1

0

−1

 =


0

0

0

0


they are independent because the only way that the sum 0 is when α1 = α2 = 0 which is trivial. Thus,
v1 and v2 are independent and can be a basis for U .

BU =

〈
1

1

−3

1

 ,


2

−1

0

−1


〉

⇐⇒ U = span




1

1

−3

1

 ,


2

−1

0

−1




Exercise 2.7. Find a basis and the dimension of this vector space

V =




x

y

z

w

 ∈ R4

∣∣∣∣∣x− w + z = 0


Solution. Use the condition/constraint/equation x−w+z = 0 to parameterize V as the sum of three
vectors

V =




w − z

y

z

w

 = y


0

1

0

0

+ z


−1

0

1

0

+ w


1

0

0

1


∣∣∣∣∣y, z, w ∈ R


Each of the vectors above has a “1” that can’t be generated by combining the other two, i.e., they are
all independent. Thus,

BV =

〈
0

1

0

0

 ,


−1

0

1

0

 ,


1

0

0

1


〉

The dimension of V is the number of vectors of the basis, dim(V ) = 3 . Notice that V ⊂ R4 is a
subspace, a 3-dimensional space embedded inside a 4-dimensional space.
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2 Vector spaces

Exercise 2.8. Find a basis and dimension of{
a0 + a1x+ a2x

2 + a3x
3 | a0 + a1 = 0 , a2 − 2a3 = 0

}
⊆ P3

Solution. Parameterize a0 = −a1, a2 = 2a3. We get{
−a1 + a1x+ 2a3x

2 + a3x
3
}
=
{
a1(−1 + x) + a3

(
2x2 + x3

)}
The polynomial subspace is spanned by −1 + x and 2x2 + x3 which are independent, i.e., neither can
be obtained from the other by multiplication with a scalar. Thus, we have a basis

〈
−1 + x, 2x2 + x3

〉
⇐⇒

〈
−1

1

0

0

 ,


0

0

2

1


〉

and the dimension of this subspace is 2.
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3 Linear mappings

Exercise 3.1. Give a basis for the column space of this matrix. Give the matrix’s rank and nullity 1 3 −1 2

2 1 1 0

0 1 1 4


Solution. We want the basis of the following span

span


 1

2

0

 ,

 3

1

1

 ,

 −1

1

1

 ,

 2

0

4


 ⊆ R3

Check column independence by solving the homogeneous system

x

 1

2

0

+ y

 3

1

1

+ z

 −1

1

1

+ w

 2

0

4

 =

 1 3 −1 2

2 1 1 0

0 1 1 4




x

y

z

w

 =

 0

0

0


That is  1 3 −1 2 0

2 1 1 0 0

0 1 1 4 0

→ · · · →

 1 0 0 −2 0

0 1 0 2 0

0 0 1 2 0


There are three independent columns. Thus, a basis can be

B =

〈 1

2

0

 ,

 3

1

1

 ,

 −1

1

1

〉

The matrix’s rank is the dimension of the basis, i.e., the number of elements of the basis, so the rank
is 3. By the rank–nullity theorem the matrix’s nullity is the number of columns (of the matrix) minus
the rank, so the nullity is 1. The nullity is the dimension of the kernel or null space, the (general)
solution of the homogeneous system (use the RREF)

x− 2w = 0

y + 2w = 0

z + 2w = 0

Ker =




x

y

z

w

 = λ


1

−2

−2

1


∣∣∣∣∣λ ∈ R2


See, the matrix’s domain is 4-dimensional (columns) and the kernel/nullspace is a line (1-dimensional
subset of R4) that maps to the 0⃗ vector in the matrix’s image which is of 3-dimensional.
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3 Linear mappings

Exercise 3.2. Give a basis for the span of the following set{
x+ x2, 2− 2x, 7, 4 + 3x+ 2x2

}
Give also the rank and the nullity.

Solution. Parameterize in matrix form
0 · x0 + 1 · x1 + 1 · x2

2 · x0 − 2 · x1 + 0 · x2

7 · x0 + 0 · x1 + 0 · x2

4 · x0 + 3 · x1 + 2 · x2

 =


0 1 1

2 −2 0

7 0 0

4 3 2

 ·

 x0

x1

x2


We want to know the number of independent polynomials, which translates to independent rows

0 1 1

2 −2 0

7 0 0

4 3 2

→


0 1 1

1 −1 0

1 0 0

4 3 2

→


0 1 1

0 −1 0

1 0 0

4 3 2

→


0 0 1

0 −1 0

1 0 0

4 3 2

→


0 0 1

0 1 0

1 0 0

0 0 0


There are three independent rows, i.e., a basis can be

B = ⟨(1, 0, 0), (0, 1, 0), (0, 0, 1)⟩ ⇐⇒ B =
〈
1, x, x2

〉
The rank of the span is 3 and by the rank–nullity theorem the nullity is the number of columns minus
the rank, so the nullity is 0. All the polynomials spanned by original set can be produced with the
three elements of the basis.

Exercise 3.3. Verify that h : P3 → R2 given by

ax2 + bx+ c 7−→

[
a+ b

a+ c

]
is a homomorphism. Hint: check that h(αA+ βB) = αh(A) + βh(B).

Solution. We need to map two polynomials

mapping of polynomial 1: a1x
2 + b1x+ c1 7−→

[
a1 + b1

a1 + c1

]

mapping of polynomial 2: a2x
2 + b2x+ c2 7−→

[
a2 + b2

a2 + c2

]
Linear combination of the polynomials

λ1

(
a1x

2 + b1x+ c1
)
+ λ2

(
a2x

2 + b2x+ c2
)
= (λ1a1 + λ2a2)x

2 + (λ1b1 + λ2b2)x+ (λ1c1 + λ2c2)

Mapping of the combination

(λ1a1 + λ2a2)x
2 + (λ1b1 + λ2b2)x+ (λ1c1 + λ2c2) 7−→

[
λ1a1 + λ2a2 + λ1b1 + λ2b2

λ1a1 + λ2a2 + λ1c1 + λ2c2

]
Rewrite the mapping[

λ1a1 + λ2a2 + λ1b1 + λ2b2

λ1a1 + λ2a2 + λ1c1 + λ2c2

]
=

[
λ1 (a1 + b1) + λ2 (a2 + b2)

λ1 (a1 + c1) + λ2 (a2 + c2)

]
= λ1

[
a1 + b1

a1 + c1

]
+ λ2

[
a2 + b2

a2 + c2

]
The mapping of the linear combination of polynomials is the linear combination of the mappings of
the polynomials. Thus, h is a homomorphism.
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Exercise 3.4. Verify that f : R2 → R3 given by

[
x

y

]
7−→

 0

x− y

3y


is a homomorphism. Hint: check that h(αA+ βB) = αh(A) + βh(B).

Solution. Quick and dirty

f

(
a1

[
x1

y1

]
+ a2

[
x2

y2

])
= f

([
a1x1 + a2x2

a1y1 + a2y2

])

=

 0

a1x1 + a2x2 − a1y1 + a2y2

3 (a1y1 + a2y2)



=

 0 + 0

a1(x1 − y1) + a2(x2 + y2)

3a1y1 + 3a2y2



= a1

 0

x1 − y1

3y1

+ a2

 0

x2 + y2

3y2

 = a1f

([
x1

y1

])
+ a2f

([
x2

y2

])

f is a homomorphism.

Exercise 3.5. Assume each matrix below represents a map h : Rm → Rn

a)

[
2 1

−1 3

]

b)

 0 1 3

2 3 4

−2 −1 2



c)

 1 1

2 1

3 1


For each state

• m and n

• range space and rank

• null space and nullity

Hint: study/solve/analyze the system Mu⃗ = v⃗.

Solution. For (a): [
2 1

−1 3

][
x

y

]
=

[
a

b

]
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3 Linear mappings

The dimension of the domain space R2 is the number of columns m = 2 . The dimension of the
codomain space R2 is the number of rows n = 2 . Next, solve the system[

2 1 a

−1 3 b

]
→ · · · →

[
1 0 3

7a− 1
7b

0 1 1
7a+ 2

7b

]
Note that for any vector in the codomain (right side of the |) there is a solution in the domain (left
side of the |). Thus, the range is all of the codomain R(h) = R2. The map’s rank is the dimension
of the range, rank(h) = 2 . By setting a = b = 0 the only solution is x = y = 0, i.e., the null space
(kernel) is the trivial subspace of the domain

N (h) = ker(h) =

{[
0

0

]}

and the nullity is the dimension of the null space, nullity(h) = 0 .

