06

Přechodové teploty polymerů

6 Přechodové teploty polymerů


Polymerní materiály se v závislosti na teplotě mohou nacházet v tuhém nebo kapalném stavu (neplatí pro sesíťované polymery: reaktoplasty, pryže, které jsou netavitelné). U polymerů neexistuje plynný stav, neboť velikost makromolekul způsobuje, že jejich bod varu je ve všech případech vyšší, než je teplota rozkladu (degradace polymeru). Na rozdíl od nízkomolekulárních látek (např. vody, lihu apod.) je pro polymery charakteristický ještě přechodový stav, mezi stavem sklovitým a kapalným, tzv. stav kaučukovitý. Vlastnosti polymerů jsou tedy podobně jako jiné materiály závislé na teplotě. V určité oblasti teplot se ale tyto změny zrychlují a mohou se měnit dokonce skokem. Takové oblasti se nazývají přechodovými teplotami a v závislosti na teplotě se polymer může nacházet ve stavu sklovitém, kaučukovitém nebo kapalném.



Obr. 42: Charakteristická závislost modulu pružnosti (Et) a celkové tažnosti (εb), resp. poměrného prodloužení při přetržení na teplotě u amorfního termoplastu

U amorfních termoplastů jsou charakteristickými přechodovými teplotami teplota skelného přechodu (Tg), označována také jako teplota zeskelnění a teplota viskózního toku (Tf). Pod teplotou skelného přechodu se termoplast nachází ve sklovitém stavu, nad ní ve stavu kaučukovitém (viz obr. 42). Pod teplotou skelného přechodu je polymer tvrdý a křehký a má vysoký modul pružnosti. V přechodové oblasti v okolí Tg se vlastnosti amorfního termoplastu mění skokem a polymer nabývá kaučukovitou pružnost, např. modul pružnosti (E) poklesne přibližně o tři řády. Toto chování je způsobeno zvýšenou pohyblivostí částí (segmentů) makromolekul, které konají rotační nebo kývavý pohyb (poklesnou mezimolekulární síly). S dalším nárůstem teploty ztrácí amorfní termoplast v teplotní oblasti charakterizované teplotou viskózního toku (Tf) kaučukovitě elastické vlastnosti. V této oblasti modul pružnosti klesá skokem na nulovou hodnotu (dochází k pohybu makromolekul vůči sobě navzájem) a polymer se mění ve vysoce viskózní tok, taveninu. Nad teplotou Tf se nachází oblast zpracovatelnosti amorfních termoplastů technologickými postupy, jako je vstřikování, vytlačování apod.

Vzhledem ke skutečnosti, že k největším „skokovým“ změnám vlastností u amorfních termoplastů dochází v oblasti skelného přechodu, je teplota zeskelnění považována za teoretickou hranici použitelnosti amorfních termoplastů, pokud nejsou mechanicky namáhány. Při jejím překročení dochází k samovolné deformaci vyrobeného dílu a ztrátě jeho funkčnosti (viz obr. 43 a obr. 44). Z praktických důvodů (s ohledem na spolehlivou funkci dílu) volíme ovšem horní použitelnou teplotu asi o (10 až 20) °C nižší. Maximální teplotu je však nutno volit vždy s přihlédnutím ke způsobu namáhání dílu a k době působení teplotního zatížení.



Obr. 43: Samovolná deformace polymerních dílů
z PLA (amorfní forma) při teplotě nad Tg (Tg ~ 60°C)

Obr. 44: Polymerní díl z PLA (amorfní forma)
a) pod teplotou Tg; b) nad teplotou Tg

Teplota zeskelnění polymeru závisí na jeho molekulární struktuře a na velikosti mezimolekulárních sil (tedy i na chemickém složení polymeru). Teplotu zeskelnění je možné ovlivnit přídavkem změkčovadel, čímž se snižují síly mezi makromolekulami a tím i Tg nebo kopolymerací takových monomerů, kterými se zvyšuje pohyblivost makromolekul. Tak působí např. ethen při kopolymeraci s propenem a Tg výsledného polymeru se posouvá k nižším hodnotám, než je běžné pro běžný polypropylen (zvyšuje se rázová houževnatost za bodu mrazu). Obdobného účinku lze docílit také vzájemnou modifikací polymerů. Z této oblasti lze uvést praktický příklad reaktorové modifikace polypropylenu (PP) s ethylen-propylen-diénovým kaučukem (EPDM). Příkladem aplikace této polymerní směsi v praxi je výroba nárazníku pro automobilový průmysl. Pokud by nárazník byl vyráběn pouze z homopolymeru polypropylenu (PP), došlo by při teplotách mrazu (přibližně v teplotní oblasti kolem -15 °C, viz tab. 4) ke zkřehnutí polymeru (materiál se z kaučukovité oblasti dostane do oblasti sklovité) a polymer by nesplňoval jeden ze základních aplikačních požadavků pro nárazníky, tj. dostatečnou odolnost rázovému namáhání za nízkých teplot (až do -40 °C).