For (b):  0 1 3

2 3 4

−2 −1 2


 x

y

z

 =

 a

b

c


The dimension of the domain space R3 is the number of columns m = 3 . The dimension of the
codomain space R3 is the number of rows n = 3 . Next, solve the system 0 1 3 a

2 3 4 b

−2 −1 2 c

→ · · · →

 1 0 −5
2 −3

2a+ 1
2b

0 1 3 a

0 0 0 −2a+ b+ c


From the last row 0 = −2a+ b+ c we get a = (b+ c)/2, so the range is

R(h) =


 a

b

c

 ∈ R3

∣∣∣∣∣a =
b+ c

2

 =

b


1
2

1

0

+ c


1
2

0

1

 ∣∣∣∣∣b, c ∈ R


The map’s rank is the dimension of the range, rank(h) = 2 . By setting a = b = c = 0 1 0 −5

2 0

0 1 3 0

0 0 0 0

⇐⇒

 1 0 −5
2

0 1 3

0 0 0


 x

y

z

 =

 0

0

0


the solution is x = 5

2z, y = −3z, i.e., the null space (kernel) is

N (h) = ker(h) =


 x

y

z

 ∈ R3

∣∣∣∣∣x =
5

2
z, y = −3z

 =


 x

y

z

 = λ


5
2

−3

0

 ∣∣∣∣∣λ ∈ R


and the nullity is the dimension of the null space, nullity(h) = 1 (the kernel is a line in R3).

For (c):  1 1

2 1

3 1

[ x

y

]
=

 a

b

c


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The dimension of the domain space R2 is the number of columns m = 2 . The dimension of the
codomain space R3 is the number of rows n = 3 . Next, solve the system 1 1 a

2 1 b

3 1 c

→ · · · →

 1 0 −a+ b

0 1 2a− b

0 0 a− 2b+ c


From the last row 0 = a− 2b+ c we get a = 2b− c, so the range is

R(h) =


 a

b

c

 ∈ R3

∣∣∣∣∣a = 2b− c

 =

b

 2

1

0

+ c

 −1

0

1

 ∣∣∣∣∣b, c ∈ R


The map’s rank is the dimension of the range, rank(h) = 2 . By setting a = b = c = 0 1 0 0

0 1 0

0 0 0

⇐⇒

 1 0 0

0 1 0

0 0 0

[ x

y

]
=

 0

0

0


the solution is x = y = 0, i.e., the null space (kernel) is

N (h) = ker(h) =

{[
0

0

]}

and the nullity is the dimension of the null space, nullity(h) = 0 .

Exercise 3.6. For each of the mappings f : R2 → R3 below

a)

[
x

y

]
7−→

 x

y

x+ 2y



b)

[
x

y

]
7−→

 x

y

x+ 2y − 1



c)

[
x

y

]
7−→

 x

y

x2 + y2


Determine if the range (i.e., right side of the arrow, the “destination”) is a vector space.

Solution. For (a): The range set is a plane spanned by two vectors

R(f) = span


 1

0

1

 ,

 0

1

2


 =


 x

y

z

 = a

 1

0

1

+ b

 0

1

2

 ∣∣∣∣∣ a, b ∈ R


Take two elements from the set

u =

 x

y

x+ 2y

 , v =

 a

b

a+ 2b


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3 Linear mappings

It is easy to show that the zero element exists: make x = y = 0 (or a = b = 0) and you will get
[0, 0, 0]T. Check closure under addition and multiplication by scalar (both at the same time)

αu+ βv =

 αx+ βa

αy + βb

αx+ βa+ 2(αy + βb)

 =

 /

,

/+ 2,

 ∈ R(f)

The range set is a vector space.

For (b): The range set is a plane

R(f) =


 x

y

z

 = a

 1

0

1

+ b

 0

1

2

−

 0

0

1

 ∣∣∣∣∣ a, b ∈ R


Let’s check if R(f) has the zero element. It doesn’t because there are no solutions a, b for the system

x = 0 = a

y = 0 = b

z = 0 = a+ 2b− 1

The range set is not a vector space.

For (c): The range set is a paraboloid

R(f) =


 x

y

z

 =

 a

b

a2 + b2

 ∣∣∣∣∣ a, b ∈ R


Let’s check if R(f) has the zero element. Make a = b = 0 and you will get [0, 0, 0]T, the zero element
exists. To check closure under addition consider two vectors from R(f)

u1 =

 a1

b1

a21 + b21

 , u2 =

 a2

b2

a22 + b22


Sum the vectors

u3 = u1 + u2 =

 x

y

z

 =

 a1 + a2

b1 + b2

a21 + b21 + a22 + b22


If u3 ∈ R(f) then z = x2 + y2, but this implies that

(a1 + a2)
2 + (b1 + b2)

2 = a21 + b21 + a22 + b22

a21 + 2a1a2 + a22 + b21 + 2b1b2 + b22 = a21 + b21 + a22 + b22

a1a2 + b1b2 = 0

which is not always true. There is not closure under addition. The range set is not a vector space.
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4 Inner products

Exercise 4.1. Show that ⟨·, ·⟩ defined for all x⃗ = [x1, x2]
T ∈ R and y⃗ = [y1, y2]

T ∈ R by

⟨x⃗, y⃗⟩ := x1y1 − (x1y2 + x2y1) + 2x2y2

is an inner product.

Solution. We need to show that ⟨x⃗, y⃗⟩ is

• symmetric: ⟨x⃗, y⃗⟩ = ⟨y⃗, x⃗⟩

• positive definite: ⟨x⃗, x⃗⟩ > 0 and
〈
0⃗, 0⃗
〉
= 0

• bi-linear: ⟨x⃗+ y⃗, z⃗⟩ = ⟨x⃗, z⃗⟩+ ⟨y⃗, z⃗⟩ and ⟨λx⃗, y⃗⟩ = λ ⟨x⃗, z⃗⟩

Symmetry:

⟨x⃗, y⃗⟩ = x1y1 − (x1y2 + x2y1) + 2x2y2

= y1x1 − (y2x1 + y1x2) + 2y2x2 = ⟨y⃗, x⃗⟩

It is symmetric.

Positive definite:

⟨x⃗, x⃗⟩ = x1x1 − (x1x2 + x2x1) + 2x2x2

= x21 − 2x1x2 + 2x22

= x21 − 2x1x2 + x22 + x22

= (x1 + x2)
2 + x22

⟨x⃗, x⃗⟩ is positive for x⃗ ̸= 0⃗ and zero for x⃗ = 0⃗ only.

Bi-linearity: we can do both tests at the same time

⟨λ (x⃗+ y⃗) , z⃗⟩ = λ (x1 + y1) z1 − [λ (x1 + y1) z2 + λ (x2 + y2) z1] + λ2 (x2 + y2) z2

= λ {x1z1 + y1z1 − [x1z2 + y1z2 + x2z1 + y2z1] + 2x2z2 + 2y2z2}
= λ {x1z1 − x1z2 − x2z1 + 2x2z2 + y1z1 − y1z2 − y2z1 + 2y2z2}
= λ {x1z1 − (x1z2 + x2z1) + 2x2z2 + y1z1 − (y1z2 + y2z1) + 2y2z2}
= λ {x1z1 − (x1z2 + x2z1) + 2x2z2}+ λ {y1z1 − (y1z2 + y2z1) + 2y2z2}
= λ ⟨x⃗, z⃗⟩+ λ ⟨y⃗, z⃗⟩

It is bi-linear.
Thus, we conclude that

⟨x⃗, y⃗⟩ := x1y1 − (x1y2 + x2y1) + 2x2y2

is an inner product.
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4 Inner products

Exercise 4.2. Consider ⟨·, ·⟩ defined for all x⃗ and y⃗ in R2 as

⟨x⃗, y⃗⟩ := x⃗T

[
2 0

1 2

]
y⃗

Is ⟨·, ·⟩ an inner product? Is the matrix M above positive definite?

Solution. That the matrix is not symmetric gives a hint that the symmetry property is violated. Test
symmetry using vectors

x⃗ =

[
1

0

]
and y⃗ =

[
0

1

]

⟨x⃗, y⃗⟩ =
[
1 0

] [ 2 0

1 2

][
0

1

]
=
[
1 0

] [ 0

2

]
= 0

⟨y⃗, x⃗⟩ =
[
0 1

] [ 2 0

1 2

][
1

0

]
=
[
0 1

] [ 2

1

]
= 1

There is no symmetry, ⟨·, ·⟩ is not an inner product.

Let’s check if the matrix is positive definite, i.e., prove that x⃗TMx⃗ > 0 and 0⃗TM 0⃗ = 0

x⃗TMx⃗ =
[
x1 x2

] [ 2 0

1 2

][
x1

x2

]
= 2x21 + x1x2 + 2x22

now let x2 = λx1 so that x⃗ =

[
x1

x2

]
= x1

[
1

λ

]
. Accordingly

2x21 + x1λx1 + 2λ2x21 = x21
(
2 + λ+ 2λ2

)
x21 cannot be negative and 2 + λ+ 2λ2 is always positive. If x⃗ ̸= 0⃗ then x⃗TMx⃗ > 0 and if x⃗ = 0⃗ then
x⃗TMx⃗ = 0. Matrix M is positive definite.

Exercise 4.3. Compute the distance between vectors

x⃗ =

 1

2

3

 , y⃗ =

 −1

−1

0


using

(a) ⟨x⃗, y⃗⟩ := x⃗Ty⃗

(b) ⟨x⃗, y⃗⟩ := x⃗TAy⃗ where A =

 2 1 0

1 3 −1

0 −1 2


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Solution. We need to calculate the length of the vector difference

z⃗ = x⃗− y⃗ =

 1

2

3

−

 −1

−1

0

 =

 2

3

3


Part (a):

⟨z⃗, z⃗⟩ =
[
2 3 4

] 2

3

3

 = 4 + 9 + 9 = 22

and the distance is
√
22 ≈ 4.49.

Part (b):

⟨z⃗, z⃗⟩ =
[
2 3 4

] 2 1 0

1 3 −1

0 −1 2


 2

3

3

 =
[
2 3 4

] 7

8

3

 = 14 + 24 + 12 = 50

and the distance is
√
50 ≈ 7.07.

Exercise 4.4. Compute the angle between

x⃗ =

[
1

2

]
and y⃗ =

[
−1

−1

]

using

(a) ⟨x⃗, y⃗⟩ := x⃗Ty⃗

(b) ⟨x⃗, y⃗⟩ := x⃗TAy⃗ where A =

[
2 1

1 3

]

You will need
cos θ =

⟨x⃗, y⃗⟩
∥x⃗∥ ∥y⃗∥

=
⟨x⃗, y⃗⟩√

⟨x⃗, x⃗⟩
√
⟨y⃗, y⃗⟩

.

Solution. Part (a):

⟨x⃗, y⃗⟩ =
[
1 2

] [ −1

−1

]
= −1− 2 = −3

⟨x⃗, x⃗⟩ =
[
1 2

] [ 1

2

]
= 1 + 4 = 5

⟨y⃗, y⃗⟩ =
[
−1 −1

] [ −1

−1

]
= 1 + 1 = 2

Then

cos θ =
−3√
5
√
2
=

−3√
10

= − 3

10

√
10 ≈ −0.94868

θ = arccos(−0.94868) ≈ 2.82 rad ≈ 161.5 deg
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4 Inner products

Part (b):

⟨x⃗, y⃗⟩ =
[
1 2

] [ 2 1

1 3

][
−1

−1

]
= −11

⟨x⃗, x⃗⟩ =
[
1 2

] [ 2 1

1 3

][
1

2

]
= 18

⟨y⃗, y⃗⟩ =
[
−1 −1

] [ 2 1

1 3

][
−1

−1

]
= 7

Then

cos θ =
−11√
18
√
7
= − 11

126
≈ −0.087302

θ = arccos(−0.087302) ≈ 1.66 rad ≈ 95 deg
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5 Projections

Exercise 5.1. Project the vector orthogonaly into the line

(a)

 2

−1

4

 ,

c

 −3

1

−3

 ∣∣∣∣∣ c ∈ R


(b)

[
−1

−1

]
, y = 3x

Solution. The projection of vector u into vector v is

πv(u) = λv =
(u · v
v · v

)
v

Part (a): Let

u =

 2

−1

4

 , v = c

 −3

1

−3


Get the scale factor

λ =
(2,−1, 4) · (−3c, c,−3c)

(−3c, c,−3c) · (−3c, c,−3c)
= �c(−6− 1− 12)

c�2(9 + 1 + 9)
=

−19

19c
= −1

c

The projection is

πv(u) = −1

�c
�c

 −3

1

−3

 =

 3

−1

3


Notice: the choice of c determines the scalar λ, but the projection πv is independent of c and λ.

Part (b): Let

u =

[
−1

−1

]
, v =

[
1

3

]
The projection is

πv(u) =
(−1,−1) · (1, 3)
(1, 3) · (1, 3)

[
1

3

]
=

−1− 3

1 + 9

[
1

3

]
=

−4

10

[
1

3

]
= −

[
2
5
6
5

]

Exercise 5.2. In R4 project point p = (1, 2, 1, 3) into the line l = {c(−1, 1,−1, 1) | c ∈ R}.

Solution.

πl(p) =

[
(1, 2, 1, 3) · (−1, 1,−1, 1)

(−1, 1,−1, 1) · (−1, 1,−1, 1)

]
(−1, 1,−1, 1)

=

[
−1 + 2− 1 + 3

1 + 1 + 1 + 1

]
(−1, 1,−1, 1) =

5

4
(−1, 1,−1, 1)

=

(
−5

4
,
5

4
,−5

4
,
5

4

)
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5 Projections

Exercise 5.3. Consider the transformation of R2 resulting from fixing s = [3, 1]T and projecting v
into the line spanned by s. Show that in general the projection transformation is[

x1

x2

]
7→

[
9x1+3x2

10
3x1+x2

10

]

and find the projection matrix.

Solution.

πline(v) =

[
x1

x2

]T [
3

1

]
[

3

1

]T [
3

1

] [ 3

1

]
=

3x1 + x2
10

[
3

1

]
=

[
9x1+3x2

10
3x1+x2

10

]

=

[
9x1
10
3x1
10

]
+

[
3x2
10
x2
10

]
=

[
9
10

3
10

3
10

1
10

][
x1

x2

]
.

The picture bellow shows the projection (thick arrows) of two vectors (thin arrows) into the line
spanned by s.

(x1,x2)

1 2 3-1

1

2
span(s)

(x1′,x2′)

Exercise 5.4. Consider the euclidean vector space R5 with the dot product. A subspace U ⊆ R5 and
x⃗ ∈ R5 given by

U = span




0

−1

2

0

2

 ,


1

−3

1

−1

2

 ,


−3

4

1

2

1

 ,


−1

−3

5

0

7



 , x⃗ =


−1

−9

−1

4

1


• determine the orthogonal projection πU (x⃗)

• determine the distance d(x⃗, U)
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Solution. First determine a basis for U
0 1 −3 −1

−1 −3 4 −3

2 1 1 5

0 −1 2 0

2 2 1 7

→ · · · →


1 0 0 1

0 1 0 2

0 0 1 1

0 0 0 0

0 0 0 0


There are only three independent vectors. Pick the first three for the basis so that

U = span




0

−1

2

0

2

 ,


1

−3

1

−1

2

 ,


−3

4

1

2

1




In other words U could be spanned by the columns of this matrix

B =


0 1 −3

−1 −3 4

2 1 1

0 −1 2

2 2 1


The projection πU (x⃗) = p⃗ is some vector p⃗ = Bλ⃗ ∈ R5. We need a λ⃗ = [λ1, λ2, λ3]

T ̸= 0⃗ in ∈ R3. How?
Let

x⃗ = p⃗+ q⃗ and p⃗⊥q⃗

this means

p⃗ · (x⃗− p⃗) = 0 (p⃗⊥q⃗)

(Bλ⃗)T(x⃗−Bλ⃗) = 0 (p⃗ = Bλ⃗)

λ⃗TBT(x⃗−Bλ⃗) = 0

BT(x⃗−Bλ⃗) = 0⃗ (λ⃗ ̸= 0⃗)

BTx⃗−BTBλ⃗ = 0⃗

BTBλ⃗ = BTx⃗

In practice

 0 −1 2 0 2

1 −3 1 −1 2

−3 4 1 2 1


︸ ︷︷ ︸

BT


0 1 −3

−1 −3 4

2 1 1

0 −1 2

2 2 1


︸ ︷︷ ︸

B

 λ1

λ2

λ3


︸ ︷︷ ︸

λ⃗

=

 0 −1 2 0 2

1 −3 1 −1 2

−3 4 1 2 1




1

−3

1

−1

2


︸ ︷︷ ︸

x⃗

λ⃗ =
(
BTB

)−1
BT︸ ︷︷ ︸

pseudoinverse

x⃗
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5 Projections

The scalars are λ1 = −3, λ1 = 4, λ1 = 1. The orthogonal projection of x⃗ into U is

p⃗ = πU (x⃗) = Bλ⃗ =


0 1 −3

−1 −3 4

2 1 1

0 −1 2

2 2 1


 −3

4

1

 =


1

−5

−1

−2

3


The distance between x⃗ and U is the distance between x⃗ and p⃗

d(x⃗, U) = ||x⃗− p⃗||

x⃗− p⃗ =


1

−3

1

−1

2

−


1

−5

−1

−2

3

 =


−2

−4

0

6

−2


d(x⃗, U) =

√
22 + 44 + 62 + 22 =

√
60

Exercise 5.5. Project the “round point” (x, y) = (2, 1) into the “rhomboid grid” shown below. The
length of the vector forming the 60◦ angle is 1.

1 2 3

1

2

3

x

y

60°

Find the (x, y) of “squarish point”. Find the transformation projecting “from rectangular to rhomboid”.