 Sesíťované amorfní polymery (reaktoplasty, pryže) se chovají ve srovnání s amorfními termoplasty odlišně. Tuhá síť chemických vazeb vylučuje přesuny makromolekul jako celku (materiály nelze roztavit). Proto můžeme při zvyšování teploty nalézt jen náznak kaučukovité pružnosti, která se projeví v přechodové oblasti zeskelnění a to jen velmi nepatrnou změnou v závislosti na hustotě zesítění (elastomery jsou materiály řídce sesítěné, na rozdíl od reaktoplastů). Modul pružnosti takového polymeru má proto nad Tg stále relativně vysokou hodnotu, která zůstává víceméně konstantní až do teploty rozkladu.

Také semikrystalické termoplasty mění v přechodové oblasti zeskelnění (Tg) své vlastnosti skokem, avšak k nejrychlejším změnám dochází až v oblasti teplot, kterou charakterizuje teplota tání (Tm) – teplota tání krystalitů. V této teplotní oblasti dochází k rozpadu krystalické struktury polymeru, který přechází z tuhého stavu do kapalného. Nad Tm se nachází teplotní oblast zpracování semikrystalických termoplastů vstřikováním, vytlačováním apod. (viz obr. 45). Teplota tání závisí na velikosti makromolekul a na velikosti sil působících mezi nimi.



Obr. 45: Charakteristická závislost modulu pružnosti (Et) a celkové tažnosti (εtb), resp. jmenovitého poměrného prodloužení při přetržení na teplotě u semikrystalického termoplastu

Změny vlastností semikrystalických termoplastů v oblasti Tg jsou charakteristické pouze pro amorfní složku tohoto polymeru, takže čím polymer vykazuje větší stupeň krystalinity (míru uspořádanosti makromolekul), tím jsou změny při Tg méně výrazné. Vzhledem ke krystalickému podílu ve struktuře materiálu, resp. vzhledem k velkým mezimolekulárním silám v krystalitech si semikrystalické polymery udržují dobré technické vlastnosti i v oblasti mezi přechodovými teplotami Tg a Tm, tak jak znázorňuje obr. 46, vyjadřující závislost modulu pružnosti (E) na teplotě pro vybrané amorfní i semikrystalické termoplasty.

Vzhledem ke skutečnosti, že k  nejrychlejším změnám vlastností u semikrystalických termoplastů dochází v oblasti teploty tání, je tato teplota považována za teoretickou hranici použitelnosti semikrystalických termoplastů, pokud nejsou mechanicky namáhány (obdobně jako teplota Tg u amorfních termoplastů). S ohledem na spolehlivou funkci dílu volíme z praktických důvodů horní použitelnou teplotu asi o (20 až 40) °C pod Tm. Maximální teplotu je však nutno volit vždy s přihlédnutím ke způsobu namáhání dílu a k době působení teplotního zatížení. U dlouhodobě zatížených součástí se horní hranice snižuje.



Obr. 46: Teplotní závislost modulu pružnosti pro amorfní a semikrystalické polymery
amorfní polymery: PMMA, PC, PSU; semikrystalické polymery: POM, PA-6, PA-66

Z obr. 42, obr. 45 a obr. 46 je patrné, že přechodové teploty nepředstavují jednoznačnou fyzikální veličinu, nýbrž charakterizují pouze střední hodnotu přechodové oblasti. Příčinou je polydisperzita polymeru o které jsme již hovořili, tedy nestejnorodá velikost makromolekul (např. kratší makromolekuly tají dříve než ty delší). Přechod mezi jednotlivými stavy je tedy pozvolný (často v rozmezí desítek °C). Typické příklady přechodových teplot polymeru jsou uvedeny v tab. 4.


Kontrolní otázky k zamyšlení

(Pro zobrazení odpovědi klikni na otázku.)

14) Jaký termoplast byste vybrali pro aplikaci, u které je požadováno, aby díl byl průhledný a vydržel současně bez zatížení teploty do 110 °C? (použijte tab. 4)

15) Proč je při standardní teplotě polystyren (PS) křehký a polyethylen (PE) houževnatý?



Tab. 4: Typické hodnoty přechodových teplot zeskelnění (Tg) a tání (Tm) u vybraných polymerů

Kontrolní test IV.