Solution. The coordinates of the unit vector are x = cos 60◦ = 1
2 and y = sin 60◦ =

√
3
2 . You can use

the vectors
(
1
2 ,

√
3
2

)
and (1, 0) as basis for the rhomboid grid

[
2

1

]
= u

[
1

0

]
+ v

[
1
2√
3
2

]
We can solve

u+
1

2
v = 2

√
3

2
v = 1

u = 6−
√
3

3 ≈ 1.42 and v = 2
√
3

3 ≈ 1.15, these are the “rhomboid coordinates”
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1 2 3

1

2

3

u

v
u=1.42

v=1.15

The squarish point lies at (u, v) = (2, 2) and its canonical coordinates are[
x

y

]
=

[
1 1

2

0
√
3
2

][
2

2

]
=

[
3√
3

]

If the transformation from rhomboid to rectangular is[
x

y

]
=

[
1 1

2

0
√
3
2

][
u

v

]

the inverse transformation from rectangular to rhomboid requires the matrix inverse[
u

v

]
=

[
1 −1

3

√
3

0 2
3

√
3

][
x

y

]

Exercise 5.6. Use Gram–Schmidt orthogonalization to create a basis for R2 using〈[
1

1

]
︸ ︷︷ ︸

b⃗1

,

[
−1

2

]
︸ ︷︷ ︸

b⃗2

〉

Solution. Let

b⃗1 =

[
1

1

]
, b⃗2 =

[
−1

2

]

It is easier to orthogonalize with respect to b⃗1. The vectors for the new basis will be

u⃗1 = b⃗1 =

[
1

1

]
, u⃗2 = π2(⃗b2)

so that
b⃗2 = π1(⃗b2) + π2(⃗b2) ⇐⇒ π2(⃗b2) = b⃗2 − π1(⃗b2)

Thus,

u⃗2 = b⃗2 −

(
b⃗2 · b⃗1
b⃗1 · b⃗1

)
b⃗1 =

[
−1

2

]
− (−1, 2) · (1, 1)

(1, 1) · (1, 1)

[
1

1

]
=

[
−3

2
3
2

]
The orthogonal basis is 〈[

1

1

]
,

[
−3

2
3
2

]〉
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5 Projections

1

2

1 2-2 -1 x

y
x′y′

→

b
1

→

b
2

1

2

1 2-2 -1 x

y
x′y′

→
u

1

→
u

2

You can check that u⃗1 and u⃗2 are indeed orthogonal

u⃗1 · u⃗2 =

[
1

1

]
·

[
−3

2
3
2

]
= −3

2
+

3

2
= 0

Exercise 5.7. Find an orthonormal basis for this subspace of R3: the plane x− y + z = 0.

Solution. First thing to do is to parameterize the plane
 x

y

z

 ∈ R3

∣∣∣∣∣x = y − z

 =

y

 1

1

0

+ z

 −1

0

1

 ∣∣∣∣∣y, z ∈ R


Let’s make

b⃗1 =

 1

1

0


one of our basis vectors. Use the Gram–Schmidt method to find our second orthogonal basis vector

b⃗2 =

 −1

0

1

−
(

[1, 1, 0] · [−1, 0, 1]

[−1, 0, 1] · [−1, 0, 1]

) 1

1

0

 =

 −1

0

1

+
1

2

 1

1

0

 =

 −1
2
1
2

1


Next, we must normalize b⃗1 and b⃗2

u⃗1 =
b⃗1∥∥∥⃗b1∥∥∥ =

1√
12 + 12

 1

1

0

 =


− 1√

2
1√
2

0



u⃗2 =
b⃗2∥∥∥⃗b2∥∥∥ =

1√
(−1

2)
2 + (12)

2 + 12

 −1
2
1
2

1

 =


− 1√

6
1√
6
2√
6


The orthonormal basis is 〈

− 1√
2
1√
2

0

 ,


− 1√

6
1√
6
2√
6


〉
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Exercise 5.8. Rotate the vectors

x1 =

[
2

3

]
,x2 =

[
0

−1

]
by 30◦.

Solution. We use the rotation matrix

A =

[
cos θ − sin θ

sin θ cos θ

]

with θ = 30◦ = π
6 : cos(π6 ) =

√
3
2 and sin(π6 ) =

1
2

r1 =

[ √
3
2 −1

2
1
2

√
3
2

][
2

3

]
=

[ √
3− 3

2

1 +
√
3
6

]
=

[
2
√
3−3
2

6+
√
3

6

]
=

1

6

[
6
√
3− 9

6 +
√
3

]

r2 =

[ √
3
2 −1

2
1
2

√
3
2

][
0

−1

]
=

[
1
2

−
√
3
2

]
=

1

2

[
1

−
√
3

]
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6 Eigenvectors and eigenvalues

Exercise 6.1. Compute the determinant of

A =

 1 3 5

2 4 6

0 2 4


using the Laplace expansion, the rule of Sarrus and row operations.

Solution. Determinant by Laplace expansion of the 1st, 2nd or 3rd row

∣∣∣∣∣∣∣
1 3 5

2 4 6

0 2 4

∣∣∣∣∣∣∣ =



1 ·

∣∣∣∣∣ 4 6

2 4

∣∣∣∣∣− 3

∣∣∣∣∣ 2 6

0 4

∣∣∣∣∣+ 5

∣∣∣∣∣ 2 4

0 2

∣∣∣∣∣ = 1 · (16− 12)− 3 · (8− 0) + 5 · (4− 0) = 0

−2 ·

∣∣∣∣∣ 3 5

4 6

∣∣∣∣∣+ 4

∣∣∣∣∣ 1 5

0 4

∣∣∣∣∣− 6

∣∣∣∣∣ 1 3

0 2

∣∣∣∣∣ = −2 · (18− 20) + 4 · (4− 0)− 6 · (3− 0) = 0

0 ·

∣∣∣∣∣ 3 5

4 6

∣∣∣∣∣− 2

∣∣∣∣∣ 1 5

2 6

∣∣∣∣∣+ 4

∣∣∣∣∣ 1 3

2 4

∣∣∣∣∣ = −2 · (6− 10) + 4 · (4− 6) = 0

Determinant by the rule of Sarrus: write out the first two columns of the matrix to the right of the
third column, giving five columns in a row. Then add the products of the diagonals going from top to
bottom (solid) and subtract the products of the diagonals going from bottom to top (dashed)

1 3 5 1 3

2 4 6 2 4

0 2 4 0 2

+ + +

− − −

det(A) = 1 · 4 · 4 + 3 · 6 · 0 + 5 · 2 · 2− (0 · 4 · 5 + 2 · 6 · 1 + 4 · 2 · 3) = 0

Determinant by row operations∣∣∣∣∣∣∣
1 3 5

2 4 6

0 2 4

∣∣∣∣∣∣∣ −2R1 =

∣∣∣∣∣∣∣
1 3 5

0 −2 −4

0 2 4

∣∣∣∣∣∣∣ +R2

=

∣∣∣∣∣∣∣
1 3 5

0 −2 −4

0 0 0

∣∣∣∣∣∣∣ = 1× (−2)× 0 = 0

det(A) =

∣∣∣∣∣∣∣
1 3 5

2 4 6

0 2 4

∣∣∣∣∣∣∣ = 0

Exercise 6.2. Compute the following determinant efficiently∣∣∣∣∣∣∣∣∣∣∣∣

2 0 1 2 0

2 −1 0 1 1

0 1 2 1 2

−2 0 2 −1 2

2 0 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣
.
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6 Eigenvectors and eigenvalues

Solution. Perform row operations to get the matrix into echelon form∣∣∣∣∣∣∣∣∣∣∣∣

2 0 1 2 0

2 −1 0 1 1

0 1 2 1 2

−2 0 2 −1 2

2 0 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣
−R1

+R1

−R1

=

∣∣∣∣∣∣∣∣∣∣∣∣

2 0 1 2 0

0 −1 −1 −1 1

0 1 2 1 2

0 0 3 1 2

0 0 −1 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣
+R2

=

∣∣∣∣∣∣∣∣∣∣∣∣

2 0 1 2 0

0 −1 −1 −1 1

0 0 1 0 3

0 0 3 1 2

0 0 −1 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣ −3R3

+R3

=

∣∣∣∣∣∣∣∣∣∣∣∣

2 0 1 2 0

0 −1 −1 −1 1

0 0 1 0 3

0 0 0 1 −7

0 0 0 −1 4

∣∣∣∣∣∣∣∣∣∣∣∣ +R4

=

∣∣∣∣∣∣∣∣∣∣∣∣

2 0 1 2 0

0 −1 −1 −1 1

0 0 1 0 3

0 0 0 1 −7

0 0 0 0 −3

∣∣∣∣∣∣∣∣∣∣∣∣
= 2× (−1)× 1× 1× (−3) = 6

Exercise 6.3. Compute the eigenspaces of

(a) A =

[
1 0

1 1

]

(b) B =

[
−2 2

2 1

]

Solution. For this we need to solve the characteristic equation, then the eigenvalue equation.

Part (a) Characteristic equation

det

([
1 0

1 1

]
− λ

[
1 0

0 1

])
=

∣∣∣∣∣ 1− λ 0

1 1− λ

∣∣∣∣∣ = (1− λ)2 = 0

There is only one solution λ = 1 with algebraic multiplicity 2. Eigenvalue equation([
1 0

1 1

]
− 1

[
1 0

0 1

])[
x

y

]
=

[
0

0

]
[

0 0

1 0

][
x

y

]
=

[
0

0

]

x

[
0

1

]
+ y

[
0

0

]
=

[
0

0

]
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See that x must be zero but y can be any number. Let’s set x = 0 and y = 1 for the eigenvector. The
eigenspace will be

E1 = span

([
0

1

])

Part (b) Characteristic equation

det

([
−2 2

2 1

]
− λ

[
1 0

0 1

])
=

∣∣∣∣∣ 2− λ 2

2 1− λ

∣∣∣∣∣ = (λ− 2)(λ+ 3) = 0

The eigenvalues are λ1 = 2 and λ2 = −3. The eigenvector associated with λ1 = 2 is the solution of[
−2− 2 2

2 1− 2

][
x

y

]
=

[
0

0

]
⇒

[
−4 2

2 −1

][
x

y

]
=

[
0

0

]
⇒ y = 2x ⇒ v1 =

[
1

2

]

and the corresponding eigenspace of λ1 = 2 is E1 = span

([
1

2

])
.

The eigenvector associated with λ2 = −3 is the solution of[
−2− (−3) 2

2 1− (−3)

][
x

y

]
=

[
0

0

]
⇒

[
1 2

2 4

][
x

y

]
=

[
0

0

]
⇒ x = −2y ⇒ v2 =

[
2

−1

]

and the corresponding eigenspace of λ2 = −3 is E2 = span

([
2

−1

])

Exercise 6.4. Consider the map [
x

y

]
k+1

=

[
1 0
1
4 −2

][
x

y

]
k

Given [x, y]T0 = [1, 1]T calculate [x, y]T3 . What happens if k → ∞?

Solution. We can do this[
x

y

]
1

=

[
1 0
1
4 −2

][
x

y

]
0

=

[
1 0
1
4 −2

][
1

1

]
=

[
1

−7
4

]
[

x

y

]
2

=

[
1 0
1
4 −2

][
x

y

]
1

=

[
1 0
1
4 −2

][
1

−7
4

]
=

[
1
15
4

]
[

x

y

]
3

=

[
1 0
1
4 −2

][
x

y

]
2

=

[
1 0
1
4 −2

][
1
15
4

]
=

[
1

−29
4

]

But not a good indea for k in general because that requires vk = Mkv0 and multiplying many
matrices is not efficient. Instead, decompose the matrix M = PDP−1, where D is the diagonal matrix
of eigenvalues and P the matrix with corresponding eigenvectors as columns. Then

Mk =
(
PDP−1

)k
= PD����

P−1PDP−1 · · ·PD����
P−1PDP−1︸ ︷︷ ︸

k times

= PDkP−1,

diagonal matrices are easier to raise to powers.
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6 Eigenvectors and eigenvalues

For this matrix one can read the eigenvalues from the diagonal (it is triangular!) λ1 = 1, λ2 = −2.

For the eigenvectors of λ1 = 1 solve([
1 0
1
4 −2

]
− 1

[
1 0

0 1

])[
x

y

]
=

[
0

0

]
⇒

[
0 0
1
4 −3

][
x

y

]
=

[
0

0

]
⇒ v1 =

[
12

1

]
.

For the eigenvectors of λ2 = −2 solve([
1 0
1
4 −2

]
− (−2)

[
1 0

0 1

])[
x

y

]
=

[
0

0

]
⇒

[
3 0
1
4 0

][
x

y

]
=

[
0

0

]
⇒ v2 =

[
0

1

]
.

The mapping matrix can be factored as

M =

[
12 0

1 1

]
︸ ︷︷ ︸

P

[
1 0

0 −2

]
︸ ︷︷ ︸

D

1

12

[
1 0

−1 12

]
︸ ︷︷ ︸

P−1

.

Check for k = 3[
x

y

]
3

=

[
1 0
1
4 −2

]3 [
x

y

]
0

=

[
12 0

1 1

]
︸ ︷︷ ︸

P

[
1 0

0 (−2)3

]
︸ ︷︷ ︸

D3

1

12

[
1 0

−1 12

]
︸ ︷︷ ︸

P−1

[
1

1

]

=
1

12

[
12 0

1 1

][
1 0

0 −8

][
1 0

−1 12

][
1

1

]
=

1

12

[
12 0

1 1

][
1 0

8 −8 · 12

][
1

1

]

=
1

12

[
12 0

9 −8 · 12

]
=

[
1 0
3
4 −8

][
1

1

]
=

[
1

3
4 − 8

]
=

[
1

−29
4

]
But if k → ∞[

x

y

]
k

=

[
1 0
1
4 −2

]k [
x

y

]
0

=

[
12 0

1 1

]
︸ ︷︷ ︸

P

[
1 0

0 (−2)k

]
︸ ︷︷ ︸

Dk

1

12

[
1 0

−1 12

]
︸ ︷︷ ︸

P−1

[
1

1

]

=
1

12

[
12 0

1 1

][
1 0

0 (−2)k

][
1 0

−1 12

][
1

1

]
=

1

12

[
12 0

1 1

][
1 0

0 (−2)k

][
1

11

]

=
1

12

[
12 0

1 1

][
1

11(−2)k

]
=

1

12

[
12

1 + 11(−2)k

]
=

1

12

[
12

1 + 11(−1)k2k

]
Thus,

lim
k→∞

1

12

[
12

1 + 11(−1)k2k

]
=

1

12

[
limk→∞ 12

1 + 11 limk→∞(−1)k2k

]
=

1

12

[
12

diverges

]
=

[
1

diverges

]

and the limit does not exist.

Exercise 6.5. Picture an animal that can live 4 years. Survival from ages 1 → 2, 2 → 3 and 3 → 4
occur with probability 0.6, 0.4 and 0.3 respectively. An individual of age 2 or 3 produces 80 and 50
eggs respectively, but only a fraction s = 0.1 survive predation. Let n1, n2, n3, n4 be the number of
individuals of each age class. The same numbers one year later are n′

1, n
′
2, n

′
3, n

′
4. If a population starts

with a n1 = n2 = n4 = 0, n3 = 10, what are the numbers after t = 20 years? What is the stable
age-structure?
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Solution. We start by writing the dependences of n′
1, n

′
2, n

′
3, n

′
4 on the n1, n2, n3, n4

n′
1 = s80n2 + s50n3

n′
2 = 0.6n1

n′
3 = 0.4n2

n′
4 = 0.3n3

This mapping can be represented as
n′
1

n′
2

n′
3

n′
4


︸ ︷︷ ︸

N′

=


0 80s 50s 0

0.6 0 0 0

0 0.4 0 0

0 0 0.3 0


︸ ︷︷ ︸

L


n1

n2

n3

n4


︸ ︷︷ ︸

N

N,N′ are population structure vectors, L is a “Leslie matrix”. If the population vector in year 0 is N0

N1 = LN0

N2 = LN1 = LLN0

N3 = LN3 = LLLN0

...
...

Nt = LtN0
n1,t

n2,t

n3,t

n4,t

 =


0 80s 50s 0

0.6 0 0 0

0 0.4 0 0

0 0 0.3 0


t 

n1,0

n2,0

n3,0

n4,0


We have to diagonalize the Leslie matrix as L = VRW where R is the diagonal matrix of eigenvalues
of L, V is the a matrix of eigenvectors whose columns correspond to eigenvalues in R, and W = V−1.
Using s = 0.1 Octave or Matlab gives the following eigenvalues

R =


0.0000 0.0000 0.0000 0.0000

0.0000 2.3066 0.0000 0.0000

0.0000 0.0000 −2.0532 0.0000

0.0000 0.0000 0.0000 −0.2534

 ,

eigenvectors (columns)

V =


0.0000 −0.9669 0.9584 −0.1578

0.0000 −0.2515 −0.2801 0.3736

0.0000 −0.0436 0.0546 −0.5898

1.0000 −0.0057 −0.0080 0.6983

 ,

and

W =


−0.0600 0.0000 1.2000 1.0000

−0.4930 −1.8954 −1.0688 0.0000

0.5606 −1.9182 −1.3651 0.0000

0.0883 −0.0373 −1.7427 0.0000

 .
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6 Eigenvectors and eigenvalues

For N0 = [0, 0, 10, 0] the population after t = 20 years is

N20 = L20N0 = PD20WN0 =


1.6456× 108

5.5613× 107

7.1492× 106

1.2944× 106

 ≈ 106 ×


164.7

55.6

7.1

1.3


For very large t

Nt ≈ vdλ
t
dwdN0 = 2.3066t


−0.9669

−0.2515

−0.0436

−0.0057


[
−0.4930 −1.8954 −1.0688 0.0000

]


0

0

10

0



≈ 2.3066t


10.333

2.688

0.466

0.061


where λd is the dominant eigenvalue and vd,wd are associated dominant left and right eigenvectors.
The stable age-structure is given by the dominant eigenvector

−0.9669

−0.2515

−0.0436

−0.0057

⇒ divide by 1st element, multiply by 10000, round to integer ⇒


10000

2601

451

59


Scaling by 10000 is convenient for communication because it says e.g., “there are 59 individuals of age
4 per 10000 individuals of age 1”.
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7 Vector calculus

Exercise 7.1. Find the gradient and jacobian of f(x) = sin(x1) cos(x2), x ∈ R2.

Solution. We need to get the partial derivatives with respect to the components of x

∂f

∂x1
= cos(x1) cos(x2)

∂f

∂x2
= − sin(x1) sin(x2)

The gradient is the vector of partials

∇f =

[
∂f

∂x1

∂f

∂x2

]
=
[
cos(x1) cos(x2) − sin(x1) sin(x2)

]
the gradient is a row vector. The jacobian is a column vector of gradients. Since there is only one
gradient, the jacobian is just the gradient

J = ∇f =
[
cos(x1) cos(x2) − sin(x1) sin(x2)

]

Exercise 7.2. Find the gradient and jacobian of f(x,y) = xTy, x,y ∈ Rn.

Solution. This function is a scalar multiplication of vectors, the dot product

f(x,y) = xTy =

n∑
i=1

xiyi

Note that f : R2n 7→ R. The partial derivatives with respect to x and toy

∂f

∂x
=

[
∂f

∂x1
. . .

∂f

∂xn

]
=
[
y1 . . . yn

]
= yT ∈ Rn

∂f

∂y
=

[
∂f

∂y1
. . .

∂f

∂yn

]
=
[
x1 . . . xn

]
= xT ∈ Rn

The gradient is the vector of partials

∇f =

[
∂f

∂x

∂f

∂y

]
=
[
yT xT

]
=
[
y1 . . . yn x1 . . . xn

]
the gradient is a row vector. The jacobian is a column vector of gradients. Since there is only one
gradient, the jacobian is just the gradient

J = ∇f =
[
y1 . . . yn x1 . . . xn

]

Exercise 7.3. Find the jacobian of f(x) = xxT, x ∈ Rn.
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7 Vector calculus

Solution. This function maps Rn to Rn×n

f(x) = xxT =


x1
...
xn


︸ ︷︷ ︸

x

[
x1 . . . xn

]
︸ ︷︷ ︸

xT

=


x1x

T

...
xnx

T

 =
[
xx1 . . . xxn

]
=


x21 · · · x1xn
...

. . .
...

xnx1 · · · x2n


The partial derivative with respect to x1 is

∂

∂x1

(
xxT

)
=

∂x

∂x1
xT + x

∂xT

∂x1
=

∂

∂x1




x1
...
xn


xT + x

∂

∂x1

([
x1 . . . xn

])

=


1

0
...
0

xT + x
[
1 0 . . . 0

]
=


xT

0
...
0

+
[
x 0 . . . 0

]

=


x1 x2 · · · xn

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

+


x1 0 . . . 0

x2 0 . . . 0
...

...
. . .

...
xn 0 . . . 0

 =


2x1 x2 . . . xn

x2 0 . . . 0
...

...
. . .

...
xn 0 . . . 0


The other partials follow the same pattern

∂

∂xi

(
xxT

)
=

 0(i−1)×n

xT

0(n−i+1)×n

+
[
0n×(i−1) x 0n×(n−i+1)

]

and the jacobian matrix is J =
[

∂f
∂x1

∂f
∂x2

· · · ∂f
∂xn

]

J =


2x1 x2 . . . xn 0 x1 . . . 0 . . . 0 0 . . . x1

x2 0 . . . 0 x1 2x2 . . . xn . . . 0 0 . . . x2
...

...
. . .

...
...

...
. . .

... . . .
...

...
. . .

...
xn 0 . . . 0 xn 0 . . . 0 . . . x1 x2 . . . 2x1



Exercise 7.4. Find the jacobian matrix for the Lorenz system of differential equations

ẋ = f(x, y, z) = σ(y − x)

ẏ = g(x, y, z) = x(ρ− z)

ż = h(x, y, z) = xy − βz

and evaluate the jacobian at stationary points (x, y, z) where ẋ = ẏ = ż = 0.

Solution. We need to find the three gradients first

∇f =

[
∂f

∂x

∂f

∂y

∂f

∂z

]
=

[
∂

∂x
(σy − σx)

∂

∂y
(σy − σx)

∂f

∂z
(σy − σx)

]
=
[
−σ σ 0

]
∇g =

[
∂g

∂x

∂g

∂y

∂g

∂z

]
=

[
∂

∂x
(ρx− xz)

∂

∂y
(ρx− xz)

∂f

∂z
(ρx− xz)

]
=
[
ρ− z 0 −x

]
∇h =

[
∂h

∂x

∂h

∂y

∂h

∂z

]
=

[
∂

∂x
(xy − βz)

∂

∂y
(xy − βz)

∂f

∂z
(xy − βz)

]
=
[
y x −β

]
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The jacobian matrix is

J =

 −σ σ 0

ρ− z 0 −x

y x −β

 .

At a stationary point

0 = σ(y − x)

0 = x(ρ− z)

0 = xy − βz

There is a trivial solution (x, y, z) = (0, 0, 0) where the jacobian is

J =

 −σ σ 0

ρ 0 0

y 0 −β

 ,

a non/trivial solution (x, y, z) = (
√
βρ,

√
βρ, ρ) where the jacobian is

J =

 −σ σ 0

0 0 −
√
βρ

√
βρ

√
βρ −β

 ,

and a non/trivial solution (x, y, z) = (−
√
βρ,−

√
βρ, ρ) where the jacobian is

J =

 −σ σ 0

0 0
√
βρ

−
√
βρ −

√
βρ −β

 .

Exercise 7.5. Find the jacobian matrix for
y = Ax+ b

where x,y,b ∈ Rn and A ∈ Rn×n.

Solution. Let’s first expand this too see what’s happening here
y1

y2
...
yn

 =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann




x1

x2
...
xn

+


b1

b2
...
bn

 =


∑n

i=1 a1ixi + b1∑n
i=1 a2ixi + b2

...∑n
i=1 anixi + bn


The derivative of yi (i = 1, . . . , n) with respect to xj (j = 1, . . . , n) is

∂yi
∂xj

=
∂

∂xj

(
n∑

k=1

aikxk + bi

)
= aij ,

i.e., it’s all zero except when k = j. This means that

J = A
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7 Vector calculus

Exercise 7.6. Compute the derivatives of f respect to x for

f(z) = e−z

where z = xTx, x ∈ Rn.

Solution. We need to use the chain rule

∂f

∂x
=

∂f

∂z
· ∂z
∂x

∂f
∂z = ∂

∂z (e
−z) = −e−z this was easy. Now for ∂z

∂x , this is a gradient

∇z =
∂z

∂x
=
[

∂z
∂x1

∂z
∂x2

· · · ∂z
∂xn

]
=
[

∂xTx
∂x1

∂xTx
∂x2

· · · ∂xTx
∂xn

]
=
[

∂
∑

x2
i

∂x1

∂
∑

x2
i

∂x2
· · · ∂

∑
x2
i

∂xn

]
=
[
2x1 2x2 · · · 2xn

]
= 2xT

So,

∂f

∂x
=− e−z∇z

=− e−xTx 2xT

=− 2
[
x1 x2 · · · xn

]
e−

∑
x2
i

=
[
−2x1e

−x2
1 −2x2e

−x2
2 · · · −2xne

−x2
n

]

Exercise 7.7. Compute the derivatives of f respect to x for

f(y) = lny

where y = Ax+ b, x ∈ R3, A =

[
1 −1 1

−1 1 −1

]
and b =

[
1

1

]
.

Solution. We need to use the chain rule

∂f

∂x
=

∂f

∂y
· ∂y
∂x

For ∂f
∂y :

lny =

[
ln y1

ln y2

]
⇒ ∂f

∂y
=
[

∂f
∂y1

∂f
∂y2

]
⇒ ∂f

∂y1
=

[
1
y1

0

]
,
∂f

∂y2
=

[
0
1
y2

]
⇒ ∂f

∂y
=

[
1
y1

0

0 1
y2

]

For ∂y
∂x :

y =

[
y1

y2

]
=

[
x1 − x2 + x3 + 1

−x1 + x2 − x3 + 1

]
⇒ ∂y

∂x
=

[
∂y1
∂x
∂y1
∂x

]
⇒ ∂y

∂x
=

[
∂y1
∂x1

∂y1
∂x2

∂y1
∂x3

∂y2
∂x1

∂y2
∂x2

∂y2
∂x3

]
=

[
1 −1 1

−1 1 −1

]
So,

∂f

∂x
=

[
1
y1

0

0 1
y2

][
1 −1 1

−1 1 −1

]
=

[
1
y1

− 1
y1

1
y1

− 1
y2

1
y2

− 1
y2

]

=

[
1

1+x1−x2+x3

−1
1+x1−x2+x3

1
1+x1−x2+x3

−1
1−x1+x2−x3

1
1−x1+x2−x3

−1
1−x1+x2−x3

]
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Exercise 7.8. Compute the derivatives of f respect to x

(a) f(z) = log(1 + z), z = xTx

(b) f(z) = sin(z), z = Ax+ b

A ∈ RE×D, x ∈ RD, b ∈ RE

Solution. (a) See that f(z(x)) is a scalar-valued function of a vector, so the derivative takes the
gradient vector form

∂f

∂x
=

2xT

1 + xTx
=

[
2x1

1 +
∑D

i=1 x
2
i

2x2

1 +
∑D

i=1 x
2
i

· · · 2xD

1 +
∑D

i=1 x
2
i

]
(b) See that f(z(x)) is a vector-valued function of a vector, so the derivative takes the jacobian matrix
form. Using the Chen-Lu

∂f

∂x
=

∂f

∂z

∂z

∂x
= cos(z)A,

but cos(z) has E rows and A has D columns, we cannot multiply cos(z)A as shown unless E = D.
But if we lay out cos(z) as a diagonal matrix E × E we can multiply it by A which has E rows

∂f

∂x
= diag (cos (Ax+ b))A

=


cos
(
b1 +

∑D
i=1 a1ixi

)
· · · 0

...
. . .

...

0 · · · cos
(
bE +

∑D
i=1 aEixi

)



a11 · · · a1D
...

. . .
...

aE1 · · · aED


If you are not convinced, let’s do it the long way

f(z) = f(


sin(z1)

...
sin(zE)


︸ ︷︷ ︸

E×1

) = f(


x1
...
xD


︸ ︷︷ ︸

D×1

)

︸ ︷︷ ︸
E×1

=


sin
(
b1 +

∑D
j=1 a1jxj

)
...

sin
(
bD +

∑D
j=1 aEjxj

)


︸ ︷︷ ︸
Hey! that’s still E×1

the derivative is

∂f

∂x
=


∂
∂x

(
sin
(
b1 +

∑D
j=1 a1jxj

))
...

∂
∂x

(
sin
(
bD +

∑D
j=1 aEjxj

))
 =


cos
(
b1 +

∑D
j=1 a1jxj

)
∂
∂x

(
b1 +

∑D
j=1 a1jxj

)
...

cos
(
bD +

∑D
j=1 aEjxj

)
∂
∂x

(
bD +

∑D
j=1 aEjxj

)


now see that ∂
∂x

(
bi +

∑D
j=1 aijxj

)
is a gradient vector. Continue but using zi = bi+

∑D
j=1 aijxj down

below

∂f

∂x
=


cos (z1)∇x (z1)

...
cos (zE)∇x (zE)

 =


cos (z1)

[
a11 · · · a1D

]
...

cos (zE)
[
aE1 · · · aED

]
 =


[
a11 cos (z1) · · · a1D cos (z1)

]
...[

aE1 cos (zE) · · · aED cos (zE)
]


This is a column vector or row vectors, so ∂f
∂x is a jacobian matrix. Row i of this jacobian is row i of A

scaled by cos (zi). This is why we can factor the jacobian as the product of a diagonal cos(z) matrix
times A.

49





8 Continuous optimization

Exercise 8.1. Find and classify all the critical points of the following function

f (x, y) = 3y3 − x2y2 + 8y2 + 4x2 − 20y.

Solution. Get all first and second partial derivatives

fx = −2xy2 + 8x fy = 9y2 − 2x2y + 16y − 20

fxx = −2y2 + 8 fxy = −4xy fyy = 18y − 2x2 + 16

Find all critical points by setting the gradient to zero (fx, fy) = (0, 0). Equation fx = 0 has three
solutions x = 0 and y = ±2. Use them to find the solutions of the fy = 0 equation:

• if x = 0: the solution of 9y2 − 2 · 02y + 16y − 20 = 0 is y = −16±
√
976

18

• if y = 2: the solution of 9 · 22 − 2x2 · 2 + 16 · 2− 20 = 0 is x = ±2
√
3

• if y = −2: the solution of 9 · (−2)2 − 2x2 · (−2) + 16 · (−2)− 20 = 0 is x = ±2

There are six critical points (x, y)

1.
(
0, −16+

√
976

18

)
2.
(
0, −16−

√
976

18

)
3.
(
2
√
3, 2
)

4.
(
−2

√
3, 2
)

5. (2,−2)

6. (−2,−2)

For classification we need

D(x, y) =fxxfyy − f2
xy =

(
−2y2 + 8

) (
18y − 2x2 + 16

)
− (−4xy)2

=4
[(
4− y2

) (
8 + 9y − x2

)
− 4x2y2

]
Use a calculator

1. D
(
0, −16+

√
976

18

)
= 205.1 > 0 and fxx

(
0, −16+

√
976

18

)
= 6.6 > 0. This is a (relative) minimum

2. D
(
0, −16−

√
976

18

)
= 180.4 > 0 and fxx

(
0, −16−

√
976

18

)
= −5.8 < 0. This is a (relative) maximum

3. D
(
2
√
3, 2
)
= −768 < 0. This is a saddle point

4. D
(
−2

√
3, 2
)
= −768 < 0. This is a saddle point

5. D (2,−2) = −256 < 0. This is a saddle point

6. D (−2,−2) = −256 < 0. This is a saddle point
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8 Continuous optimization

Exercise 8.2. Find and classify all the critical points of the following function

f (x, y) = 8x− x
√

y − 1 + x3 +
1

2
y − 12x2.

Solution. Get all first and second partial derivatives

fx = 8−
√

y − 1 + 3x2 − 24x fy = − x

2
√
y − 1

+
1

2

fxx = 6x− 24 fxy = 0 fyy =
x

4
(y − 1)−3/2

Find all critical points by setting the gradient to zero (fx, fy) = (0, 0). From fx = 0 we get that√
y − 1 = 3x2 − 24x + 8. Substituting this in fy = 0 gives 3x2 − 24x + 8 = 0 and this quadratic

equation has two solutions x = 1
3 and x = 8. Replacing x = 1

3 in fx = 0 gives√
y − 1 = 3 · 1

32
− 24 · 1

3
+ 8 = 8− 23

3
+ 8 =

1

3
⇒ y − 1 =

1

9
⇒ y =

10

9

and replacing x = 8 in fx = 0 gives√
y − 1 =�

��3 · 82 −���24 · 8 + 8 = 8 ⇒ y − 1 = 64 ⇒ y =
√
65

There are two critical points (x, y)

1.
(
1
3 ,

10
9

)
2.
(
8,
√
65
)

For classification we need

D(x, y) = fxxfyy − f2
xy = (6x− 24)

(x
4
(y − 1)−3/2

)
− (0)2 =

3x(x− 4)

2(y − 1)3/2

A calculator is not required because it is very easy to determine the sign of D at both critical points

1. D
(
1
3 ,

10
9

)
= 3

2
1
3

(
1
3 − 4

) (
10
9 − 1

)−3/2
< 0. This is a saddle point

2. D
(
8,
√
65
)
= 3

28 (8− 4)
(√

65− 1
)−3/2

> 0 and fxx
(
8,
√
65
)
= 6 · 8 − 24 = 24 > 0. This is a

minimum

Exercise 8.3. Find the equation of the tangent plane to

z = x2 cos (πy)− 6

xy2

at (2,−1).

Solution. Get the partial derivatives

fx = 2x cos(πy) +
6

x2y2
fy = −πx2 sin(xy) +

12

xy3

Evaluate at (2,−1)

f(2,−1) = −7 fx(2,−1) = −5

2
fy(2,−1) = −6

The tangent plane is

z = −7− 5

2
(x− 2)− 6(y + 1) = −5

2
x− 6y − 8
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Exercise 8.4. Find the equation of the tangent plane to

z = x2y4 − 12x

y

at (−1, 6).

Solution. Get the partial derivatives

fx = 2xy4 − 12

y
fy = 4x2y3 +

12x

y2

Evaluate at (−1, 6)

f(−1, 6) = (−1)264 − 12 · (−1)

6
fx(−1, 6) = 2(−1)64 − 12

6
fy(−1, 6) = 4(−1)263 +

12 · (−2)

63

= 64 + 2 = 1298 = 2 · 64 − 2 = 2590 = 4 · 63 − 24

63
=

2590

3

The tangent plane is

z = f(−1, 6) + fx(−1, 6)(x+ 1) + f(−1, 6)(y − 6)

= 1298 + 2590(x+ 1) +
2590(y − 6)

3

= 1298 + 2590x+ 2590 +
2590

3
y − 2 · 2590

= −1292 + 2590x+
2590

3
y

Exercise 8.5. Find the maximum and minimum values of f(x, y) = 81x2+y2 subject to the constraint
4x2 + y2 = 9.

Solution. Before we start notice from the constraint that −3
2 ≤ x ≤ 3

2 and −3 ≤ y ≤ 3. We need to
solve the following system of equations

∇f(x, y) = λ∇g(x, y)

g(x, y) = c

where g(x, y) = 4x2 + y2 and c = 9. The first means that the gradients of f and g are parallel at
critical points, and the scalar λ (Lagrange multiplier) makes them equal. The gradients are

∇f(x, y) = (162x, 2y)

∇g(x, y) = (8x, 2y)

We need to satisfy

162x = λ8x

2y = λ2y

4x2 + y2 = 9

In the 2nd equation the solutions are y = 0 and λ = 1:

• substituting y = 0 on the 3rd we get x = ±3
2

• substituting λ = 1 on the 1st we get x = 0, which replaced on the 3rd gives y = ±3
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8 Continuous optimization

We have three solutions

1. (x, y) =
(
3
2 , 0
)

and f
(
3
2 , 0
)
= 729

4 that’s between 175 and 200

2. (x, y) =
(
−3

2 , 0
)

and f
(
−3

2 , 0
)
= 729

4 that’s between 175 and 200

3. (x, y) = (0, 3) and f (0, 3) = 9

4. (x, y) = (0,−3) and f (0,−3) = 9

We can conclude that points 1 and 2 are absolute maxima while 3 and 4 are absolute minima.

Exercise 8.6. Find the maximum and minimum values of f(x, y, z) = 3x2+y subject to the constraints
4x− 3y = 9 and x2 + z2 = 9.

Solution. First note that because of the 2nd constraint −3 ≤ x ≤ 3 and −3 ≤ z ≤ 3. Then from
the 1st constraint it follows that −7 ≤ z ≤ 7. In this problem we need satisfaction of the following
equations

∇f(x, y, z) = λ∇g(x, y, z) + µ∇h(x, y, z)

g(x, y, z) = 9

h(x, y, z) = 9

with g(x, y, z) = 4x− 3y and h(x, y, z) = x2 + z2. Notice that

∇f =
[
λ µ

]
︸ ︷︷ ︸

vector of multipliers

[
∇g

∇h

]
︸ ︷︷ ︸

jacobian matrix

The gradients

∇f =

[
∂f

∂x
,
∂f

∂y
,
∂f

∂z

]
= [6x, 1, 0]

∇g =

[
∂g

∂x
,
∂g

∂y
,
∂g

∂z

]
= [4,−3, 0]

∇h =

[
∂h

∂x
,
∂h

∂y
,
∂h

∂z

]
= [2x, 0, 2z]

That’s a total of five equations

6x = 4λ+ 2µx

1 = −3λ

0 = 2µz

4x− 3y = 9

x2 + z2 = 9

From the 2nd equation λ = −1

3
. From the 3rd µ = 0 or z = 0. We need to see what happens with

each of these two

• For z = 0 the 5th equation (the 2nd constraint) gives x = ±3. Now use these two on the 4th
equation (1st constraint)

x = −3 : −12− 3y = 9 → y = −7

x = 3 : 12− 3y = 9 → y = 1

So, we have points P1 = (−3,−7, 0) and P2 = (3, 1, 0)
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• For µ = 0 the 1st equation (remember that λ = −1
3 !!!) produces x = −2

9 . Using this value in
the 4th and 5 equations (1st and 2nd constraints) makes

4

(
−2

9

)
− 3y = 9 → y = −89

27(
−2

9

)2

+ z2 = 9 → z = ±5
√
29

9

So, we have points P3 =
(
−2

9 ,−
89
27 ,−

5
√
29
9

)
and P4 =

(
−2

9 ,−
89
27 ,

5
√
29
9

)
Evaluation at the points

1. f (−3,−7, 0) = 20

2. f (3, 1, 0) = 28

3. f
(
−2

9 ,−
89
27 ,−

5
√
29
9

)
= −85

27

4. f
(
−2

9 ,−
89
27 ,

5
√
29
9

)
= −85

27

The absolute maximum is 28 at (x, y, z) = (3, 1, 0) and the absolute minimum is −85
27 which occurs at(

−2
9 ,−

89
27 ,±

5
√
29
9

)
.

Exercise 8.7. Find the maximum and minimum values of f(x, y) = 3x− 6y subject to the constraint
4x2 + 2y2 = 25.

Solution. The constraint indicates that |x| ≤ 5/2 and |y| ≤ 5
√
2/2. The following equations must be

satisfied

∇f(x, y) = λ∇g(x, y)

g(x, y) = 0

with g(x, y) = 4x2 + 2y2 − 25 . This gives

3 = 8λx

−3 = 2λy

4x2 + 2y2 = 25

The 1st and 2nd equations produce x = 3
8λ and y = 3

2λ , respectively. Substite these into the 3rd to
get λ

4

(
3

8λ

)2

+ 2

(
3

2λ

)2

= 25

36

64λ2
+

9

2λ2
= 25

25λ2 =
81

16

λ = ± 9

20
.

Using λ = ± 9
20 gives x = ± 5

12 and y = ±10
3 , all valid (within the constraints). Thus,
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8 Continuous optimization

1. (x, y) =
(

5
12 ,

10
3

)
and f

(
5
12 ,

10
3

)
= 3 5

12 − 610
3 = −75

4 ≈ −18.75

2. (x, y) =
(
− 5

12 ,−
10
3

)
and f

(
− 5

12 ,−
10
3

)
= −3 5

12 + 610
3 = 75

4 ≈ 18.75

We can conclude that point 1 is an absolute minimum and point 2 is an absolute maximum.

Exercise 8.8. Determine the quadratic polynomial approximation of

f(x, y) = sin 2x+ cos y

near the point (0, 0).

Solution. Get all first and second partial derivatives

fx = 2 cos 2x fy = − sin y

fxx = −4 sin 2x fxy = 0 fyy = − cos y

At (xo, yo) = (0, 0) we get f(0, 0) = sin 2 · 0 + cos 0 = 1 and

fx(0, 0) = 2 fy(0, 0) = 0

fxx(0, 0) = 0 fxy(0, 0) = 0 fyy(0, 0) = −1

The linear approximation is

L(x, y) = f(x, y) + fx(x, y)(x− xo) + fy(x, y)(y − yo)

and at (xo, yo) = (0, 0) that’s

L(0, 0) = f(0, 0) + fx(0, 0)x+ fy(0, 0)y = 1 + 2x

The quadratic approximation is

Q(x, y) = L(x, y) +
fx(x, y)

2
(x− xo)

2 + fxy(x, y)(x− xo)(y − yo) +
fy(x, y)

2
(y − yo)

2

and at (xo, yo) = (0, 0) that’s

Q(x, y) = L(0, 0) +
fx(0, 0)

2
x2 + fxy(0, 0)xy +

fy(0, 0)

2
y2 = 1 + 2x− 1

2
y2

Exercise 8.9. Determine the quadratic polynomial approximation of

f(x, y) = 1 + xey

near the point (1, 0).

Solution. Get all first and second partial derivatives

fx = ey fy = x

fxx = 0 fxy = 0 fyy = 0

At (xo, yo) = (1, 0) we get f(1, 0) = 1 + 1 · e0 = 2 and

fx(1, 0) = 1 fy(1, 0) = 1

fxx(1, 0) = 0 fxy(1, 0) = 0 fyy(1, 0) = 0

The linear approximation is

L(x, y) = f(x, y) + fx(x, y)(x− xo) + fy(x, y)(y − yo)

and at (xo, yo) = (1, 0) that’s

L(1, 0) = f(1, 0) + fx(1, 0)(x− 1) + fy(1, 0)(y − 0) = 2 + 1 · (x− 1) + 1 · y = 1 + x+ y

The quadratic approximation is

Q(x, y) = L(x, y) +
fxx(x, y)

2
(x− xo)

2 + fxy(x, y)(x− xo)(y − yo) +
fyy(x, y)

2
(y − yo)

2

but at (xo, yo) = (1, 0) all 2nd order derivates are equal to 0. Thus, Q(1, 0) = L(1, 0) = 1 + x+ y
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